Transformers
  • 🌍GET STARTED
    • Transformers
    • Quick tour
    • Installation
  • 🌍TUTORIALS
    • Run inference with pipelines
    • Write portable code with AutoClass
    • Preprocess data
    • Fine-tune a pretrained model
    • Train with a script
    • Set up distributed training with BOINC AI Accelerate
    • Load and train adapters with BOINC AI PEFT
    • Share your model
    • Agents
    • Generation with LLMs
  • 🌍TASK GUIDES
    • 🌍NATURAL LANGUAGE PROCESSING
      • Text classification
      • Token classification
      • Question answering
      • Causal language modeling
      • Masked language modeling
      • Translation
      • Summarization
      • Multiple choice
    • 🌍AUDIO
      • Audio classification
      • Automatic speech recognition
    • 🌍COMPUTER VISION
      • Image classification
      • Semantic segmentation
      • Video classification
      • Object detection
      • Zero-shot object detection
      • Zero-shot image classification
      • Depth estimation
    • 🌍MULTIMODAL
      • Image captioning
      • Document Question Answering
      • Visual Question Answering
      • Text to speech
    • 🌍GENERATION
      • Customize the generation strategy
    • 🌍PROMPTING
      • Image tasks with IDEFICS
  • 🌍DEVELOPER GUIDES
    • Use fast tokenizers from BOINC AI Tokenizers
    • Run inference with multilingual models
    • Use model-specific APIs
    • Share a custom model
    • Templates for chat models
    • Run training on Amazon SageMaker
    • Export to ONNX
    • Export to TFLite
    • Export to TorchScript
    • Benchmarks
    • Notebooks with examples
    • Community resources
    • Custom Tools and Prompts
    • Troubleshoot
  • 🌍PERFORMANCE AND SCALABILITY
    • Overview
    • 🌍EFFICIENT TRAINING TECHNIQUES
      • Methods and tools for efficient training on a single GPU
      • Multiple GPUs and parallelism
      • Efficient training on CPU
      • Distributed CPU training
      • Training on TPUs
      • Training on TPU with TensorFlow
      • Training on Specialized Hardware
      • Custom hardware for training
      • Hyperparameter Search using Trainer API
    • 🌍OPTIMIZING INFERENCE
      • Inference on CPU
      • Inference on one GPU
      • Inference on many GPUs
      • Inference on Specialized Hardware
    • Instantiating a big model
    • Troubleshooting
    • XLA Integration for TensorFlow Models
    • Optimize inference using `torch.compile()`
  • 🌍CONTRIBUTE
    • How to contribute to transformers?
    • How to add a model to BOINC AI Transformers?
    • How to convert a BOINC AI Transformers model to TensorFlow?
    • How to add a pipeline to BOINC AI Transformers?
    • Testing
    • Checks on a Pull Request
  • 🌍CONCEPTUAL GUIDES
    • Philosophy
    • Glossary
    • What BOINC AI Transformers can do
    • How BOINC AI Transformers solve tasks
    • The Transformer model family
    • Summary of the tokenizers
    • Attention mechanisms
    • Padding and truncation
    • BERTology
    • Perplexity of fixed-length models
    • Pipelines for webserver inference
    • Model training anatomy
  • 🌍API
    • 🌍MAIN CLASSES
      • Agents and Tools
      • 🌍Auto Classes
        • Extending the Auto Classes
        • AutoConfig
        • AutoTokenizer
        • AutoFeatureExtractor
        • AutoImageProcessor
        • AutoProcessor
        • Generic model classes
          • AutoModel
          • TFAutoModel
          • FlaxAutoModel
        • Generic pretraining classes
          • AutoModelForPreTraining
          • TFAutoModelForPreTraining
          • FlaxAutoModelForPreTraining
        • Natural Language Processing
          • AutoModelForCausalLM
          • TFAutoModelForCausalLM
          • FlaxAutoModelForCausalLM
          • AutoModelForMaskedLM
          • TFAutoModelForMaskedLM
          • FlaxAutoModelForMaskedLM
          • AutoModelForMaskGenerationge
          • TFAutoModelForMaskGeneration
          • AutoModelForSeq2SeqLM
          • TFAutoModelForSeq2SeqLM
          • FlaxAutoModelForSeq2SeqLM
          • AutoModelForSequenceClassification
          • TFAutoModelForSequenceClassification
          • FlaxAutoModelForSequenceClassification
          • AutoModelForMultipleChoice
          • TFAutoModelForMultipleChoice
          • FlaxAutoModelForMultipleChoice
          • AutoModelForNextSentencePrediction
          • TFAutoModelForNextSentencePrediction
          • FlaxAutoModelForNextSentencePrediction
          • AutoModelForTokenClassification
          • TFAutoModelForTokenClassification
          • FlaxAutoModelForTokenClassification
          • AutoModelForQuestionAnswering
          • TFAutoModelForQuestionAnswering
          • FlaxAutoModelForQuestionAnswering
          • AutoModelForTextEncoding
          • TFAutoModelForTextEncoding
        • Computer vision
          • AutoModelForDepthEstimation
          • AutoModelForImageClassification
          • TFAutoModelForImageClassification
          • FlaxAutoModelForImageClassification
          • AutoModelForVideoClassification
          • AutoModelForMaskedImageModeling
          • TFAutoModelForMaskedImageModeling
          • AutoModelForObjectDetection
          • AutoModelForImageSegmentation
          • AutoModelForImageToImage
          • AutoModelForSemanticSegmentation
          • TFAutoModelForSemanticSegmentation
          • AutoModelForInstanceSegmentation
          • AutoModelForUniversalSegmentation
          • AutoModelForZeroShotImageClassification
          • TFAutoModelForZeroShotImageClassification
          • AutoModelForZeroShotObjectDetection
        • Audio
          • AutoModelForAudioClassification
          • AutoModelForAudioFrameClassification
          • TFAutoModelForAudioFrameClassification
          • AutoModelForCTC
          • AutoModelForSpeechSeq2Seq
          • TFAutoModelForSpeechSeq2Seq
          • FlaxAutoModelForSpeechSeq2Seq
          • AutoModelForAudioXVector
          • AutoModelForTextToSpectrogram
          • AutoModelForTextToWaveform
        • Multimodal
          • AutoModelForTableQuestionAnswering
          • TFAutoModelForTableQuestionAnswering
          • AutoModelForDocumentQuestionAnswering
          • TFAutoModelForDocumentQuestionAnswering
          • AutoModelForVisualQuestionAnswering
          • AutoModelForVision2Seq
          • TFAutoModelForVision2Seq
          • FlaxAutoModelForVision2Seq
      • Callbacks
      • Configuration
      • Data Collator
      • Keras callbacks
      • Logging
      • Models
      • Text Generation
      • ONNX
      • Optimization
      • Model outputs
      • Pipelines
      • Processors
      • Quantization
      • Tokenizer
      • Trainer
      • DeepSpeed Integration
      • Feature Extractor
      • Image Processor
    • 🌍MODELS
      • 🌍TEXT MODELS
        • ALBERT
        • BART
        • BARThez
        • BARTpho
        • BERT
        • BertGeneration
        • BertJapanese
        • Bertweet
        • BigBird
        • BigBirdPegasus
        • BioGpt
        • Blenderbot
        • Blenderbot Small
        • BLOOM
        • BORT
        • ByT5
        • CamemBERT
        • CANINE
        • CodeGen
        • CodeLlama
        • ConvBERT
        • CPM
        • CPMANT
        • CTRL
        • DeBERTa
        • DeBERTa-v2
        • DialoGPT
        • DistilBERT
        • DPR
        • ELECTRA
        • Encoder Decoder Models
        • ERNIE
        • ErnieM
        • ESM
        • Falcon
        • FLAN-T5
        • FLAN-UL2
        • FlauBERT
        • FNet
        • FSMT
        • Funnel Transformer
        • GPT
        • GPT Neo
        • GPT NeoX
        • GPT NeoX Japanese
        • GPT-J
        • GPT2
        • GPTBigCode
        • GPTSAN Japanese
        • GPTSw3
        • HerBERT
        • I-BERT
        • Jukebox
        • LED
        • LLaMA
        • LLama2
        • Longformer
        • LongT5
        • LUKE
        • M2M100
        • MarianMT
        • MarkupLM
        • MBart and MBart-50
        • MEGA
        • MegatronBERT
        • MegatronGPT2
        • Mistral
        • mLUKE
        • MobileBERT
        • MPNet
        • MPT
        • MRA
        • MT5
        • MVP
        • NEZHA
        • NLLB
        • NLLB-MoE
        • Nyströmformer
        • Open-Llama
        • OPT
        • Pegasus
        • PEGASUS-X
        • Persimmon
        • PhoBERT
        • PLBart
        • ProphetNet
        • QDQBert
        • RAG
        • REALM
        • Reformer
        • RemBERT
        • RetriBERT
        • RoBERTa
        • RoBERTa-PreLayerNorm
        • RoCBert
        • RoFormer
        • RWKV
        • Splinter
        • SqueezeBERT
        • SwitchTransformers
        • T5
        • T5v1.1
        • TAPEX
        • Transformer XL
        • UL2
        • UMT5
        • X-MOD
        • XGLM
        • XLM
        • XLM-ProphetNet
        • XLM-RoBERTa
        • XLM-RoBERTa-XL
        • XLM-V
        • XLNet
        • YOSO
      • 🌍VISION MODELS
        • BEiT
        • BiT
        • Conditional DETR
        • ConvNeXT
        • ConvNeXTV2
        • CvT
        • Deformable DETR
        • DeiT
        • DETA
        • DETR
        • DiNAT
        • DINO V2
        • DiT
        • DPT
        • EfficientFormer
        • EfficientNet
        • FocalNet
        • GLPN
        • ImageGPT
        • LeViT
        • Mask2Former
        • MaskFormer
        • MobileNetV1
        • MobileNetV2
        • MobileViT
        • MobileViTV2
        • NAT
        • PoolFormer
        • Pyramid Vision Transformer (PVT)
        • RegNet
        • ResNet
        • SegFormer
        • SwiftFormer
        • Swin Transformer
        • Swin Transformer V2
        • Swin2SR
        • Table Transformer
        • TimeSformer
        • UperNet
        • VAN
        • VideoMAE
        • Vision Transformer (ViT)
        • ViT Hybrid
        • ViTDet
        • ViTMAE
        • ViTMatte
        • ViTMSN
        • ViViT
        • YOLOS
      • 🌍AUDIO MODELS
        • Audio Spectrogram Transformer
        • Bark
        • CLAP
        • EnCodec
        • Hubert
        • MCTCT
        • MMS
        • MusicGen
        • Pop2Piano
        • SEW
        • SEW-D
        • Speech2Text
        • Speech2Text2
        • SpeechT5
        • UniSpeech
        • UniSpeech-SAT
        • VITS
        • Wav2Vec2
        • Wav2Vec2-Conformer
        • Wav2Vec2Phoneme
        • WavLM
        • Whisper
        • XLS-R
        • XLSR-Wav2Vec2
      • 🌍MULTIMODAL MODELS
        • ALIGN
        • AltCLIP
        • BLIP
        • BLIP-2
        • BridgeTower
        • BROS
        • Chinese-CLIP
        • CLIP
        • CLIPSeg
        • Data2Vec
        • DePlot
        • Donut
        • FLAVA
        • GIT
        • GroupViT
        • IDEFICS
        • InstructBLIP
        • LayoutLM
        • LayoutLMV2
        • LayoutLMV3
        • LayoutXLM
        • LiLT
        • LXMERT
        • MatCha
        • MGP-STR
        • Nougat
        • OneFormer
        • OWL-ViT
        • Perceiver
        • Pix2Struct
        • Segment Anything
        • Speech Encoder Decoder Models
        • TAPAS
        • TrOCR
        • TVLT
        • ViLT
        • Vision Encoder Decoder Models
        • Vision Text Dual Encoder
        • VisualBERT
        • X-CLIP
      • 🌍REINFORCEMENT LEARNING MODELS
        • Decision Transformer
        • Trajectory Transformer
      • 🌍TIME SERIES MODELS
        • Autoformer
        • Informer
        • Time Series Transformer
      • 🌍GRAPH MODELS
        • Graphormer
  • 🌍INTERNAL HELPERS
    • Custom Layers and Utilities
    • Utilities for pipelines
    • Utilities for Tokenizers
    • Utilities for Trainer
    • Utilities for Generation
    • Utilities for Image Processors
    • Utilities for Audio processing
    • General Utilities
    • Utilities for Time Series
Powered by GitBook
On this page
  • RoBERTa
  • Overview
  • Resources
  • RobertaConfig
  • RobertaForMaskedLM
  • RobertaForSequenceClassification
  • RobertaForMultipleChoice
  • RobertaForTokenClassification
  • RobertaForQuestionAnswering
  • TFRobertaModel
  • TFRobertaForCausalLM
  • TFRobertaForMaskedLM
  • TFRobertaForSequenceClassification
  • TFRobertaForMultipleChoice
  • TFRobertaForTokenClassification
  • TFRobertaForQuestionAnswering
  • FlaxRobertaModel
  • FlaxRobertaForCausalLM
  • FlaxRobertaForMaskedLM
  • FlaxRobertaForSequenceClassification
  • FlaxRobertaForMultipleChoice
  • FlaxRobertaForTokenClassification
  • FlaxRobertaForQuestionAnswering
  1. API
  2. MODELS
  3. TEXT MODELS

