VAN
Last updated
Last updated
This model is in maintenance mode only, so we won’t accept any new PRs changing its code.
If you run into any issues running this model, please reinstall the last version that supported this model: v4.30.0. You can do so by running the following command: pip install -U transformers==4.30.0
.
The VAN model was proposed in by Meng-Hao Guo, Cheng-Ze Lu, Zheng-Ning Liu, Ming-Ming Cheng, Shi-Min Hu.
This paper introduces a new attention layer based on convolution operations able to capture both local and distant relationships. This is done by combining normal and large kernel convolution layers. The latter uses a dilated convolution to capture distant correlations.
The abstract from the paper is the following:
While originally designed for natural language processing tasks, the self-attention mechanism has recently taken various computer vision areas by storm. However, the 2D nature of images brings three challenges for applying self-attention in computer vision. (1) Treating images as 1D sequences neglects their 2D structures. (2) The quadratic complexity is too expensive for high-resolution images. (3) It only captures spatial adaptability but ignores channel adaptability. In this paper, we propose a novel large kernel attention (LKA) module to enable self-adaptive and long-range correlations in self-attention while avoiding the above issues. We further introduce a novel neural network based on LKA, namely Visual Attention Network (VAN). While extremely simple, VAN outperforms the state-of-the-art vision transformers and convolutional neural networks with a large margin in extensive experiments, including image classification, object detection, semantic segmentation, instance segmentation, etc. Code is available at .
Tips:
VAN does not have an embedding layer, thus the hidden_states
will have a length equal to the number of stages.
The figure below illustrates the architecture of a Visual Aattention Layer. Taken from the .
A list of official BOINC AI and community (indicated by 🌎) resources to help you get started with VAN.
Image Classification
If you’re interested in submitting a resource to be included here, please feel free to open a Pull Request and we’ll review it! The resource should ideally demonstrate something new instead of duplicating an existing resource.
( image_size = 224num_channels = 3patch_sizes = [7, 3, 3, 3]strides = [4, 2, 2, 2]hidden_sizes = [64, 128, 320, 512]depths = [3, 3, 12, 3]mlp_ratios = [8, 8, 4, 4]hidden_act = 'gelu'initializer_range = 0.02layer_norm_eps = 1e-06layer_scale_init_value = 0.01drop_path_rate = 0.0dropout_rate = 0.0**kwargs )
Parameters
image_size (int
, optional, defaults to 224) — The size (resolution) of each image.
num_channels (int
, optional, defaults to 3) — The number of input channels.
patch_sizes (List[int]
, optional, defaults to [7, 3, 3, 3]
) — Patch size to use in each stage’s embedding layer.
strides (List[int]
, optional, defaults to [4, 2, 2, 2]
) — Stride size to use in each stage’s embedding layer to downsample the input.
hidden_sizes (List[int]
, optional, defaults to [64, 128, 320, 512]
) — Dimensionality (hidden size) at each stage.
depths (List[int]
, optional, defaults to [3, 3, 12, 3]
) — Depth (number of layers) for each stage.
mlp_ratios (List[int]
, optional, defaults to [8, 8, 4, 4]
) — The expansion ratio for mlp layer at each stage.
hidden_act (str
or function
, optional, defaults to "gelu"
) — The non-linear activation function (function or string) in each layer. If string, "gelu"
, "relu"
, "selu"
and "gelu_new"
are supported.
initializer_range (float
, optional, defaults to 0.02) — The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (float
, optional, defaults to 1e-12) — The epsilon used by the layer normalization layers.
layer_scale_init_value (float
, optional, defaults to 1e-2) — The initial value for layer scaling.
drop_path_rate (float
, optional, defaults to 0.0) — The dropout probability for stochastic depth.
dropout_rate (float
, optional, defaults to 0.0) — The dropout probability for dropout.
Example:
Copied
( config )
Parameters
forward
( pixel_values: typing.Optional[torch.FloatTensor]output_hidden_states: typing.Optional[bool] = Nonereturn_dict: typing.Optional[bool] = None ) → transformers.modeling_outputs.BaseModelOutputWithPoolingAndNoAttention
or tuple(torch.FloatTensor)
Parameters
output_hidden_states (bool
, optional) — Whether or not to return the hidden states of all stages. See hidden_states
under returned tensors for more detail.
Returns
transformers.modeling_outputs.BaseModelOutputWithPoolingAndNoAttention
or tuple(torch.FloatTensor)
last_hidden_state (torch.FloatTensor
of shape (batch_size, num_channels, height, width)
) — Sequence of hidden-states at the output of the last layer of the model.
pooler_output (torch.FloatTensor
of shape (batch_size, hidden_size)
) — Last layer hidden-state after a pooling operation on the spatial dimensions.
hidden_states (tuple(torch.FloatTensor)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of torch.FloatTensor
(one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape (batch_size, num_channels, height, width)
.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.
Example:
Copied
( config )
Parameters
VAN Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet.
forward
Parameters
output_hidden_states (bool
, optional) — Whether or not to return the hidden states of all stages. See hidden_states
under returned tensors for more detail.
labels (torch.LongTensor
of shape (batch_size,)
, optional) — Labels for computing the image classification/regression loss. Indices should be in [0, ..., config.num_labels - 1]
. If config.num_labels == 1
a regression loss is computed (Mean-Square loss), If config.num_labels > 1
a classification loss is computed (Cross-Entropy).
Returns
loss (torch.FloatTensor
of shape (1,)
, optional, returned when labels
is provided) — Classification (or regression if config.num_labels==1) loss.
logits (torch.FloatTensor
of shape (batch_size, config.num_labels)
) — Classification (or regression if config.num_labels==1) scores (before SoftMax).
hidden_states (tuple(torch.FloatTensor)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of torch.FloatTensor
(one for the output of the embeddings, if the model has an embedding layer, + one for the output of each stage) of shape (batch_size, num_channels, height, width)
. Hidden-states (also called feature maps) of the model at the output of each stage.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.
Example:
Copied
This model was contributed by . The original code can be found .
is supported by this and .
See also:
This is the configuration class to store the configuration of a . It is used to instantiate a VAN model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the VAN architecture.
Configuration objects inherit from and can be used to control the model outputs. Read the documentation from for more information.
config () — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the method to load the model weights.
The bare VAN model outputting raw features without any specific head on top. Note, VAN does not have an embedding layer. This model is a PyTorch subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
pixel_values (torch.FloatTensor
of shape (batch_size, num_channels, height, width)
) — Pixel values. Pixel values can be obtained using . See for details.
return_dict (bool
, optional) — Whether or not to return a instead of a plain tuple.
A transformers.modeling_outputs.BaseModelOutputWithPoolingAndNoAttention
or a tuple of torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various elements depending on the configuration () and inputs.
The forward method, overrides the __call__
special method.
config () — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the method to load the model weights.
This model is a PyTorch subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
( pixel_values: typing.Optional[torch.FloatTensor] = Nonelabels: typing.Optional[torch.LongTensor] = Noneoutput_hidden_states: typing.Optional[bool] = Nonereturn_dict: typing.Optional[bool] = None ) → or tuple(torch.FloatTensor)
pixel_values (torch.FloatTensor
of shape (batch_size, num_channels, height, width)
) — Pixel values. Pixel values can be obtained using . See for details.
return_dict (bool
, optional) — Whether or not to return a instead of a plain tuple.
or tuple(torch.FloatTensor)
A or a tuple of torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various elements depending on the configuration () and inputs.
The forward method, overrides the __call__
special method.