Transformers
  • 🌍GET STARTED
    • Transformers
    • Quick tour
    • Installation
  • 🌍TUTORIALS
    • Run inference with pipelines
    • Write portable code with AutoClass
    • Preprocess data
    • Fine-tune a pretrained model
    • Train with a script
    • Set up distributed training with BOINC AI Accelerate
    • Load and train adapters with BOINC AI PEFT
    • Share your model
    • Agents
    • Generation with LLMs
  • 🌍TASK GUIDES
    • 🌍NATURAL LANGUAGE PROCESSING
      • Text classification
      • Token classification
      • Question answering
      • Causal language modeling
      • Masked language modeling
      • Translation
      • Summarization
      • Multiple choice
    • 🌍AUDIO
      • Audio classification
      • Automatic speech recognition
    • 🌍COMPUTER VISION
      • Image classification
      • Semantic segmentation
      • Video classification
      • Object detection
      • Zero-shot object detection
      • Zero-shot image classification
      • Depth estimation
    • 🌍MULTIMODAL
      • Image captioning
      • Document Question Answering
      • Visual Question Answering
      • Text to speech
    • 🌍GENERATION
      • Customize the generation strategy
    • 🌍PROMPTING
      • Image tasks with IDEFICS
  • 🌍DEVELOPER GUIDES
    • Use fast tokenizers from BOINC AI Tokenizers
    • Run inference with multilingual models
    • Use model-specific APIs
    • Share a custom model
    • Templates for chat models
    • Run training on Amazon SageMaker
    • Export to ONNX
    • Export to TFLite
    • Export to TorchScript
    • Benchmarks
    • Notebooks with examples
    • Community resources
    • Custom Tools and Prompts
    • Troubleshoot
  • 🌍PERFORMANCE AND SCALABILITY
    • Overview
    • 🌍EFFICIENT TRAINING TECHNIQUES
      • Methods and tools for efficient training on a single GPU
      • Multiple GPUs and parallelism
      • Efficient training on CPU
      • Distributed CPU training
      • Training on TPUs
      • Training on TPU with TensorFlow
      • Training on Specialized Hardware
      • Custom hardware for training
      • Hyperparameter Search using Trainer API
    • 🌍OPTIMIZING INFERENCE
      • Inference on CPU
      • Inference on one GPU
      • Inference on many GPUs
      • Inference on Specialized Hardware
    • Instantiating a big model
    • Troubleshooting
    • XLA Integration for TensorFlow Models
    • Optimize inference using `torch.compile()`
  • 🌍CONTRIBUTE
    • How to contribute to transformers?
    • How to add a model to BOINC AI Transformers?
    • How to convert a BOINC AI Transformers model to TensorFlow?
    • How to add a pipeline to BOINC AI Transformers?
    • Testing
    • Checks on a Pull Request
  • 🌍CONCEPTUAL GUIDES
    • Philosophy
    • Glossary
    • What BOINC AI Transformers can do
    • How BOINC AI Transformers solve tasks
    • The Transformer model family
    • Summary of the tokenizers
    • Attention mechanisms
    • Padding and truncation
    • BERTology
    • Perplexity of fixed-length models
    • Pipelines for webserver inference
    • Model training anatomy
  • 🌍API
    • 🌍MAIN CLASSES
      • Agents and Tools
      • 🌍Auto Classes
        • Extending the Auto Classes
        • AutoConfig
        • AutoTokenizer
        • AutoFeatureExtractor
        • AutoImageProcessor
        • AutoProcessor
        • Generic model classes
          • AutoModel
          • TFAutoModel
          • FlaxAutoModel
        • Generic pretraining classes
          • AutoModelForPreTraining
          • TFAutoModelForPreTraining
          • FlaxAutoModelForPreTraining
        • Natural Language Processing
          • AutoModelForCausalLM
          • TFAutoModelForCausalLM
          • FlaxAutoModelForCausalLM
          • AutoModelForMaskedLM
          • TFAutoModelForMaskedLM
          • FlaxAutoModelForMaskedLM
          • AutoModelForMaskGenerationge
          • TFAutoModelForMaskGeneration
          • AutoModelForSeq2SeqLM
          • TFAutoModelForSeq2SeqLM
          • FlaxAutoModelForSeq2SeqLM
          • AutoModelForSequenceClassification
          • TFAutoModelForSequenceClassification
          • FlaxAutoModelForSequenceClassification
          • AutoModelForMultipleChoice
          • TFAutoModelForMultipleChoice
          • FlaxAutoModelForMultipleChoice
          • AutoModelForNextSentencePrediction
          • TFAutoModelForNextSentencePrediction
          • FlaxAutoModelForNextSentencePrediction
          • AutoModelForTokenClassification
          • TFAutoModelForTokenClassification
          • FlaxAutoModelForTokenClassification
          • AutoModelForQuestionAnswering
          • TFAutoModelForQuestionAnswering
          • FlaxAutoModelForQuestionAnswering
          • AutoModelForTextEncoding
          • TFAutoModelForTextEncoding
        • Computer vision
          • AutoModelForDepthEstimation
          • AutoModelForImageClassification
          • TFAutoModelForImageClassification
          • FlaxAutoModelForImageClassification
          • AutoModelForVideoClassification
          • AutoModelForMaskedImageModeling
          • TFAutoModelForMaskedImageModeling
          • AutoModelForObjectDetection
          • AutoModelForImageSegmentation
          • AutoModelForImageToImage
          • AutoModelForSemanticSegmentation
          • TFAutoModelForSemanticSegmentation
          • AutoModelForInstanceSegmentation
          • AutoModelForUniversalSegmentation
          • AutoModelForZeroShotImageClassification
          • TFAutoModelForZeroShotImageClassification
          • AutoModelForZeroShotObjectDetection
        • Audio
          • AutoModelForAudioClassification
          • AutoModelForAudioFrameClassification
          • TFAutoModelForAudioFrameClassification
          • AutoModelForCTC
          • AutoModelForSpeechSeq2Seq
          • TFAutoModelForSpeechSeq2Seq
          • FlaxAutoModelForSpeechSeq2Seq
          • AutoModelForAudioXVector
          • AutoModelForTextToSpectrogram
          • AutoModelForTextToWaveform
        • Multimodal
          • AutoModelForTableQuestionAnswering