RoBERTa

PreviousRetriBERTNextRoBERTa-PreLayerNorm

Last updated 1 year ago

RoBERTa

Overview

The RoBERTa model was proposed in by Yinhan Liu, , Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, Veselin Stoyanov. It is based on Google’s BERT model released in 2018.

It builds on BERT and modifies key hyperparameters, removing the next-sentence pretraining objective and training with much larger mini-batches and learning rates.

The abstract from the paper is the following:

Language model pretraining has led to significant performance gains but careful comparison between different approaches is challenging. Training is computationally expensive, often done on private datasets of different sizes, and, as we will show, hyperparameter choices have significant impact on the final results. We present a replication study of BERT pretraining (Devlin et al., 2019) that carefully measures the impact of many key hyperparameters and training data size. We find that BERT was significantly undertrained, and can match or exceed the performance of every model published after it. Our best model achieves state-of-the-art results on GLUE, RACE and SQuAD. These results highlight the importance of previously overlooked design choices, and raise questions about the source of recently reported improvements. We release our models and code.

Tips:

  • This implementation is the same as with a tiny embeddings tweak as well as a setup for Roberta pretrained models.

  • RoBERTa has the same architecture as BERT, but uses a byte-level BPE as a tokenizer (same as GPT-2) and uses a different pretraining scheme.

  • RoBERTa doesn’t have token_type_ids, you don’t need to indicate which token belongs to which segment. Just separate your segments with the separation token tokenizer.sep_token (or </s>)

  • Same as BERT with better pretraining tricks:

    • dynamic masking: tokens are masked differently at each epoch, whereas BERT does it once and for all

    • together to reach 512 tokens (so the sentences are in an order than may span several documents)

    • train with larger batches

    • use BPE with bytes as a subunit and not characters (because of unicode characters)

  • is a wrapper around RoBERTa. Refer to this page for usage examples.

Resources

A list of official BOINC AI and community (indicated by 🌎) resources to help you get started with RoBERTa. If you’re interested in submitting a resource to be included here, please feel free to open a Pull Request and we’ll review it! The resource should ideally demonstrate something new instead of duplicating an existing resource.

Text Classification

Token Classification

Fill-Mask

Question Answering

Multiple choice

RobertaConfig

class transformers.RobertaForCausalLM

( config )

Parameters

RoBERTa Model with a language modeling head on top for CLM fine-tuning.

forward

Parameters

  • input_ids (torch.LongTensor of shape (batch_size, sequence_length)) — Indices of input sequence tokens in the vocabulary.

  • attention_mask (torch.FloatTensor of shape (batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:

    • 1 for tokens that are not masked,

    • 0 for tokens that are masked.

  • token_type_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0,1]:

    • 0 corresponds to a sentence A token,

    • 1 corresponds to a sentence B token. This parameter can only be used when the model is initialized with type_vocab_size parameter with value

      = 2. All the value in this tensor should be always < type_vocab_size.

  • position_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1].

  • head_mask (torch.FloatTensor of shape (num_heads,) or (num_layers, num_heads), optional) — Mask to nullify selected heads of the self-attention modules. Mask values selected in [0, 1]:

    • 1 indicates the head is not masked,

    • 0 indicates the head is masked.

  • inputs_embeds (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) — Optionally, instead of passing input_ids you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids indices into associated vectors than the model’s internal embedding lookup matrix.

  • output_attentions (bool, optional) — Whether or not to return the attentions tensors of all attention layers. See attentions under returned tensors for more detail.

  • output_hidden_states (bool, optional) — Whether or not to return the hidden states of all layers. See hidden_states under returned tensors for more detail.

  • encoder_hidden_states (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) — Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder.

  • encoder_attention_mask (torch.FloatTensor of shape (batch_size, sequence_length), optional) — Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in [0, 1]:

    • 1 for tokens that are not masked,

    • 0 for tokens that are masked.

  • labels (torch.LongTensor of shape (batch_size, sequence_length), optional) — Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in [-100, 0, ..., config.vocab_size] (see input_ids docstring) Tokens with indices set to -100 are ignored (masked), the loss is only computed for the tokens with labels in [0, ..., config.vocab_size]

  • past_key_values (tuple(tuple(torch.FloatTensor)) of length config.n_layers with each tuple having 4 tensors of shape (batch_size, num_heads, sequence_length - 1, embed_size_per_head)) — Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.

    If past_key_values are used, the user can optionally input only the last decoder_input_ids (those that don’t have their past key value states given to this model) of shape (batch_size, 1) instead of all decoder_input_ids of shape (batch_size, sequence_length).

  • use_cache (bool, optional) — If set to True, past_key_values key value states are returned and can be used to speed up decoding (see past_key_values).

Returns

  • loss (torch.FloatTensor of shape (1,), optional, returned when labels is provided) — Language modeling loss (for next-token prediction).

  • logits (torch.FloatTensor of shape (batch_size, sequence_length, config.vocab_size)) — Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).

  • hidden_states (tuple(torch.FloatTensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) — Tuple of torch.FloatTensor (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.

  • attentions (tuple(torch.FloatTensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) — Tuple of torch.FloatTensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

  • cross_attentions (tuple(torch.FloatTensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) — Tuple of torch.FloatTensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Cross attentions weights after the attention softmax, used to compute the weighted average in the cross-attention heads.

  • past_key_values (tuple(tuple(torch.FloatTensor)), optional, returned when use_cache=True is passed or when config.use_cache=True) — Tuple of torch.FloatTensor tuples of length config.n_layers, with each tuple containing the cached key, value states of the self-attention and the cross-attention layers if model is used in encoder-decoder setting. Only relevant if config.is_decoder = True.

    Contains pre-computed hidden-states (key and values in the attention blocks) that can be used (see past_key_values input) to speed up sequential decoding.

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Example:

Copied

>>> from transformers import AutoTokenizer, RobertaForCausalLM, AutoConfig
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("roberta-base")
>>> config = AutoConfig.from_pretrained("roberta-base")
>>> config.is_decoder = True
>>> model = RobertaForCausalLM.from_pretrained("roberta-base", config=config)

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)

>>> prediction_logits = outputs.logits

RobertaForMaskedLM

class transformers.RobertaForMaskedLM

( config )

Parameters

RoBERTa Model with a language modeling head on top.

forward

Parameters

  • input_ids (torch.LongTensor of shape (batch_size, sequence_length)) — Indices of input sequence tokens in the vocabulary.

  • attention_mask (torch.FloatTensor of shape (batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:

    • 1 for tokens that are not masked,

    • 0 for tokens that are masked.

  • token_type_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0,1]:

    • 0 corresponds to a sentence A token,

    • 1 corresponds to a sentence B token. This parameter can only be used when the model is initialized with type_vocab_size parameter with value

      = 2. All the value in this tensor should be always < type_vocab_size.

  • position_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1].

  • head_mask (torch.FloatTensor of shape (num_heads,) or (num_layers, num_heads), optional) — Mask to nullify selected heads of the self-attention modules. Mask values selected in [0, 1]:

    • 1 indicates the head is not masked,

    • 0 indicates the head is masked.

  • inputs_embeds (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) — Optionally, instead of passing input_ids you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids indices into associated vectors than the model’s internal embedding lookup matrix.

  • output_attentions (bool, optional) — Whether or not to return the attentions tensors of all attention layers. See attentions under returned tensors for more detail.

  • output_hidden_states (bool, optional) — Whether or not to return the hidden states of all layers. See hidden_states under returned tensors for more detail.

  • labels (torch.LongTensor of shape (batch_size, sequence_length), optional) — Labels for computing the masked language modeling loss. Indices should be in [-100, 0, ..., config.vocab_size] (see input_ids docstring) Tokens with indices set to -100 are ignored (masked), the loss is only computed for the tokens with labels in [0, ..., config.vocab_size]

  • kwargs (Dict[str, any], optional, defaults to {}) — Used to hide legacy arguments that have been deprecated.

Returns

  • loss (torch.FloatTensor of shape (1,), optional, returned when labels is provided) — Masked language modeling (MLM) loss.

  • logits (torch.FloatTensor of shape (batch_size, sequence_length, config.vocab_size)) — Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).

  • hidden_states (tuple(torch.FloatTensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) — Tuple of torch.FloatTensor (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.

  • attentions (tuple(torch.FloatTensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) — Tuple of torch.FloatTensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Example:

Copied

>>> from transformers import AutoTokenizer, RobertaForMaskedLM
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("roberta-base")
>>> model = RobertaForMaskedLM.from_pretrained("roberta-base")

>>> inputs = tokenizer("The capital of France is <mask>.", return_tensors="pt")

>>> with torch.no_grad():
...     logits = model(**inputs).logits

>>> # retrieve index of <mask>
>>> mask_token_index = (inputs.input_ids == tokenizer.mask_token_id)[0].nonzero(as_tuple=True)[0]

>>> predicted_token_id = logits[0, mask_token_index].argmax(axis=-1)
>>> tokenizer.decode(predicted_token_id)
' Paris'

>>> labels = tokenizer("The capital of France is Paris.", return_tensors="pt")["input_ids"]
>>> # mask labels of non-<mask> tokens
>>> labels = torch.where(inputs.input_ids == tokenizer.mask_token_id, labels, -100)

>>> outputs = model(**inputs, labels=labels)
>>> round(outputs.loss.item(), 2)
0.1

RobertaForSequenceClassification

class transformers.RobertaForSequenceClassification

( config )

Parameters

RoBERTa Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks.

forward

Parameters

  • input_ids (torch.LongTensor of shape (batch_size, sequence_length)) — Indices of input sequence tokens in the vocabulary.

  • attention_mask (torch.FloatTensor of shape (batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:

    • 1 for tokens that are not masked,

    • 0 for tokens that are masked.

  • token_type_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0,1]:

    • 0 corresponds to a sentence A token,

    • 1 corresponds to a sentence B token. This parameter can only be used when the model is initialized with type_vocab_size parameter with value

      = 2. All the value in this tensor should be always < type_vocab_size.

  • position_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1].

  • head_mask (torch.FloatTensor of shape (num_heads,) or (num_layers, num_heads), optional) — Mask to nullify selected heads of the self-attention modules. Mask values selected in [0, 1]:

    • 1 indicates the head is not masked,

    • 0 indicates the head is masked.

  • inputs_embeds (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) — Optionally, instead of passing input_ids you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids indices into associated vectors than the model’s internal embedding lookup matrix.

  • output_attentions (bool, optional) — Whether or not to return the attentions tensors of all attention layers. See attentions under returned tensors for more detail.

  • output_hidden_states (bool, optional) — Whether or not to return the hidden states of all layers. See hidden_states under returned tensors for more detail.

  • labels (torch.LongTensor of shape (batch_size,), optional) — Labels for computing the sequence classification/regression loss. Indices should be in [0, ..., config.num_labels - 1]. If config.num_labels == 1 a regression loss is computed (Mean-Square loss), If config.num_labels > 1 a classification loss is computed (Cross-Entropy).

Returns

  • loss (torch.FloatTensor of shape (1,), optional, returned when labels is provided) — Classification (or regression if config.num_labels==1) loss.

  • logits (torch.FloatTensor of shape (batch_size, config.num_labels)) — Classification (or regression if config.num_labels==1) scores (before SoftMax).