          • TFAutoModelForTableQuestionAnswering
          • AutoModelForDocumentQuestionAnswering
          • TFAutoModelForDocumentQuestionAnswering
          • AutoModelForVisualQuestionAnswering
          • AutoModelForVision2Seq
          • TFAutoModelForVision2Seq
          • FlaxAutoModelForVision2Seq
      • Callbacks
      • Configuration
      • Data Collator
      • Keras callbacks
      • Logging
      • Models
      • Text Generation
      • ONNX
      • Optimization
      • Model outputs
      • Pipelines
      • Processors
      • Quantization
      • Tokenizer
      • Trainer
      • DeepSpeed Integration
      • Feature Extractor
      • Image Processor
    • 🌍MODELS
      • 🌍TEXT MODELS
        • ALBERT
        • BART
        • BARThez
        • BARTpho
        • BERT
        • BertGeneration
        • BertJapanese
        • Bertweet
        • BigBird
        • BigBirdPegasus
        • BioGpt
        • Blenderbot
        • Blenderbot Small
        • BLOOM
        • BORT
        • ByT5
        • CamemBERT
        • CANINE
        • CodeGen
        • CodeLlama
        • ConvBERT
        • CPM
        • CPMANT
        • CTRL
        • DeBERTa
        • DeBERTa-v2
        • DialoGPT
        • DistilBERT
        • DPR
        • ELECTRA
        • Encoder Decoder Models
        • ERNIE
        • ErnieM
        • ESM
        • Falcon
        • FLAN-T5
        • FLAN-UL2
        • FlauBERT
        • FNet
        • FSMT
        • Funnel Transformer
        • GPT
        • GPT Neo
        • GPT NeoX
        • GPT NeoX Japanese
        • GPT-J
        • GPT2
        • GPTBigCode
        • GPTSAN Japanese
        • GPTSw3
        • HerBERT
        • I-BERT
        • Jukebox
        • LED
        • LLaMA
        • LLama2
        • Longformer
        • LongT5
        • LUKE
        • M2M100
        • MarianMT
        • MarkupLM
        • MBart and MBart-50
        • MEGA
        • MegatronBERT
        • MegatronGPT2
        • Mistral
        • mLUKE
        • MobileBERT
        • MPNet
        • MPT
        • MRA
        • MT5
        • MVP
        • NEZHA
        • NLLB
        • NLLB-MoE
        • Nyströmformer
        • Open-Llama
        • OPT
        • Pegasus
        • PEGASUS-X
        • Persimmon
        • PhoBERT
        • PLBart
        • ProphetNet
        • QDQBert
        • RAG
        • REALM
        • Reformer
        • RemBERT
        • RetriBERT
        • RoBERTa
        • RoBERTa-PreLayerNorm
        • RoCBert
        • RoFormer
        • RWKV
        • Splinter
        • SqueezeBERT
        • SwitchTransformers
        • T5
        • T5v1.1
        • TAPEX
        • Transformer XL
        • UL2
        • UMT5
        • X-MOD
        • XGLM
        • XLM
        • XLM-ProphetNet
        • XLM-RoBERTa
        • XLM-RoBERTa-XL
        • XLM-V
        • XLNet
        • YOSO
      • 🌍VISION MODELS
        • BEiT
        • BiT
        • Conditional DETR
        • ConvNeXT
        • ConvNeXTV2
        • CvT
        • Deformable DETR
        • DeiT
        • DETA
        • DETR
        • DiNAT
        • DINO V2
        • DiT
        • DPT
        • EfficientFormer
        • EfficientNet
        • FocalNet
        • GLPN
        • ImageGPT
        • LeViT
        • Mask2Former
        • MaskFormer
        • MobileNetV1
        • MobileNetV2
        • MobileViT
        • MobileViTV2
        • NAT
        • PoolFormer
        • Pyramid Vision Transformer (PVT)
        • RegNet
        • ResNet
        • SegFormer
        • SwiftFormer
        • Swin Transformer
        • Swin Transformer V2
        • Swin2SR
        • Table Transformer
        • TimeSformer
        • UperNet
        • VAN
        • VideoMAE
        • Vision Transformer (ViT)
        • ViT Hybrid
        • ViTDet
        • ViTMAE
        • ViTMatte
        • ViTMSN
        • ViViT
        • YOLOS
      • 🌍AUDIO MODELS
        • Audio Spectrogram Transformer
        • Bark
        • CLAP
        • EnCodec
        • Hubert
        • MCTCT
        • MMS
        • MusicGen
        • Pop2Piano
        • SEW
        • SEW-D
        • Speech2Text
        • Speech2Text2
        • SpeechT5
        • UniSpeech
        • UniSpeech-SAT
        • VITS
        • Wav2Vec2
        • Wav2Vec2-Conformer
        • Wav2Vec2Phoneme
        • WavLM
        • Whisper
        • XLS-R
        • XLSR-Wav2Vec2
      • 🌍MULTIMODAL MODELS
        • ALIGN
        • AltCLIP
        • BLIP
        • BLIP-2
        • BridgeTower
        • BROS
        • Chinese-CLIP
        • CLIP
        • CLIPSeg
        • Data2Vec
        • DePlot
        • Donut
        • FLAVA
        • GIT
        • GroupViT
        • IDEFICS
        • InstructBLIP
        • LayoutLM
        • LayoutLMV2
        • LayoutLMV3
        • LayoutXLM
        • LiLT
        • LXMERT
        • MatCha
        • MGP-STR
        • Nougat
        • OneFormer
        • OWL-ViT
        • Perceiver
        • Pix2Struct
        • Segment Anything
        • Speech Encoder Decoder Models
        • TAPAS
        • TrOCR
        • TVLT
        • ViLT
        • Vision Encoder Decoder Models
        • Vision Text Dual Encoder
        • VisualBERT
        • X-CLIP
      • 🌍REINFORCEMENT LEARNING MODELS
        • Decision Transformer
        • Trajectory Transformer
      • 🌍TIME SERIES MODELS
        • Autoformer
        • Informer
        • Time Series Transformer
      • 🌍GRAPH MODELS
        • Graphormer
  • 🌍INTERNAL HELPERS
    • Custom Layers and Utilities
    • Utilities for pipelines
    • Utilities for Tokenizers
    • Utilities for Trainer
    • Utilities for Generation
    • Utilities for Image Processors
    • Utilities for Audio processing
    • General Utilities
    • Utilities for Time Series
Powered by GitBook
On this page
  • Wav2Vec2-Conformer
  • Overview
  • Documentation resources
  • Wav2Vec2ConformerConfig
  • Wav2Vec2Conformer specific outputs
  • Wav2Vec2ConformerModel
  • Wav2Vec2ConformerForCTC
  • Wav2Vec2ConformerForSequenceClassification
  • Wav2Vec2ConformerForAudioFrameClassification
  • Wav2Vec2ConformerForXVector
  • Wav2Vec2ConformerForPreTraining
  1. API
  2. MODELS
  3. AUDIO MODELS