  • hidden_states (tuple(torch.FloatTensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) — Tuple of torch.FloatTensor (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.

  • attentions (tuple(torch.FloatTensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) — Tuple of torch.FloatTensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Example of single-label classification:

Copied

>>> import torch
>>> from transformers import AutoTokenizer, RobertaForSequenceClassification

>>> tokenizer = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-emotion")
>>> model = RobertaForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-emotion")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")

>>> with torch.no_grad():
...     logits = model(**inputs).logits

>>> predicted_class_id = logits.argmax().item()
>>> model.config.id2label[predicted_class_id]
'optimism'

>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = RobertaForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-emotion", num_labels=num_labels)

>>> labels = torch.tensor([1])
>>> loss = model(**inputs, labels=labels).loss
>>> round(loss.item(), 2)
0.08

Example of multi-label classification:

Copied

>>> import torch
>>> from transformers import AutoTokenizer, RobertaForSequenceClassification

>>> tokenizer = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-emotion")
>>> model = RobertaForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-emotion", problem_type="multi_label_classification")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")

>>> with torch.no_grad():
...     logits = model(**inputs).logits

>>> predicted_class_ids = torch.arange(0, logits.shape[-1])[torch.sigmoid(logits).squeeze(dim=0) > 0.5]

>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = RobertaForSequenceClassification.from_pretrained(
...     "cardiffnlp/twitter-roberta-base-emotion", num_labels=num_labels, problem_type="multi_label_classification"
... )

>>> labels = torch.sum(
...     torch.nn.functional.one_hot(predicted_class_ids[None, :].clone(), num_classes=num_labels), dim=1
... ).to(torch.float)
>>> loss = model(**inputs, labels=labels).loss

RobertaForMultipleChoice

class transformers.RobertaForMultipleChoice

( config )

Parameters

Roberta Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a softmax) e.g. for RocStories/SWAG tasks.

forward

Parameters

  • input_ids (torch.LongTensor of shape (batch_size, num_choices, sequence_length)) — Indices of input sequence tokens in the vocabulary.

  • attention_mask (torch.FloatTensor of shape (batch_size, num_choices, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:

    • 1 for tokens that are not masked,

    • 0 for tokens that are masked.

  • token_type_ids (torch.LongTensor of shape (batch_size, num_choices, sequence_length), optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0,1]:

    • 0 corresponds to a sentence A token,

    • 1 corresponds to a sentence B token. This parameter can only be used when the model is initialized with type_vocab_size parameter with value

      = 2. All the value in this tensor should be always < type_vocab_size.

  • position_ids (torch.LongTensor of shape (batch_size, num_choices, sequence_length), optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1].

  • head_mask (torch.FloatTensor of shape (num_heads,) or (num_layers, num_heads), optional) — Mask to nullify selected heads of the self-attention modules. Mask values selected in [0, 1]:

    • 1 indicates the head is not masked,

    • 0 indicates the head is masked.

  • inputs_embeds (torch.FloatTensor of shape (batch_size, num_choices, sequence_length, hidden_size), optional) — Optionally, instead of passing input_ids you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids indices into associated vectors than the model’s internal embedding lookup matrix.

  • output_attentions (bool, optional) — Whether or not to return the attentions tensors of all attention layers. See attentions under returned tensors for more detail.

  • output_hidden_states (bool, optional) — Whether or not to return the hidden states of all layers. See hidden_states under returned tensors for more detail.

  • labels (torch.LongTensor of shape (batch_size,), optional) — Labels for computing the multiple choice classification loss. Indices should be in [0, ..., num_choices-1] where num_choices is the size of the second dimension of the input tensors. (See input_ids above)

Returns

  • loss (torch.FloatTensor of shape (1,), optional, returned when labels is provided) — Classification loss.

  • logits (torch.FloatTensor of shape (batch_size, num_choices)) — num_choices is the second dimension of the input tensors. (see input_ids above).

    Classification scores (before SoftMax).

  • hidden_states (tuple(torch.FloatTensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) — Tuple of torch.FloatTensor (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.

  • attentions (tuple(torch.FloatTensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) — Tuple of torch.FloatTensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Example:

Copied

>>> from transformers import AutoTokenizer, RobertaForMultipleChoice
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("roberta-base")
>>> model = RobertaForMultipleChoice.from_pretrained("roberta-base")

>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
>>> choice0 = "It is eaten with a fork and a knife."
>>> choice1 = "It is eaten while held in the hand."
>>> labels = torch.tensor(0).unsqueeze(0)  # choice0 is correct (according to Wikipedia ;)), batch size 1

>>> encoding = tokenizer([prompt, prompt], [choice0, choice1], return_tensors="pt", padding=True)
>>> outputs = model(**{k: v.unsqueeze(0) for k, v in encoding.items()}, labels=labels)  # batch size is 1

>>> # the linear classifier still needs to be trained
>>> loss = outputs.loss
>>> logits = outputs.logits

RobertaForTokenClassification

class transformers.RobertaForTokenClassification

( config )

Parameters

Roberta Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks.

forward

Parameters

  • input_ids (torch.LongTensor of shape (batch_size, sequence_length)) — Indices of input sequence tokens in the vocabulary.

  • attention_mask (torch.FloatTensor of shape (batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:

    • 1 for tokens that are not masked,

    • 0 for tokens that are masked.

  • token_type_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0,1]:

    • 0 corresponds to a sentence A token,

    • 1 corresponds to a sentence B token. This parameter can only be used when the model is initialized with type_vocab_size parameter with value

      = 2. All the value in this tensor should be always < type_vocab_size.

  • position_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1].

  • head_mask (torch.FloatTensor of shape (num_heads,) or (num_layers, num_heads), optional) — Mask to nullify selected heads of the self-attention modules. Mask values selected in [0, 1]:

    • 1 indicates the head is not masked,

    • 0 indicates the head is masked.

  • inputs_embeds (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) — Optionally, instead of passing input_ids you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids indices into associated vectors than the model’s internal embedding lookup matrix.

  • output_attentions (bool, optional) — Whether or not to return the attentions tensors of all attention layers. See attentions under returned tensors for more detail.

  • output_hidden_states (bool, optional) — Whether or not to return the hidden states of all layers. See hidden_states under returned tensors for more detail.

  • labels (torch.LongTensor of shape (batch_size, sequence_length), optional) — Labels for computing the token classification loss. Indices should be in [0, ..., config.num_labels - 1].

Returns

  • loss (torch.FloatTensor of shape (1,), optional, returned when labels is provided) — Classification loss.

  • logits (torch.FloatTensor of shape (batch_size, sequence_length, config.num_labels)) — Classification scores (before SoftMax).

  • hidden_states (tuple(torch.FloatTensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) — Tuple of torch.FloatTensor (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.

  • attentions (tuple(torch.FloatTensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) — Tuple of torch.FloatTensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Example:

Copied

>>> from transformers import AutoTokenizer, RobertaForTokenClassification
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("Jean-Baptiste/roberta-large-ner-english")
>>> model = RobertaForTokenClassification.from_pretrained("Jean-Baptiste/roberta-large-ner-english")

>>> inputs = tokenizer(
...     "BOINCAI is a company based in Paris and New York", add_special_tokens=False, return_tensors="pt"
... )

>>> with torch.no_grad():
...     logits = model(**inputs).logits

>>> predicted_token_class_ids = logits.argmax(-1)

>>> # Note that tokens are classified rather then input words which means that
>>> # there might be more predicted token classes than words.
>>> # Multiple token classes might account for the same word
>>> predicted_tokens_classes = [model.config.id2label[t.item()] for t in predicted_token_class_ids[0]]
>>> predicted_tokens_classes
['O', 'ORG', 'ORG', 'O', 'O', 'O', 'O', 'O', 'LOC', 'O', 'LOC', 'LOC']

>>> labels = predicted_token_class_ids
>>> loss = model(**inputs, labels=labels).loss
>>> round(loss.item(), 2)
0.01

RobertaForQuestionAnswering

class transformers.RobertaForQuestionAnswering

( config )

Parameters

Roberta Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of the hidden-states output to compute span start logits and span end logits).

forward

Parameters

  • input_ids (torch.LongTensor of shape (batch_size, sequence_length)) — Indices of input sequence tokens in the vocabulary.

  • attention_mask (torch.FloatTensor of shape (batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:

    • 1 for tokens that are not masked,

    • 0 for tokens that are masked.

  • token_type_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0,1]:

    • 0 corresponds to a sentence A token,

    • 1 corresponds to a sentence B token. This parameter can only be used when the model is initialized with type_vocab_size parameter with value

      = 2. All the value in this tensor should be always < type_vocab_size.

  • position_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1].

  • head_mask (torch.FloatTensor of shape (num_heads,) or (num_layers, num_heads), optional) — Mask to nullify selected heads of the self-attention modules. Mask values selected in [0, 1]:

    • 1 indicates the head is not masked,

    • 0 indicates the head is masked.

  • inputs_embeds (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) — Optionally, instead of passing input_ids you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids indices into associated vectors than the model’s internal embedding lookup matrix.

  • output_attentions (bool, optional) — Whether or not to return the attentions tensors of all attention layers. See attentions under returned tensors for more detail.

  • output_hidden_states (bool, optional) — Whether or not to return the hidden states of all layers. See hidden_states under returned tensors for more detail.

  • start_positions (torch.LongTensor of shape (batch_size,), optional) — Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (sequence_length). Position outside of the sequence are not taken into account for computing the loss.

  • end_positions (torch.LongTensor of shape (batch_size,), optional) — Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (sequence_length). Position outside of the sequence are not taken into account for computing the loss.

Returns

  • loss (torch.FloatTensor of shape (1,), optional, returned when labels is provided) — Total span extraction loss is the sum of a Cross-Entropy for the start and end positions.

  • start_logits (torch.FloatTensor of shape (batch_size, sequence_length)) — Span-start scores (before SoftMax).

  • end_logits (torch.FloatTensor of shape (batch_size, sequence_length)) — Span-end scores (before SoftMax).

  • hidden_states (tuple(torch.FloatTensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) — Tuple of torch.FloatTensor (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.

  • attentions (tuple(torch.FloatTensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) — Tuple of torch.FloatTensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Example:

Copied

>>> from transformers import AutoTokenizer, RobertaForQuestionAnswering
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("deepset/roberta-base-squad2")
>>> model = RobertaForQuestionAnswering.from_pretrained("deepset/roberta-base-squad2")

>>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"

>>> inputs = tokenizer(question, text, return_tensors="pt")
>>> with torch.no_grad():
...     outputs = model(**inputs)

>>> answer_start_index = outputs.start_logits.argmax()
>>> answer_end_index = outputs.end_logits.argmax()

>>> predict_answer_tokens = inputs.input_ids[0, answer_start_index : answer_end_index + 1]
>>> tokenizer.decode(predict_answer_tokens, skip_special_tokens=True)
' puppet'

>>> # target is "nice puppet"
>>> target_start_index = torch.tensor([14])
>>> target_end_index = torch.tensor([15])

>>> outputs = model(**inputs, start_positions=target_start_index, end_positions=target_end_index)
>>> loss = outputs.loss
>>> round(loss.item(), 2)
0.86

TFRobertaModel

class transformers.TFRobertaModel

( *args**kwargs )

Parameters

The bare RoBERTa Model transformer outputting raw hidden-states without any specific head on top.

TensorFlow models and layers in transformers accept two formats as input:

  • having all inputs as keyword arguments (like PyTorch models), or

  • having all inputs as a list, tuple or dict in the first positional argument.

The reason the second format is supported is that Keras methods prefer this format when passing inputs to models and layers. Because of this support, when using methods like model.fit() things should “just work” for you - just pass your inputs and labels in any format that model.fit() supports! If, however, you want to use the second format outside of Keras methods like fit() and predict(), such as when creating your own layers or models with the Keras Functional API, there are three possibilities you can use to gather all the input Tensors in the first positional argument:

  • a single Tensor with input_ids only and nothing else: model(input_ids)

  • a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: model([input_ids, attention_mask]) or model([input_ids, attention_mask, token_type_ids])

  • a dictionary with one or several input Tensors associated to the input names given in the docstring: model({"input_ids": input_ids, "token_type_ids": token_type_ids})

call

Parameters

  • input_ids (Numpy array or tf.Tensor of shape (batch_size, sequence_length)) — Indices of input sequence tokens in the vocabulary.

  • attention_mask (Numpy array or tf.Tensor of shape (batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:

    • 1 for tokens that are not masked,

    • 0 for tokens that are masked.

  • token_type_ids (Numpy array or tf.Tensor of shape (batch_size, sequence_length), optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]:

    • 0 corresponds to a sentence A token,

    • 1 corresponds to a sentence B token.

  • position_ids (Numpy array or tf.Tensor of shape (batch_size, sequence_length), optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1].

  • head_mask (Numpy array or tf.Tensor of shape (num_heads,) or (num_layers, num_heads), optional) — Mask to nullify selected heads of the self-attention modules. Mask values selected in [0, 1]:

    • 1 indicates the head is not masked,

    • 0 indicates the head is masked.

  • inputs_embeds (tf.Tensor of shape (batch_size, sequence_length, hidden_size), optional) — Optionally, instead of passing input_ids you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids indices into associated vectors than the model’s internal embedding lookup matrix.

  • output_attentions (bool, optional) — Whether or not to return the attentions tensors of all attention layers. See attentions under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead.

  • output_hidden_states (bool, optional) — Whether or not to return the hidden states of all layers. See hidden_states under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead.

  • training (bool, optional, defaults to False) — Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation).

  • encoder_hidden_states (tf.Tensor of shape (batch_size, sequence_length, hidden_size), optional) — Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder.

  • encoder_attention_mask (tf.Tensor of shape (batch_size, sequence_length), optional) — Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in [0, 1]:

    • 1 for tokens that are not masked,

    • 0 for tokens that are masked.

  • past_key_values (Tuple[Tuple[tf.Tensor]] of length config.n_layers) — contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If past_key_values are used, the user can optionally input only the last decoder_input_ids (those that don’t have their past key value states given to this model) of shape (batch_size, 1) instead of all decoder_input_ids of shape (batch_size, sequence_length).

  • use_cache (bool, optional, defaults to True) — If set to True, past_key_values key value states are returned and can be used to speed up decoding (see past_key_values). Set to False during training, True during generation

Returns

  • last_hidden_state (tf.Tensor of shape (batch_size, sequence_length, hidden_size)) — Sequence of hidden-states at the output of the last layer of the model.

  • pooler_output (tf.Tensor of shape (batch_size, hidden_size)) — Last layer hidden-state of the first token of the sequence (classification token) further processed by a Linear layer and a Tanh activation function. The Linear layer weights are trained from the next sentence prediction (classification) objective during pretraining.

    This output is usually not a good summary of the semantic content of the input, you’re often better with averaging or pooling the sequence of hidden-states for the whole input sequence.

  • past_key_values (List[tf.Tensor], optional, returned when use_cache=True is passed or when config.use_cache=True) — List of tf.Tensor of length config.n_layers, with each tensor of shape (2, batch_size, num_heads, sequence_length, embed_size_per_head)).

    Contains pre-computed hidden-states (key and values in the attention blocks) that can be used (see past_key_values input) to speed up sequential decoding.

  • hidden_states (tuple(tf.Tensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) — Tuple of tf.Tensor (one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the model at the output of each layer plus the initial embedding outputs.

  • attentions (tuple(tf.Tensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) — Tuple of tf.Tensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

  • cross_attentions (tuple(tf.Tensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) — Tuple of tf.Tensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights of the decoder’s cross-attention layer, after the attention softmax, used to compute the weighted average in the cross-attention heads.

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Example:

Copied

>>> from transformers import AutoTokenizer, TFRobertaModel
>>> import tensorflow as tf

>>> tokenizer = AutoTokenizer.from_pretrained("roberta-base")
>>> model = TFRobertaModel.from_pretrained("roberta-base")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf")
>>> outputs = model(inputs)

>>> last_hidden_states = outputs.last_hidden_state

TFRobertaForCausalLM

class transformers.TFRobertaForCausalLM

( *args**kwargs )

call

Parameters

  • input_ids (Numpy array or tf.Tensor of shape (batch_size, sequence_length)) — Indices of input sequence tokens in the vocabulary.