Wav2Vec2-Conformer

PreviousWav2Vec2NextWav2Vec2Phoneme

Last updated 1 year ago

Wav2Vec2-Conformer

Overview

The Wav2Vec2-Conformer was added to an updated version of by Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Sravya Popuri, Dmytro Okhonko, Juan Pino.

The official results of the model can be found in Table 3 and Table 4 of the paper.

The Wav2Vec2-Conformer weights were released by the Meta AI team within the .

Tips:

  • Wav2Vec2-Conformer follows the same architecture as Wav2Vec2, but replaces the Attention-block with a Conformer-block as introduced in .

  • For the same number of layers, Wav2Vec2-Conformer requires more parameters than Wav2Vec2, but also yields an improved word error rate.

  • Wav2Vec2-Conformer uses the same tokenizer and feature extractor as Wav2Vec2.

  • Wav2Vec2-Conformer can use either no relative position embeddings, Transformer-XL-like position embeddings, or rotary position embeddings by setting the correct config.position_embeddings_type.

This model was contributed by . The original code can be found .

Documentation resources

Wav2Vec2ConformerConfig

class transformers.Wav2Vec2ConformerConfig

( vocab_size = Nonehidden_size = 768num_hidden_layers = 12num_attention_heads = 12intermediate_size = 3072hidden_act = 'gelu'hidden_dropout = 0.1activation_dropout = 0.1attention_dropout = 0.1feat_proj_dropout = 0.0feat_quantizer_dropout = 0.0final_dropout = 0.1layerdrop = 0.1initializer_range = 0.02layer_norm_eps = 1e-05feat_extract_norm = 'group'feat_extract_activation = 'gelu'conv_dim = (512, 512, 512, 512, 512, 512, 512)conv_stride = (5, 2, 2, 2, 2, 2, 2)conv_kernel = (10, 3, 3, 3, 3, 2, 2)conv_bias = Falsenum_conv_pos_embeddings = 128num_conv_pos_embedding_groups = 16apply_spec_augment = Truemask_time_prob = 0.05mask_time_length = 10mask_time_min_masks = 2mask_feature_prob = 0.0mask_feature_length = 10mask_feature_min_masks = 0num_codevectors_per_group = 320num_codevector_groups = 2contrastive_logits_temperature = 0.1num_negatives = 100codevector_dim = 256proj_codevector_dim = 256diversity_loss_weight = 0.1ctc_loss_reduction = 'sum'ctc_zero_infinity = Falseuse_weighted_layer_sum = Falseclassifier_proj_size = 256tdnn_dim = (512, 512, 512, 512, 1500)tdnn_kernel = (5, 3, 3, 1, 1)tdnn_dilation = (1, 2, 3, 1, 1)xvector_output_dim = 512pad_token_id = 0bos_token_id = 1eos_token_id = 2add_adapter = Falseadapter_kernel_size = 3adapter_stride = 2num_adapter_layers = 3output_hidden_size = Noneposition_embeddings_type = 'relative'rotary_embedding_base = 10000max_source_positions = 5000conv_depthwise_kernel_size = 31conformer_conv_dropout = 0.1**kwargs )

Parameters

  • hidden_size (int, optional, defaults to 768) — Dimensionality of the encoder layers and the pooler layer.

  • num_hidden_layers (int, optional, defaults to 12) — Number of hidden layers in the Transformer encoder.

  • num_attention_heads (int, optional, defaults to 12) — Number of attention heads for each attention layer in the Transformer encoder.

  • intermediate_size (int, optional, defaults to 3072) — Dimensionality of the “intermediate” (i.e., feed-forward) layer in the Transformer encoder.

  • hidden_act (str or function, optional, defaults to "gelu") — The non-linear activation function (function or string) in the encoder and pooler. If string, "gelu", "relu", "selu" and "gelu_new" are supported.

  • hidden_dropout (float, optional, defaults to 0.1) — The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.

  • activation_dropout (float, optional, defaults to 0.1) — The dropout ratio for activations inside the fully connected layer.

  • attention_dropout (float, optional, defaults to 0.1) — The dropout ratio for the attention probabilities.

  • initializer_range (float, optional, defaults to 0.02) — The standard deviation of the truncated_normal_initializer for initializing all weight matrices.

  • layer_norm_eps (float, optional, defaults to 1e-12) — The epsilon used by the layer normalization layers.

  • feat_extract_norm (str, optional, defaults to "group") — The norm to be applied to 1D convolutional layers in feature encoder. One of "group" for group normalization of only the first 1D convolutional layer or "layer" for layer normalization of all 1D convolutional layers.

  • feat_proj_dropout (float, optional, defaults to 0.0) — The dropout probability for output of the feature encoder.

  • feat_extract_activation (str, optional, defaults to “gelu”) -- The non-linear activation function (function or string) in the 1D convolutional layers of the feature extractor. If string, “gelu”, “relu”, “selu”and“gelu_new”` are supported.

  • feat_quantizer_dropout (float, optional, defaults to 0.0) — The dropout probabilitiy for quantized feature encoder states.

  • conv_dim (Tuple[int] or List[int], optional, defaults to (512, 512, 512, 512, 512, 512, 512)) — A tuple of integers defining the number of input and output channels of each 1D convolutional layer in the feature encoder. The length of conv_dim defines the number of 1D convolutional layers.

  • conv_stride (Tuple[int] or List[int], optional, defaults to (5, 2, 2, 2, 2, 2, 2)) — A tuple of integers defining the stride of each 1D convolutional layer in the feature encoder. The length of conv_stride defines the number of convolutional layers and has to match the length of conv_dim.

  • conv_kernel (Tuple[int] or List[int], optional, defaults to (10, 3, 3, 3, 3, 3, 3)) — A tuple of integers defining the kernel size of each 1D convolutional layer in the feature encoder. The length of conv_kernel defines the number of convolutional layers and has to match the length of conv_dim.

  • conv_bias (bool, optional, defaults to False) — Whether the 1D convolutional layers have a bias.

  • num_conv_pos_embeddings (int, optional, defaults to 128) — Number of convolutional positional embeddings. Defines the kernel size of 1D convolutional positional embeddings layer.

  • num_conv_pos_embedding_groups (int, optional, defaults to 16) — Number of groups of 1D convolutional positional embeddings layer.

  • mask_time_prob (float, optional, defaults to 0.05) — Percentage (between 0 and 1) of all feature vectors along the time axis which will be masked. The masking procecure generates ”mask_time_problen(time_axis)/mask_time_length” independent masks over the axis. If reasoning from the propability of each feature vector to be chosen as the start of the vector span to be masked, mask_time_prob should be `prob_vector_startmask_time_length. Note that overlap may decrease the actual percentage of masked vectors. This is only relevant if apply_spec_augment is True`.

  • mask_time_length (int, optional, defaults to 10) — Length of vector span along the time axis.

  • mask_time_min_masks (int, optional, defaults to 2), — The minimum number of masks of length mask_feature_length generated along the time axis, each time step, irrespectively of mask_feature_prob. Only relevant if ”mask_time_prob*len(time_axis)/mask_time_length < mask_time_min_masks”

  • mask_feature_prob (float, optional, defaults to 0.0) — Percentage (between 0 and 1) of all feature vectors along the feature axis which will be masked. The masking procecure generates ”mask_feature_problen(feature_axis)/mask_time_length” independent masks over the axis. If reasoning from the propability of each feature vector to be chosen as the start of the vector span to be masked, mask_feature_prob should be `prob_vector_startmask_feature_length. Note that overlap may decrease the actual percentage of masked vectors. This is only relevant if apply_spec_augment is True`.

  • mask_feature_length (int, optional, defaults to 10) — Length of vector span along the feature axis.

  • mask_feature_min_masks (int, optional, defaults to 0), — The minimum number of masks of length mask_feature_length generated along the feature axis, each time step, irrespectively of mask_feature_prob. Only relevant if ”mask_feature_prob*len(feature_axis)/mask_feature_length < mask_feature_min_masks”

  • num_codevectors_per_group (int, optional, defaults to 320) — Number of entries in each quantization codebook (group).

  • num_codevector_groups (int, optional, defaults to 2) — Number of codevector groups for product codevector quantization.

  • contrastive_logits_temperature (float, optional, defaults to 0.1) — The temperature kappa in the contrastive loss.

  • feat_quantizer_dropout (float, optional, defaults to 0.0) — The dropout probabilitiy for the output of the feature encoder that’s used by the quantizer.

  • num_negatives (int, optional, defaults to 100) — Number of negative samples for the contrastive loss.

  • codevector_dim (int, optional, defaults to 256) — Dimensionality of the quantized feature vectors.

  • proj_codevector_dim (int, optional, defaults to 256) — Dimensionality of the final projection of both the quantized and the transformer features.

  • diversity_loss_weight (int, optional, defaults to 0.1) — The weight of the codebook diversity loss component.

  • classifier_proj_size (int, optional, defaults to 256) — Dimensionality of the projection before token mean-pooling for classification.

  • tdnn_dim (Tuple[int] or List[int], optional, defaults to (512, 512, 512, 512, 1500)) — A tuple of integers defining the number of output channels of each 1D convolutional layer in the TDNN module of the XVector model. The length of tdnn_dim defines the number of TDNN layers.

  • tdnn_kernel (Tuple[int] or List[int], optional, defaults to (5, 3, 3, 1, 1)) — A tuple of integers defining the kernel size of each 1D convolutional layer in the TDNN module of the XVector model. The length of tdnn_kernel has to match the length of tdnn_dim.

  • tdnn_dilation (Tuple[int] or List[int], optional, defaults to (1, 2, 3, 1, 1)) — A tuple of integers defining the dilation factor of each 1D convolutional layer in TDNN module of the XVector model. The length of tdnn_dilation has to match the length of tdnn_dim.

  • xvector_output_dim (int, optional, defaults to 512) — Dimensionality of the XVector embedding vectors.

  • add_adapter (bool, optional, defaults to False) — Whether a convolutional network should be stacked on top of the Wav2Vec2Conformer Encoder. Can be very useful for warm-starting Wav2Vec2Conformer for SpeechEncoderDecoder models.

  • adapter_kernel_size (int, optional, defaults to 3) — Kernel size of the convolutional layers in the adapter network. Only relevant if add_adapter is True.

  • adapter_stride (int, optional, defaults to 2) — Stride of the convolutional layers in the adapter network. Only relevant if add_adapter is True.

  • num_adapter_layers (int, optional, defaults to 3) — Number of convolutional layers that should be used in the adapter network. Only relevant if add_adapter is True.

  • output_hidden_size (int, optional) — Dimensionality of the encoder output layer. If not defined, this defaults to hidden-size. Only relevant if add_adapter is True.

  • position_embeddings_type (str, optional, defaults to "relative") — Can be specified to relative or rotary for relative or rotary position embeddings respectively. If left None no relative position embedding is applied.

  • rotary_embedding_base (int, optional, defaults to 10000) — If "rotary" position embeddings are used, defines the size of the embedding base.

  • max_source_positions (int, optional, defaults to 5000) — if "relative" position embeddings are used, defines the maximum source input positions.

  • conv_depthwise_kernel_size (int, defaults to 31) — Kernel size of convolutional depthwise 1D layer in Conformer blocks.

  • conformer_conv_dropout (float, defaults to 0.1) — The dropout probability for all convolutional layers in Conformer blocks.

Example:

Copied

>>> from transformers import Wav2Vec2ConformerConfig, Wav2Vec2ConformerModel

>>> # Initializing a Wav2Vec2Conformer facebook/wav2vec2-conformer-rel-pos-large style configuration
>>> configuration = Wav2Vec2ConformerConfig()

>>> # Initializing a model (with random weights) from the facebook/wav2vec2-conformer-rel-pos-large style configuration
>>> model = Wav2Vec2ConformerModel(configuration)

>>> # Accessing the model configuration
>>> configuration = model.config

Wav2Vec2Conformer specific outputs

class transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer.Wav2Vec2ConformerForPreTrainingOutput

( loss: typing.Optional[torch.FloatTensor] = Noneprojected_states: FloatTensor = Noneprojected_quantized_states: FloatTensor = Nonecodevector_perplexity: FloatTensor = Nonehidden_states: typing.Optional[typing.Tuple[torch.FloatTensor]] = Noneattentions: typing.Optional[typing.Tuple[torch.FloatTensor]] = Nonecontrastive_loss: typing.Optional[torch.FloatTensor] = Nonediversity_loss: typing.Optional[torch.FloatTensor] = None )

Parameters

  • projected_states (torch.FloatTensor of shape (batch_size, sequence_length, config.proj_codevector_dim)) — Hidden-states of the model projected to config.proj_codevector_dim that can be used to predict the masked projected quantized states.

  • projected_quantized_states (torch.FloatTensor of shape (batch_size, sequence_length, config.proj_codevector_dim)) — Quantized extracted feature vectors projected to config.proj_codevector_dim representing the positive target vectors for contrastive loss.

  • hidden_states (tuple(torch.FloatTensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) — Tuple of torch.FloatTensor (one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the model at the output of each layer plus the initial embedding outputs.

  • attentions (tuple(torch.FloatTensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) — Tuple of torch.FloatTensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

Wav2Vec2ConformerModel

class transformers.Wav2Vec2ConformerModel

( config: Wav2Vec2ConformerConfig )

Parameters

forward

Parameters

  • attention_mask (torch.LongTensor of shape (batch_size, sequence_length), optional) — Mask to avoid performing convolution and attention on padding token indices. Mask values selected in [0, 1]:

    • 1 for tokens that are not masked,

    • 0 for tokens that are masked.

  • output_attentions (bool, optional) — Whether or not to return the attentions tensors of all attention layers. See attentions under returned tensors for more detail.

  • output_hidden_states (bool, optional) — Whether or not to return the hidden states of all layers. See hidden_states under returned tensors for more detail.

Returns

  • last_hidden_state (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size)) — Sequence of hidden-states at the output of the last layer of the model.

  • extract_features (torch.FloatTensor of shape (batch_size, sequence_length, conv_dim[-1])) — Sequence of extracted feature vectors of the last convolutional layer of the model.

  • hidden_states (tuple(torch.FloatTensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) — Tuple of torch.FloatTensor (one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the model at the output of each layer plus the initial embedding outputs.

  • attentions (tuple(torch.FloatTensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) — Tuple of torch.FloatTensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Example:

Copied

>>> from transformers import AutoProcessor, Wav2Vec2ConformerModel
>>> import torch
>>> from datasets import load_dataset

>>> dataset = load_dataset("hf-internal-testing/librispeech_asr_demo", "clean", split="validation")
>>> dataset = dataset.sort("id")
>>> sampling_rate = dataset.features["audio"].sampling_rate

>>> processor = AutoProcessor.from_pretrained("facebook/wav2vec2-conformer-rope-large-960h-ft")
>>> model = Wav2Vec2ConformerModel.from_pretrained("facebook/wav2vec2-conformer-rope-large-960h-ft")

>>> # audio file is decoded on the fly
>>> inputs = processor(dataset[0]["audio"]["array"], sampling_rate=sampling_rate, return_tensors="pt")
>>> with torch.no_grad():
...     outputs = model(**inputs)

>>> last_hidden_states = outputs.last_hidden_state
>>> list(last_hidden_states.shape)
[1, 292, 1024]

Wav2Vec2ConformerForCTC

class transformers.Wav2Vec2ConformerForCTC

( configtarget_lang: typing.Optional[str] = None )

Parameters

forward

Parameters

  • attention_mask (torch.LongTensor of shape (batch_size, sequence_length), optional) — Mask to avoid performing convolution and attention on padding token indices. Mask values selected in [0, 1]:

    • 1 for tokens that are not masked,

    • 0 for tokens that are masked.

  • output_attentions (bool, optional) — Whether or not to return the attentions tensors of all attention layers. See attentions under returned tensors for more detail.

  • output_hidden_states (bool, optional) — Whether or not to return the hidden states of all layers. See hidden_states under returned tensors for more detail.

  • labels (torch.LongTensor of shape (batch_size, target_length), optional) — Labels for connectionist temporal classification. Note that target_length has to be smaller or equal to the sequence length of the output logits. Indices are selected in [-100, 0, ..., config.vocab_size - 1]. All labels set to -100 are ignored (masked), the loss is only computed for labels in [0, ..., config.vocab_size - 1].

Returns

  • loss (torch.FloatTensor of shape (1,), optional, returned when labels is provided) — Language modeling loss (for next-token prediction).

  • logits (torch.FloatTensor of shape (batch_size, sequence_length, config.vocab_size)) — Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).

  • hidden_states (tuple(torch.FloatTensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) — Tuple of torch.FloatTensor (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.