  • attention_mask (Numpy array or tf.Tensor of shape (batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:

    • 1 for tokens that are not masked,

    • 0 for tokens that are masked.

  • token_type_ids (Numpy array or tf.Tensor of shape (batch_size, sequence_length), optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]:

    • 0 corresponds to a sentence A token,

    • 1 corresponds to a sentence B token.

  • position_ids (Numpy array or tf.Tensor of shape (batch_size, sequence_length), optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1].

  • head_mask (Numpy array or tf.Tensor of shape (num_heads,) or (num_layers, num_heads), optional) — Mask to nullify selected heads of the self-attention modules. Mask values selected in [0, 1]:

    • 1 indicates the head is not masked,

    • 0 indicates the head is masked.

  • inputs_embeds (tf.Tensor of shape (batch_size, sequence_length, hidden_size), optional) — Optionally, instead of passing input_ids you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids indices into associated vectors than the model’s internal embedding lookup matrix.

  • output_attentions (bool, optional) — Whether or not to return the attentions tensors of all attention layers. See attentions under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead.

  • output_hidden_states (bool, optional) — Whether or not to return the hidden states of all layers. See hidden_states under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead.

  • training (bool, optional, defaults to False) — Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation).

  • encoder_hidden_states (tf.Tensor of shape (batch_size, sequence_length, hidden_size), optional) — Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder.

  • encoder_attention_mask (tf.Tensor of shape (batch_size, sequence_length), optional) — Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in [0, 1]:

    • 1 for tokens that are not masked,

    • 0 for tokens that are masked.

  • past_key_values (Tuple[Tuple[tf.Tensor]] of length config.n_layers) — contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If past_key_values are used, the user can optionally input only the last decoder_input_ids (those that don’t have their past key value states given to this model) of shape (batch_size, 1) instead of all decoder_input_ids of shape (batch_size, sequence_length).

  • use_cache (bool, optional, defaults to True) — If set to True, past_key_values key value states are returned and can be used to speed up decoding (see past_key_values). Set to False during training, True during generation

  • labels (tf.Tensor or np.ndarray of shape (batch_size, sequence_length), optional) — Labels for computing the cross entropy classification loss. Indices should be in [0, ..., config.vocab_size - 1].

Returns

  • loss (tf.Tensor of shape (n,), optional, where n is the number of non-masked labels, returned when labels is provided) — Language modeling loss (for next-token prediction).

  • logits (tf.Tensor of shape (batch_size, sequence_length, config.vocab_size)) — Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).

  • hidden_states (tuple(tf.Tensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) — Tuple of tf.Tensor (one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the model at the output of each layer plus the initial embedding outputs.

  • attentions (tuple(tf.Tensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) — Tuple of tf.Tensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

  • cross_attentions (tuple(tf.Tensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) — Tuple of tf.Tensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights of the decoder’s cross-attention layer, after the attention softmax, used to compute the weighted average in the cross-attention heads.

  • past_key_values (List[tf.Tensor], optional, returned when use_cache=True is passed or when config.use_cache=True) — List of tf.Tensor of length config.n_layers, with each tensor of shape (2, batch_size, num_heads, sequence_length, embed_size_per_head)).

    Contains pre-computed hidden-states (key and values in the attention blocks) that can be used (see past_key_values input) to speed up sequential decoding.

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Example:

Copied

>>> from transformers import AutoTokenizer, TFRobertaForCausalLM
>>> import tensorflow as tf

>>> tokenizer = AutoTokenizer.from_pretrained("roberta-base")
>>> model = TFRobertaForCausalLM.from_pretrained("roberta-base")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf")
>>> outputs = model(inputs)
>>> logits = outputs.logits

TFRobertaForMaskedLM

class transformers.TFRobertaForMaskedLM

( *args**kwargs )

Parameters

RoBERTa Model with a language modeling head on top.

TensorFlow models and layers in transformers accept two formats as input:

  • having all inputs as keyword arguments (like PyTorch models), or

  • having all inputs as a list, tuple or dict in the first positional argument.

The reason the second format is supported is that Keras methods prefer this format when passing inputs to models and layers. Because of this support, when using methods like model.fit() things should “just work” for you - just pass your inputs and labels in any format that model.fit() supports! If, however, you want to use the second format outside of Keras methods like fit() and predict(), such as when creating your own layers or models with the Keras Functional API, there are three possibilities you can use to gather all the input Tensors in the first positional argument:

  • a single Tensor with input_ids only and nothing else: model(input_ids)

  • a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: model([input_ids, attention_mask]) or model([input_ids, attention_mask, token_type_ids])

  • a dictionary with one or several input Tensors associated to the input names given in the docstring: model({"input_ids": input_ids, "token_type_ids": token_type_ids})

call

Parameters

  • input_ids (Numpy array or tf.Tensor of shape (batch_size, sequence_length)) — Indices of input sequence tokens in the vocabulary.

  • attention_mask (Numpy array or tf.Tensor of shape (batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:

    • 1 for tokens that are not masked,

    • 0 for tokens that are masked.

  • token_type_ids (Numpy array or tf.Tensor of shape (batch_size, sequence_length), optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]:

    • 0 corresponds to a sentence A token,

    • 1 corresponds to a sentence B token.

  • position_ids (Numpy array or tf.Tensor of shape (batch_size, sequence_length), optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1].

  • head_mask (Numpy array or tf.Tensor of shape (num_heads,) or (num_layers, num_heads), optional) — Mask to nullify selected heads of the self-attention modules. Mask values selected in [0, 1]:

    • 1 indicates the head is not masked,

    • 0 indicates the head is masked.

  • inputs_embeds (tf.Tensor of shape (batch_size, sequence_length, hidden_size), optional) — Optionally, instead of passing input_ids you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids indices into associated vectors than the model’s internal embedding lookup matrix.

  • output_attentions (bool, optional) — Whether or not to return the attentions tensors of all attention layers. See attentions under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead.

  • output_hidden_states (bool, optional) — Whether or not to return the hidden states of all layers. See hidden_states under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead.

  • training (bool, optional, defaults to False) — Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation).

  • labels (tf.Tensor of shape (batch_size, sequence_length), optional) — Labels for computing the masked language modeling loss. Indices should be in [-100, 0, ..., config.vocab_size] (see input_ids docstring) Tokens with indices set to -100 are ignored (masked), the loss is only computed for the tokens with labels in [0, ..., config.vocab_size]

Returns

  • loss (tf.Tensor of shape (n,), optional, where n is the number of non-masked labels, returned when labels is provided) — Masked language modeling (MLM) loss.

  • logits (tf.Tensor of shape (batch_size, sequence_length, config.vocab_size)) — Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).

  • hidden_states (tuple(tf.Tensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) — Tuple of tf.Tensor (one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the model at the output of each layer plus the initial embedding outputs.

  • attentions (tuple(tf.Tensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) — Tuple of tf.Tensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Example:

Copied

>>> from transformers import AutoTokenizer, TFRobertaForMaskedLM
>>> import tensorflow as tf

>>> tokenizer = AutoTokenizer.from_pretrained("roberta-base")
>>> model = TFRobertaForMaskedLM.from_pretrained("roberta-base")

>>> inputs = tokenizer("The capital of France is <mask>.", return_tensors="tf")
>>> logits = model(**inputs).logits

>>> # retrieve index of <mask>
>>> mask_token_index = tf.where((inputs.input_ids == tokenizer.mask_token_id)[0])
>>> selected_logits = tf.gather_nd(logits[0], indices=mask_token_index)

>>> predicted_token_id = tf.math.argmax(selected_logits, axis=-1)
>>> tokenizer.decode(predicted_token_id)
' Paris'

Copied

>>> labels = tokenizer("The capital of France is Paris.", return_tensors="tf")["input_ids"]
>>> # mask labels of non-<mask> tokens
>>> labels = tf.where(inputs.input_ids == tokenizer.mask_token_id, labels, -100)

>>> outputs = model(**inputs, labels=labels)
>>> round(float(outputs.loss), 2)
0.1

TFRobertaForSequenceClassification

class transformers.TFRobertaForSequenceClassification

( *args**kwargs )

Parameters

RoBERTa Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks.

TensorFlow models and layers in transformers accept two formats as input:

  • having all inputs as keyword arguments (like PyTorch models), or

  • having all inputs as a list, tuple or dict in the first positional argument.