  • attentions (tuple(torch.FloatTensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) — Tuple of torch.FloatTensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Example:

Copied

>>> from transformers import AutoProcessor, Wav2Vec2ConformerForCTC
>>> from datasets import load_dataset
>>> import torch

>>> dataset = load_dataset("hf-internal-testing/librispeech_asr_demo", "clean", split="validation")
>>> dataset = dataset.sort("id")
>>> sampling_rate = dataset.features["audio"].sampling_rate

>>> processor = AutoProcessor.from_pretrained("facebook/wav2vec2-conformer-rope-large-960h-ft")
>>> model = Wav2Vec2ConformerForCTC.from_pretrained("facebook/wav2vec2-conformer-rope-large-960h-ft")

>>> # audio file is decoded on the fly
>>> inputs = processor(dataset[0]["audio"]["array"], sampling_rate=sampling_rate, return_tensors="pt")
>>> with torch.no_grad():
...     logits = model(**inputs).logits
>>> predicted_ids = torch.argmax(logits, dim=-1)

>>> # transcribe speech
>>> transcription = processor.batch_decode(predicted_ids)
>>> transcription[0]
'MISTER QUILTER IS THE APOSTLE OF THE MIDDLE CLASSES AND WE ARE GLAD TO WELCOME HIS GOSPEL'

>>> inputs["labels"] = processor(text=dataset[0]["text"], return_tensors="pt").input_ids

>>> # compute loss
>>> loss = model(**inputs).loss
>>> round(loss.item(), 2)
64.21

Wav2Vec2ConformerForSequenceClassification

class transformers.Wav2Vec2ConformerForSequenceClassification

( config )

Parameters

Wav2Vec2Conformer Model with a sequence classification head on top (a linear layer over the pooled output) for tasks like SUPERB Keyword Spotting.

forward

Parameters

  • attention_mask (torch.LongTensor of shape (batch_size, sequence_length), optional) — Mask to avoid performing convolution and attention on padding token indices. Mask values selected in [0, 1]:

    • 1 for tokens that are not masked,

    • 0 for tokens that are masked.

  • output_attentions (bool, optional) — Whether or not to return the attentions tensors of all attention layers. See attentions under returned tensors for more detail.

  • output_hidden_states (bool, optional) — Whether or not to return the hidden states of all layers. See hidden_states under returned tensors for more detail.

  • labels (torch.LongTensor of shape (batch_size,), optional) — Labels for computing the sequence classification/regression loss. Indices should be in [0, ..., config.num_labels - 1]. If config.num_labels == 1 a regression loss is computed (Mean-Square loss), If config.num_labels > 1 a classification loss is computed (Cross-Entropy).

Returns

  • loss (torch.FloatTensor of shape (1,), optional, returned when labels is provided) — Classification (or regression if config.num_labels==1) loss.

  • logits (torch.FloatTensor of shape (batch_size, config.num_labels)) — Classification (or regression if config.num_labels==1) scores (before SoftMax).

  • hidden_states (tuple(torch.FloatTensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) — Tuple of torch.FloatTensor (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.

  • attentions (tuple(torch.FloatTensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) — Tuple of torch.FloatTensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Example:

Copied

>>> from transformers import AutoFeatureExtractor, Wav2Vec2ConformerForSequenceClassification
>>> from datasets import load_dataset
>>> import torch

>>> dataset = load_dataset("hf-internal-testing/librispeech_asr_demo", "clean", split="validation")
>>> dataset = dataset.sort("id")
>>> sampling_rate = dataset.features["audio"].sampling_rate

>>> feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/wav2vec2-conformer-rope-large-960h-ft")
>>> model = Wav2Vec2ConformerForSequenceClassification.from_pretrained("facebook/wav2vec2-conformer-rope-large-960h-ft")

>>> # audio file is decoded on the fly
>>> inputs = feature_extractor(dataset[0]["audio"]["array"], sampling_rate=sampling_rate, return_tensors="pt")

>>> with torch.no_grad():
...     logits = model(**inputs).logits

>>> predicted_class_ids = torch.argmax(logits, dim=-1).item()
>>> predicted_label = model.config.id2label[predicted_class_ids]

>>> # compute loss - target_label is e.g. "down"
>>> target_label = model.config.id2label[0]
>>> inputs["labels"] = torch.tensor([model.config.label2id[target_label]])
>>> loss = model(**inputs).loss

Wav2Vec2ConformerForAudioFrameClassification

class transformers.Wav2Vec2ConformerForAudioFrameClassification

( config )

Parameters

Wav2Vec2Conformer Model with a frame classification head on top for tasks like Speaker Diarization.

forward

Parameters

  • attention_mask (torch.LongTensor of shape (batch_size, sequence_length), optional) — Mask to avoid performing convolution and attention on padding token indices. Mask values selected in [0, 1]:

    • 1 for tokens that are not masked,

    • 0 for tokens that are masked.

  • output_attentions (bool, optional) — Whether or not to return the attentions tensors of all attention layers. See attentions under returned tensors for more detail.

  • output_hidden_states (bool, optional) — Whether or not to return the hidden states of all layers. See hidden_states under returned tensors for more detail.

  • labels (torch.LongTensor of shape (batch_size,), optional) — Labels for computing the sequence classification/regression loss. Indices should be in [0, ..., config.num_labels - 1]. If config.num_labels == 1 a regression loss is computed (Mean-Square loss), If config.num_labels > 1 a classification loss is computed (Cross-Entropy).

Returns

  • loss (torch.FloatTensor of shape (1,), optional, returned when labels is provided) — Classification loss.

  • logits (torch.FloatTensor of shape (batch_size, sequence_length, config.num_labels)) — Classification scores (before SoftMax).

  • hidden_states (tuple(torch.FloatTensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) — Tuple of torch.FloatTensor (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.

  • attentions (tuple(torch.FloatTensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) — Tuple of torch.FloatTensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Example:

Copied

>>> from transformers import AutoFeatureExtractor, Wav2Vec2ConformerForAudioFrameClassification
>>> from datasets import load_dataset
>>> import torch

>>> dataset = load_dataset("hf-internal-testing/librispeech_asr_demo", "clean", split="validation")
>>> dataset = dataset.sort("id")
>>> sampling_rate = dataset.features["audio"].sampling_rate

>>> feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/wav2vec2-conformer-rope-large-960h-ft")
>>> model = Wav2Vec2ConformerForAudioFrameClassification.from_pretrained("facebook/wav2vec2-conformer-rope-large-960h-ft")

>>> # audio file is decoded on the fly
>>> inputs = feature_extractor(dataset[0]["audio"]["array"], return_tensors="pt", sampling_rate=sampling_rate)
>>> with torch.no_grad():
...     logits = model(**inputs).logits

>>> probabilities = torch.sigmoid(logits[0])
>>> # labels is a one-hot array of shape (num_frames, num_speakers)
>>> labels = (probabilities > 0.5).long()

Wav2Vec2ConformerForXVector

class transformers.Wav2Vec2ConformerForXVector

( config )

Parameters

Wav2Vec2Conformer Model with an XVector feature extraction head on top for tasks like Speaker Verification.

forward

Parameters

  • attention_mask (torch.LongTensor of shape (batch_size, sequence_length), optional) — Mask to avoid performing convolution and attention on padding token indices. Mask values selected in [0, 1]:

    • 1 for tokens that are not masked,

    • 0 for tokens that are masked.

  • output_attentions (bool, optional) — Whether or not to return the attentions tensors of all attention layers. See attentions under returned tensors for more detail.

  • output_hidden_states (bool, optional) — Whether or not to return the hidden states of all layers. See hidden_states under returned tensors for more detail.

  • labels (torch.LongTensor of shape (batch_size,), optional) — Labels for computing the sequence classification/regression loss. Indices should be in [0, ..., config.num_labels - 1]. If config.num_labels == 1 a regression loss is computed (Mean-Square loss), If config.num_labels > 1 a classification loss is computed (Cross-Entropy).

Returns

  • loss (torch.FloatTensor of shape (1,), optional, returned when labels is provided) — Classification loss.

  • logits (torch.FloatTensor of shape (batch_size, config.xvector_output_dim)) — Classification hidden states before AMSoftmax.

  • embeddings (torch.FloatTensor of shape (batch_size, config.xvector_output_dim)) — Utterance embeddings used for vector similarity-based retrieval.

  • hidden_states (tuple(torch.FloatTensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) — Tuple of torch.FloatTensor (one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the model at the output of each layer plus the initial embedding outputs.

  • attentions (tuple(torch.FloatTensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) — Tuple of torch.FloatTensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Example:

Copied

>>> from transformers import AutoFeatureExtractor, Wav2Vec2ConformerForXVector
>>> from datasets import load_dataset
>>> import torch

>>> dataset = load_dataset("hf-internal-testing/librispeech_asr_demo", "clean", split="validation")
>>> dataset = dataset.sort("id")
>>> sampling_rate = dataset.features["audio"].sampling_rate

>>> feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/wav2vec2-conformer-rope-large-960h-ft")
>>> model = Wav2Vec2ConformerForXVector.from_pretrained("facebook/wav2vec2-conformer-rope-large-960h-ft")

>>> # audio file is decoded on the fly
>>> inputs = feature_extractor(
...     [d["array"] for d in dataset[:2]["audio"]], sampling_rate=sampling_rate, return_tensors="pt", padding=True
... )
>>> with torch.no_grad():
...     embeddings = model(**inputs).embeddings

>>> embeddings = torch.nn.functional.normalize(embeddings, dim=-1).cpu()

>>> # the resulting embeddings can be used for cosine similarity-based retrieval
>>> cosine_sim = torch.nn.CosineSimilarity(dim=-1)
>>> similarity = cosine_sim(embeddings[0], embeddings[1])
>>> threshold = 0.7  # the optimal threshold is dataset-dependent
>>> if similarity < threshold:
...     print("Speakers are not the same!")

Wav2Vec2ConformerForPreTraining

class transformers.Wav2Vec2ConformerForPreTraining

( config: Wav2Vec2ConformerConfig )

Parameters

forward

Parameters

  • attention_mask (torch.LongTensor of shape (batch_size, sequence_length), optional) — Mask to avoid performing convolution and attention on padding token indices. Mask values selected in [0, 1]:

    • 1 for tokens that are not masked,

    • 0 for tokens that are masked.

  • output_attentions (bool, optional) — Whether or not to return the attentions tensors of all attention layers. See attentions under returned tensors for more detail.

  • output_hidden_states (bool, optional) — Whether or not to return the hidden states of all layers. See hidden_states under returned tensors for more detail.

  • mask_time_indices (torch.BoolTensor of shape (batch_size, sequence_length), optional) — Indices to mask extracted features for contrastive loss. When in training mode, model learns to predict masked extracted features in config.proj_codevector_dim space.

  • sampled_negative_indices (torch.BoolTensor of shape (batch_size, sequence_length, num_negatives), optional) — Indices indicating which quantized target vectors are used as negative sampled vectors in contrastive loss. Required input for pre-training.

Returns

  • projected_states (torch.FloatTensor of shape (batch_size, sequence_length, config.proj_codevector_dim)) — Hidden-states of the model projected to config.proj_codevector_dim that can be used to predict the masked projected quantized states.

  • projected_quantized_states (torch.FloatTensor of shape (batch_size, sequence_length, config.proj_codevector_dim)) — Quantized extracted feature vectors projected to config.proj_codevector_dim representing the positive target vectors for contrastive loss.

  • hidden_states (tuple(torch.FloatTensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) — Tuple of torch.FloatTensor (one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the model at the output of each layer plus the initial embedding outputs.

  • attentions (tuple(torch.FloatTensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) — Tuple of torch.FloatTensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Example:

Copied

>>> import torch
>>> from transformers import AutoFeatureExtractor, Wav2Vec2ConformerForPreTraining
>>> from transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer import (
...     _compute_mask_indices,
...     _sample_negative_indices,
... )
>>> from datasets import load_dataset

>>> feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/wav2vec2-conformer-rel-pos-large")
>>> model = Wav2Vec2ConformerForPreTraining.from_pretrained("facebook/wav2vec2-conformer-rel-pos-large")

>>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
>>> input_values = feature_extractor(ds[0]["audio"]["array"], return_tensors="pt").input_values  # Batch size 1

>>> # compute masked indices
>>> batch_size, raw_sequence_length = input_values.shape
>>> sequence_length = model._get_feat_extract_output_lengths(raw_sequence_length).item()
>>> mask_time_indices = _compute_mask_indices(
...     shape=(batch_size, sequence_length), mask_prob=0.2, mask_length=2
... )
>>> sampled_negative_indices = _sample_negative_indices(
...     features_shape=(batch_size, sequence_length),
...     num_negatives=model.config.num_negatives,
...     mask_time_indices=mask_time_indices,
... )
>>> mask_time_indices = torch.tensor(data=mask_time_indices, device=input_values.device, dtype=torch.long)
>>> sampled_negative_indices = torch.tensor(
...     data=sampled_negative_indices, device=input_values.device, dtype=torch.long
... )

>>> with torch.no_grad():
...     outputs = model(input_values, mask_time_indices=mask_time_indices)

>>> # compute cosine similarity between predicted (=projected_states) and target (=projected_quantized_states)
>>> cosine_sim = torch.cosine_similarity(outputs.projected_states, outputs.projected_quantized_states, dim=-1)

>>> # show that cosine similarity is much higher than random
>>> cosine_sim[mask_time_indices.to(torch.bool)].mean() > 0.5
tensor(True)

>>> # for contrastive loss training model should be put into train mode
>>> model = model.train()
>>> loss = model(
...     input_values, mask_time_indices=mask_time_indices, sampled_negative_indices=sampled_negative_indices
... ).loss

vocab_size (int, optional) — Vocabulary size of the Wav2Vec2Conformer model. Defines the number of different tokens that can be represented by the inputs_ids passed when calling . Vocabulary size of the model. Defines the different tokens that can be represented by the inputs_ids passed to the forward method of .

final_dropout (float, optional, defaults to 0.1) — The dropout probability for the final projection layer of .

layerdrop (float, optional, defaults to 0.1) — The LayerDrop probability. See the [LayerDrop paper](see ) for more details.

apply_spec_augment (bool, optional, defaults to True) — Whether to apply SpecAugment data augmentation to the outputs of the feature encoder. For reference see .

ctc_loss_reduction (str, optional, defaults to "sum") — Specifies the reduction to apply to the output of torch.nn.CTCLoss. Only relevant when training an instance of .

ctc_zero_infinity (bool, optional, defaults to False) — Whether to zero infinite losses and the associated gradients of torch.nn.CTCLoss. Infinite losses mainly occur when the inputs are too short to be aligned to the targets. Only relevant when training an instance of .

use_weighted_layer_sum (bool, optional, defaults to False) — Whether to use a weighted average of layer outputs with learned weights. Only relevant when using an instance of .

This is the configuration class to store the configuration of a . It is used to instantiate an Wav2Vec2Conformer model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the Wav2Vec2Conformer architecture.