The reason the second format is supported is that Keras methods prefer this format when passing inputs to models and layers. Because of this support, when using methods like model.fit() things should “just work” for you - just pass your inputs and labels in any format that model.fit() supports! If, however, you want to use the second format outside of Keras methods like fit() and predict(), such as when creating your own layers or models with the Keras Functional API, there are three possibilities you can use to gather all the input Tensors in the first positional argument:

  • a single Tensor with input_ids only and nothing else: model(input_ids)

  • a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: model([input_ids, attention_mask]) or model([input_ids, attention_mask, token_type_ids])

  • a dictionary with one or several input Tensors associated to the input names given in the docstring: model({"input_ids": input_ids, "token_type_ids": token_type_ids})

call

Parameters

  • input_ids (Numpy array or tf.Tensor of shape (batch_size, sequence_length)) — Indices of input sequence tokens in the vocabulary.

  • attention_mask (Numpy array or tf.Tensor of shape (batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:

    • 1 for tokens that are not masked,

    • 0 for tokens that are masked.

  • token_type_ids (Numpy array or tf.Tensor of shape (batch_size, sequence_length), optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]:

    • 0 corresponds to a sentence A token,

    • 1 corresponds to a sentence B token.

  • position_ids (Numpy array or tf.Tensor of shape (batch_size, sequence_length), optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1].

  • head_mask (Numpy array or tf.Tensor of shape (num_heads,) or (num_layers, num_heads), optional) — Mask to nullify selected heads of the self-attention modules. Mask values selected in [0, 1]:

    • 1 indicates the head is not masked,

    • 0 indicates the head is masked.

  • inputs_embeds (tf.Tensor of shape (batch_size, sequence_length, hidden_size), optional) — Optionally, instead of passing input_ids you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids indices into associated vectors than the model’s internal embedding lookup matrix.

  • output_attentions (bool, optional) — Whether or not to return the attentions tensors of all attention layers. See attentions under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead.

  • output_hidden_states (bool, optional) — Whether or not to return the hidden states of all layers. See hidden_states under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead.

  • training (bool, optional, defaults to False) — Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation).

  • labels (tf.Tensor of shape (batch_size,), optional) — Labels for computing the sequence classification/regression loss. Indices should be in [0, ..., config.num_labels - 1]. If config.num_labels == 1 a regression loss is computed (Mean-Square loss), If config.num_labels > 1 a classification loss is computed (Cross-Entropy).

Returns

  • loss (tf.Tensor of shape (batch_size, ), optional, returned when labels is provided) — Classification (or regression if config.num_labels==1) loss.

  • logits (tf.Tensor of shape (batch_size, config.num_labels)) — Classification (or regression if config.num_labels==1) scores (before SoftMax).

  • hidden_states (tuple(tf.Tensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) — Tuple of tf.Tensor (one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the model at the output of each layer plus the initial embedding outputs.

  • attentions (tuple(tf.Tensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) — Tuple of tf.Tensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Example:

Copied

>>> from transformers import AutoTokenizer, TFRobertaForSequenceClassification
>>> import tensorflow as tf

>>> tokenizer = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-emotion")
>>> model = TFRobertaForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-emotion")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf")

>>> logits = model(**inputs).logits

>>> predicted_class_id = int(tf.math.argmax(logits, axis=-1)[0])
>>> model.config.id2label[predicted_class_id]
'optimism'

Copied

>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = TFRobertaForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-emotion", num_labels=num_labels)

>>> labels = tf.constant(1)
>>> loss = model(**inputs, labels=labels).loss
>>> round(float(loss), 2)
0.08

TFRobertaForMultipleChoice

class transformers.TFRobertaForMultipleChoice

( *args**kwargs )

Parameters

Roberta Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a softmax) e.g. for RocStories/SWAG tasks.

TensorFlow models and layers in transformers accept two formats as input:

  • having all inputs as keyword arguments (like PyTorch models), or

  • having all inputs as a list, tuple or dict in the first positional argument.

The reason the second format is supported is that Keras methods prefer this format when passing inputs to models and layers. Because of this support, when using methods like model.fit() things should “just work” for you - just pass your inputs and labels in any format that model.fit() supports! If, however, you want to use the second format outside of Keras methods like fit() and predict(), such as when creating your own layers or models with the Keras Functional API, there are three possibilities you can use to gather all the input Tensors in the first positional argument:

  • a single Tensor with input_ids only and nothing else: model(input_ids)

  • a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: model([input_ids, attention_mask]) or model([input_ids, attention_mask, token_type_ids])

  • a dictionary with one or several input Tensors associated to the input names given in the docstring: model({"input_ids": input_ids, "token_type_ids": token_type_ids})

call

Parameters

  • input_ids (Numpy array or tf.Tensor of shape (batch_size, num_choices, sequence_length)) — Indices of input sequence tokens in the vocabulary.

  • attention_mask (Numpy array or tf.Tensor of shape (batch_size, num_choices, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:

    • 1 for tokens that are not masked,

    • 0 for tokens that are masked.

  • token_type_ids (Numpy array or tf.Tensor of shape (batch_size, num_choices, sequence_length), optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]:

    • 0 corresponds to a sentence A token,

    • 1 corresponds to a sentence B token.

  • position_ids (Numpy array or tf.Tensor of shape (batch_size, num_choices, sequence_length), optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1].

  • head_mask (Numpy array or tf.Tensor of shape (num_heads,) or (num_layers, num_heads), optional) — Mask to nullify selected heads of the self-attention modules. Mask values selected in [0, 1]:

    • 1 indicates the head is not masked,

    • 0 indicates the head is masked.

  • inputs_embeds (tf.Tensor of shape (batch_size, num_choices, sequence_length, hidden_size), optional) — Optionally, instead of passing input_ids you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids indices into associated vectors than the model’s internal embedding lookup matrix.

  • output_attentions (bool, optional) — Whether or not to return the attentions tensors of all attention layers. See attentions under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead.

  • output_hidden_states (bool, optional) — Whether or not to return the hidden states of all layers. See hidden_states under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead.

  • training (bool, optional, defaults to False) — Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation).

  • labels (tf.Tensor of shape (batch_size,), optional) — Labels for computing the multiple choice classification loss. Indices should be in [0, ..., num_choices] where num_choices is the size of the second dimension of the input tensors. (See input_ids above)

Returns

  • loss (tf.Tensor of shape (batch_size, ), optional, returned when labels is provided) — Classification loss.

  • logits (tf.Tensor of shape (batch_size, num_choices)) — num_choices is the second dimension of the input tensors. (see input_ids above).

    Classification scores (before SoftMax).

  • hidden_states (tuple(tf.Tensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) — Tuple of tf.Tensor (one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the model at the output of each layer plus the initial embedding outputs.

  • attentions (tuple(tf.Tensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) — Tuple of tf.Tensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Example:

Copied

>>> from transformers import AutoTokenizer, TFRobertaForMultipleChoice
>>> import tensorflow as tf

>>> tokenizer = AutoTokenizer.from_pretrained("roberta-base")
>>> model = TFRobertaForMultipleChoice.from_pretrained("roberta-base")

>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
>>> choice0 = "It is eaten with a fork and a knife."
>>> choice1 = "It is eaten while held in the hand."

>>> encoding = tokenizer([prompt, prompt], [choice0, choice1], return_tensors="tf", padding=True)
>>> inputs = {k: tf.expand_dims(v, 0) for k, v in encoding.items()}
>>> outputs = model(inputs)  # batch size is 1

>>> # the linear classifier still needs to be trained
>>> logits = outputs.logits

TFRobertaForTokenClassification

class transformers.TFRobertaForTokenClassification

( *args**kwargs )

Parameters

RoBERTa Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks.

TensorFlow models and layers in transformers accept two formats as input:

  • having all inputs as keyword arguments (like PyTorch models), or

  • having all inputs as a list, tuple or dict in the first positional argument.