Configuration objects inherit from and can be used to control the model outputs. Read the documentation from for more information.

loss (optional, returned when sample_negative_indices are passed, torch.FloatTensor of shape (1,)) — Total loss as the sum of the contrastive loss (L_m) and the diversity loss (L_d) as stated in the . (classification) loss.

contrastive_loss (optional, returned when sample_negative_indices are passed, torch.FloatTensor of shape (1,)) — The contrastive loss (L_m) as stated in the .

diversity_loss (optional, returned when sample_negative_indices are passed, torch.FloatTensor of shape (1,)) — The diversity loss (L_d) as stated in the .

Output type of , with potential hidden states and attentions.

config () — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the method to load the model weights.

The bare Wav2Vec2Conformer Model transformer outputting raw hidden-states without any specific head on top. Wav2Vec2Conformer was proposed in by Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael Auli.

This model inherits from . Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving etc.).

This model is a PyTorch sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.

( input_values: typing.Optional[torch.Tensor]attention_mask: typing.Optional[torch.Tensor] = Nonemask_time_indices: typing.Optional[torch.FloatTensor] = Noneoutput_attentions: typing.Optional[bool] = Noneoutput_hidden_states: typing.Optional[bool] = Nonereturn_dict: typing.Optional[bool] = None ) → or tuple(torch.FloatTensor)

input_values (torch.FloatTensor of shape (batch_size, sequence_length)) — Float values of input raw speech waveform. Values can be obtained by loading a .flac or .wav audio file into an array of type List[float] or a numpy.ndarray, e.g. via the soundfile library (pip install soundfile). To prepare the array into input_values, the should be used for padding and conversion into a tensor of type torch.FloatTensor. See for details.

attention_mask should only be passed if the corresponding processor has config.return_attention_mask == True. For all models whose processor has config.return_attention_mask == False, such as , attention_mask should not be passed to avoid degraded performance when doing batched inference. For such models input_values should simply be padded with 0 and passed without attention_mask. Be aware that these models also yield slightly different results depending on whether input_values is padded or not.

return_dict (bool, optional) — Whether or not to return a instead of a plain tuple.

or tuple(torch.FloatTensor)

A or a tuple of torch.FloatTensor (if return_dict=False is passed or when config.return_dict=False) comprising various elements depending on the configuration () and inputs.

The forward method, overrides the __call__ special method.

config () — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the method to load the model weights.

Wav2Vec2Conformer Model with a language modeling head on top for Connectionist Temporal Classification (CTC). Wav2Vec2Conformer was proposed in by Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael Auli.

This model inherits from . Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving etc.).

This model is a PyTorch sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.

( input_values: typing.Optional[torch.Tensor]attention_mask: typing.Optional[torch.Tensor] = Noneoutput_attentions: typing.Optional[bool] = Noneoutput_hidden_states: typing.Optional[bool] = Nonereturn_dict: typing.Optional[bool] = Nonelabels: typing.Optional[torch.Tensor] = None ) → or tuple(torch.FloatTensor)

input_values (torch.FloatTensor of shape (batch_size, sequence_length)) — Float values of input raw speech waveform. Values can be obtained by loading a .flac or .wav audio file into an array of type List[float] or a numpy.ndarray, e.g. via the soundfile library (pip install soundfile). To prepare the array into input_values, the should be used for padding and conversion into a tensor of type torch.FloatTensor. See for details.

attention_mask should only be passed if the corresponding processor has config.return_attention_mask == True. For all models whose processor has config.return_attention_mask == False, such as , attention_mask should not be passed to avoid degraded performance when doing batched inference. For such models input_values should simply be padded with 0 and passed without attention_mask. Be aware that these models also yield slightly different results depending on whether input_values is padded or not.

return_dict (bool, optional) — Whether or not to return a instead of a plain tuple.

or tuple(torch.FloatTensor)

A or a tuple of torch.FloatTensor (if return_dict=False is passed or when config.return_dict=False) comprising various elements depending on the configuration () and inputs.

The forward method, overrides the __call__ special method.

config () — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the method to load the model weights.

Wav2Vec2Conformer was proposed in by Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael Auli.

This model inherits from . Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving etc.).

This model is a PyTorch sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.

( input_values: typing.Optional[torch.Tensor]attention_mask: typing.Optional[torch.Tensor] = Noneoutput_attentions: typing.Optional[bool] = Noneoutput_hidden_states: typing.Optional[bool] = Nonereturn_dict: typing.Optional[bool] = Nonelabels: typing.Optional[torch.Tensor] = None ) → or tuple(torch.FloatTensor)

input_values (torch.FloatTensor of shape (batch_size, sequence_length)) — Float values of input raw speech waveform. Values can be obtained by loading a .flac or .wav audio file into an array of type List[float] or a numpy.ndarray, e.g. via the soundfile library (pip install soundfile). To prepare the array into input_values, the should be used for padding and conversion into a tensor of type torch.FloatTensor. See for details.

attention_mask should only be passed if the corresponding processor has config.return_attention_mask == True. For all models whose processor has config.return_attention_mask == False, such as , attention_mask should not be passed to avoid degraded performance when doing batched inference. For such models input_values should simply be padded with 0 and passed without attention_mask. Be aware that these models also yield slightly different results depending on whether input_values is padded or not.

return_dict (bool, optional) — Whether or not to return a instead of a plain tuple.

or tuple(torch.FloatTensor)

A or a tuple of torch.FloatTensor (if return_dict=False is passed or when config.return_dict=False) comprising various elements depending on the configuration () and inputs.

The forward method, overrides the __call__ special method.

config () — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the method to load the model weights.

Wav2Vec2Conformer was proposed in by Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael Auli.

This model inherits from . Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving etc.).

This model is a PyTorch sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.

( input_values: typing.Optional[torch.Tensor]attention_mask: typing.Optional[torch.Tensor] = Nonelabels: typing.Optional[torch.Tensor] = Noneoutput_attentions: typing.Optional[bool] = Noneoutput_hidden_states: typing.Optional[bool] = Nonereturn_dict: typing.Optional[bool] = None ) → or tuple(torch.FloatTensor)

input_values (torch.FloatTensor of shape (batch_size, sequence_length)) — Float values of input raw speech waveform. Values can be obtained by loading a .flac or .wav audio file into an array of type List[float] or a numpy.ndarray, e.g. via the soundfile library (pip install soundfile). To prepare the array into input_values, the should be used for padding and conversion into a tensor of type torch.FloatTensor. See for details.

attention_mask should only be passed if the corresponding processor has config.return_attention_mask == True. For all models whose processor has config.return_attention_mask == False, such as , attention_mask should not be passed to avoid degraded performance when doing batched inference. For such models input_values should simply be padded with 0 and passed without attention_mask. Be aware that these models also yield slightly different results depending on whether input_values is padded or not.

return_dict (bool, optional) — Whether or not to return a instead of a plain tuple.

or tuple(torch.FloatTensor)

A or a tuple of torch.FloatTensor (if return_dict=False is passed or when config.return_dict=False) comprising various elements depending on the configuration () and inputs.

The forward method, overrides the __call__ special method.

config () — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the method to load the model weights.

Wav2Vec2Conformer was proposed in by Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael Auli.

This model inherits from . Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving etc.).

This model is a PyTorch sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.

( input_values: typing.Optional[torch.Tensor]attention_mask: typing.Optional[torch.Tensor] = Noneoutput_attentions: typing.Optional[bool] = Noneoutput_hidden_states: typing.Optional[bool] = Nonereturn_dict: typing.Optional[bool] = Nonelabels: typing.Optional[torch.Tensor] = None ) → or tuple(torch.FloatTensor)

input_values (torch.FloatTensor of shape (batch_size, sequence_length)) — Float values of input raw speech waveform. Values can be obtained by loading a .flac or .wav audio file into an array of type List[float] or a numpy.ndarray, e.g. via the soundfile library (pip install soundfile). To prepare the array into input_values, the should be used for padding and conversion into a tensor of type torch.FloatTensor. See for details.

attention_mask should only be passed if the corresponding processor has config.return_attention_mask == True. For all models whose processor has config.return_attention_mask == False, such as , attention_mask should not be passed to avoid degraded performance when doing batched inference. For such models input_values should simply be padded with 0 and passed without attention_mask. Be aware that these models also yield slightly different results depending on whether input_values is padded or not.

return_dict (bool, optional) — Whether or not to return a instead of a plain tuple.

or tuple(torch.FloatTensor)

A or a tuple of torch.FloatTensor (if return_dict=False is passed or when config.return_dict=False) comprising various elements depending on the configuration () and inputs.

The forward method, overrides the __call__ special method.

config () — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the method to load the model weights.

Wav2Vec2Conformer Model with a quantizer and VQ head on top. Wav2Vec2Conformer was proposed in by Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael Auli.

This model inherits from . Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving etc.).

This model is a PyTorch sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.

( input_values: typing.Optional[torch.Tensor]attention_mask: typing.Optional[torch.Tensor] = Nonemask_time_indices: typing.Optional[torch.BoolTensor] = Nonesampled_negative_indices: typing.Optional[torch.BoolTensor] = Noneoutput_attentions: typing.Optional[bool] = Noneoutput_hidden_states: typing.Optional[bool] = Nonereturn_dict: typing.Optional[bool] = None ) → or tuple(torch.FloatTensor)

input_values (torch.FloatTensor of shape (batch_size, sequence_length)) — Float values of input raw speech waveform. Values can be obtained by loading a .flac or .wav audio file into an array of type List[float] or a numpy.ndarray, e.g. via the soundfile library (pip install soundfile). To prepare the array into input_values, the should be used for padding and conversion into a tensor of type torch.FloatTensor. See for details.

attention_mask should only be passed if the corresponding processor has config.return_attention_mask == True. For all models whose processor has config.return_attention_mask == False, such as , attention_mask should not be passed to avoid degraded performance when doing batched inference. For such models input_values should simply be padded with 0 and passed without attention_mask. Be aware that these models also yield slightly different results depending on whether input_values is padded or not.

return_dict (bool, optional) — Whether or not to return a instead of a plain tuple.

or tuple(torch.FloatTensor)

A or a tuple of torch.FloatTensor (if return_dict=False is passed or when config.return_dict=False) comprising various elements depending on the configuration () and inputs.

loss (optional, returned when sample_negative_indices are passed, torch.FloatTensor of shape (1,)) — Total loss as the sum of the contrastive loss (L_m) and the diversity loss (L_d) as stated in the . (classification) loss.

contrastive_loss (optional, returned when sample_negative_indices are passed, torch.FloatTensor of shape (1,)) — The contrastive loss (L_m) as stated in the .

diversity_loss (optional, returned when sample_negative_indices are passed, torch.FloatTensor of shape (1,)) — The diversity loss (L_d) as stated in the .

The forward method, overrides the __call__ special method.

🌍
🌍
🌍
fairseq S2T: Fast Speech-to-Text Modeling with fairseq
Fairseq library
Conformer: Convolution-augmented Transformer for Speech Recognition
patrickvonplaten
here
Audio classification task guide
Automatic speech recognition task guide
<source>
Wav2Vec2ConformerModel
Wav2Vec2ConformerModel
Wav2Vec2ConformerForCTC
https://arxiv.org/abs/1909.11556
SpecAugment: A Simple Data Augmentation Method for Automatic Speech Recognition
Wav2Vec2ConformerForCTC
Wav2Vec2ConformerForCTC
Wav2Vec2ConformerForSequenceClassification
Wav2Vec2ConformerModel
facebook/wav2vec2-conformer-rel-pos-large
PretrainedConfig
PretrainedConfig
<source>
official paper
official paper
official paper
Wav2Vec2ConformerForPreTraining
<source>
Wav2Vec2ConformerConfig
from_pretrained()
wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations
PreTrainedModel
nn.Module
<source>
transformers.modeling_outputs.Wav2Vec2BaseModelOutput
AutoProcessor
Wav2Vec2Processor.call()
What are attention masks?
wav2vec2-conformer-rel-pos-large
ModelOutput
transformers.modeling_outputs.Wav2Vec2BaseModelOutput
transformers.modeling_outputs.Wav2Vec2BaseModelOutput
Wav2Vec2ConformerConfig
Wav2Vec2ConformerModel
<source>
Wav2Vec2ConformerConfig
from_pretrained()
wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations
PreTrainedModel
nn.Module
<source>
transformers.modeling_outputs.CausalLMOutput
AutoProcessor
Wav2Vec2Processor.call()
What are attention masks?
wav2vec2-conformer-rel-pos-large
ModelOutput
transformers.modeling_outputs.CausalLMOutput
transformers.modeling_outputs.CausalLMOutput
Wav2Vec2ConformerConfig
Wav2Vec2ConformerForCTC
<source>
Wav2Vec2ConformerConfig
from_pretrained()
wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations
PreTrainedModel
nn.Module
<source>
transformers.modeling_outputs.SequenceClassifierOutput
AutoProcessor
Wav2Vec2Processor.call()
What are attention masks?
wav2vec2-conformer-rel-pos-large
ModelOutput
transformers.modeling_outputs.SequenceClassifierOutput
transformers.modeling_outputs.SequenceClassifierOutput
Wav2Vec2ConformerConfig
Wav2Vec2ConformerForSequenceClassification
<source>
Wav2Vec2ConformerConfig
from_pretrained()
wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations
PreTrainedModel
nn.Module
<source>
transformers.modeling_outputs.TokenClassifierOutput
AutoProcessor
Wav2Vec2Processor.call()
What are attention masks?
wav2vec2-conformer-rel-pos-large
ModelOutput
transformers.modeling_outputs.TokenClassifierOutput
transformers.modeling_outputs.TokenClassifierOutput
Wav2Vec2ConformerConfig
Wav2Vec2ConformerForAudioFrameClassification
<source>
Wav2Vec2ConformerConfig
from_pretrained()
wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations
PreTrainedModel
nn.Module
<source>
transformers.modeling_outputs.XVectorOutput
AutoProcessor
Wav2Vec2Processor.call()
What are attention masks?
wav2vec2-conformer-rel-pos-large
ModelOutput
transformers.modeling_outputs.XVectorOutput
transformers.modeling_outputs.XVectorOutput
Wav2Vec2ConformerConfig
Wav2Vec2ConformerForXVector
<source>
Wav2Vec2ConformerConfig
from_pretrained()
wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations
PreTrainedModel
nn.Module
<source>
transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer.Wav2Vec2ConformerForPreTrainingOutput
AutoProcessor
Wav2Vec2Processor.call()
What are attention masks?
wav2vec2-conformer-rel-pos-large
ModelOutput
transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer.Wav2Vec2ConformerForPreTrainingOutput
transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer.Wav2Vec2ConformerForPreTrainingOutput
Wav2Vec2ConformerConfig
official paper
official paper
official paper
Wav2Vec2ConformerForPreTraining