The reason the second format is supported is that Keras methods prefer this format when passing inputs to models and layers. Because of this support, when using methods like model.fit() things should “just work” for you - just pass your inputs and labels in any format that model.fit() supports! If, however, you want to use the second format outside of Keras methods like fit() and predict(), such as when creating your own layers or models with the Keras Functional API, there are three possibilities you can use to gather all the input Tensors in the first positional argument:

  • a single Tensor with input_ids only and nothing else: model(input_ids)

  • a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: model([input_ids, attention_mask]) or model([input_ids, attention_mask, token_type_ids])

  • a dictionary with one or several input Tensors associated to the input names given in the docstring: model({"input_ids": input_ids, "token_type_ids": token_type_ids})

call

Parameters

  • input_ids (Numpy array or tf.Tensor of shape (batch_size, sequence_length)) — Indices of input sequence tokens in the vocabulary.

  • attention_mask (Numpy array or tf.Tensor of shape (batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:

    • 1 for tokens that are not masked,

    • 0 for tokens that are masked.

  • token_type_ids (Numpy array or tf.Tensor of shape (batch_size, sequence_length), optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]:

    • 0 corresponds to a sentence A token,

    • 1 corresponds to a sentence B token.

  • position_ids (Numpy array or tf.Tensor of shape (batch_size, sequence_length), optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1].

  • head_mask (Numpy array or tf.Tensor of shape (num_heads,) or (num_layers, num_heads), optional) — Mask to nullify selected heads of the self-attention modules. Mask values selected in [0, 1]:

    • 1 indicates the head is not masked,

    • 0 indicates the head is masked.

  • inputs_embeds (tf.Tensor of shape (batch_size, sequence_length, hidden_size), optional) — Optionally, instead of passing input_ids you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids indices into associated vectors than the model’s internal embedding lookup matrix.

  • output_attentions (bool, optional) — Whether or not to return the attentions tensors of all attention layers. See attentions under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead.

  • output_hidden_states (bool, optional) — Whether or not to return the hidden states of all layers. See hidden_states under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead.

  • training (bool, optional, defaults to False) — Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation).

  • labels (tf.Tensor of shape (batch_size, sequence_length), optional) — Labels for computing the token classification loss. Indices should be in [0, ..., config.num_labels - 1].

Returns

  • loss (tf.Tensor of shape (n,), optional, where n is the number of unmasked labels, returned when labels is provided) — Classification loss.

  • logits (tf.Tensor of shape (batch_size, sequence_length, config.num_labels)) — Classification scores (before SoftMax).

  • hidden_states (tuple(tf.Tensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) — Tuple of tf.Tensor (one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the model at the output of each layer plus the initial embedding outputs.

  • attentions (tuple(tf.Tensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) — Tuple of tf.Tensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Example:

Copied

>>> from transformers import AutoTokenizer, TFRobertaForTokenClassification
>>> import tensorflow as tf

>>> tokenizer = AutoTokenizer.from_pretrained("ydshieh/roberta-large-ner-english")
>>> model = TFRobertaForTokenClassification.from_pretrained("ydshieh/roberta-large-ner-english")

>>> inputs = tokenizer(
...     "BOINCAI is a company based in Paris and New York", add_special_tokens=False, return_tensors="tf"
... )

>>> logits = model(**inputs).logits
>>> predicted_token_class_ids = tf.math.argmax(logits, axis=-1)

>>> # Note that tokens are classified rather then input words which means that
>>> # there might be more predicted token classes than words.
>>> # Multiple token classes might account for the same word
>>> predicted_tokens_classes = [model.config.id2label[t] for t in predicted_token_class_ids[0].numpy().tolist()]
>>> predicted_tokens_classes
['O', 'ORG', 'ORG', 'O', 'O', 'O', 'O', 'O', 'LOC', 'O', 'LOC', 'LOC']

Copied

>>> labels = predicted_token_class_ids
>>> loss = tf.math.reduce_mean(model(**inputs, labels=labels).loss)
>>> round(float(loss), 2)
0.01

TFRobertaForQuestionAnswering

class transformers.TFRobertaForQuestionAnswering

( *args**kwargs )

Parameters

RoBERTa Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of the hidden-states output to compute span start logits and span end logits).

TensorFlow models and layers in transformers accept two formats as input:

  • having all inputs as keyword arguments (like PyTorch models), or

  • having all inputs as a list, tuple or dict in the first positional argument.

The reason the second format is supported is that Keras methods prefer this format when passing inputs to models and layers. Because of this support, when using methods like model.fit() things should “just work” for you - just pass your inputs and labels in any format that model.fit() supports! If, however, you want to use the second format outside of Keras methods like fit() and predict(), such as when creating your own layers or models with the Keras Functional API, there are three possibilities you can use to gather all the input Tensors in the first positional argument:

  • a single Tensor with input_ids only and nothing else: model(input_ids)

  • a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: model([input_ids, attention_mask]) or model([input_ids, attention_mask, token_type_ids])

  • a dictionary with one or several input Tensors associated to the input names given in the docstring: model({"input_ids": input_ids, "token_type_ids": token_type_ids})

call

Parameters

  • input_ids (Numpy array or tf.Tensor of shape (batch_size, sequence_length)) — Indices of input sequence tokens in the vocabulary.

  • attention_mask (Numpy array or tf.Tensor of shape (batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:

    • 1 for tokens that are not masked,

    • 0 for tokens that are masked.

  • token_type_ids (Numpy array or tf.Tensor of shape (batch_size, sequence_length), optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]:

    • 0 corresponds to a sentence A token,

    • 1 corresponds to a sentence B token.

  • position_ids (Numpy array or tf.Tensor of shape (batch_size, sequence_length), optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1].

  • head_mask (Numpy array or tf.Tensor of shape (num_heads,) or (num_layers, num_heads), optional) — Mask to nullify selected heads of the self-attention modules. Mask values selected in [0, 1]:

    • 1 indicates the head is not masked,

    • 0 indicates the head is masked.

  • inputs_embeds (tf.Tensor of shape (batch_size, sequence_length, hidden_size), optional) — Optionally, instead of passing input_ids you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids indices into associated vectors than the model’s internal embedding lookup matrix.

  • output_attentions (bool, optional) — Whether or not to return the attentions tensors of all attention layers. See attentions under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead.

  • output_hidden_states (bool, optional) — Whether or not to return the hidden states of all layers. See hidden_states under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead.

  • training (bool, optional, defaults to False) — Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation).

  • start_positions (tf.Tensor of shape (batch_size,), optional) — Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (sequence_length). Position outside of the sequence are not taken into account for computing the loss.

  • end_positions (tf.Tensor of shape (batch_size,), optional) — Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (sequence_length). Position outside of the sequence are not taken into account for computing the loss.

Returns

  • loss (tf.Tensor of shape (batch_size, ), optional, returned when start_positions and end_positions are provided) — Total span extraction loss is the sum of a Cross-Entropy for the start and end positions.

  • start_logits (tf.Tensor of shape (batch_size, sequence_length)) — Span-start scores (before SoftMax).

  • end_logits (tf.Tensor of shape (batch_size, sequence_length)) — Span-end scores (before SoftMax).

  • hidden_states (tuple(tf.Tensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) — Tuple of tf.Tensor (one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the model at the output of each layer plus the initial embedding outputs.

  • attentions (tuple(tf.Tensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) — Tuple of tf.Tensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Example:

Copied

>>> from transformers import AutoTokenizer, TFRobertaForQuestionAnswering
>>> import tensorflow as tf

>>> tokenizer = AutoTokenizer.from_pretrained("ydshieh/roberta-base-squad2")
>>> model = TFRobertaForQuestionAnswering.from_pretrained("ydshieh/roberta-base-squad2")

>>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"

>>> inputs = tokenizer(question, text, return_tensors="tf")
>>> outputs = model(**inputs)

>>> answer_start_index = int(tf.math.argmax(outputs.start_logits, axis=-1)[0])
>>> answer_end_index = int(tf.math.argmax(outputs.end_logits, axis=-1)[0])

>>> predict_answer_tokens = inputs.input_ids[0, answer_start_index : answer_end_index + 1]
>>> tokenizer.decode(predict_answer_tokens)
' puppet'

Copied

>>> # target is "nice puppet"
>>> target_start_index = tf.constant([14])
>>> target_end_index = tf.constant([15])

>>> outputs = model(**inputs, start_positions=target_start_index, end_positions=target_end_index)
>>> loss = tf.math.reduce_mean(outputs.loss)
>>> round(float(loss), 2)
0.86

FlaxRobertaModel

class transformers.FlaxRobertaModel

( config: RobertaConfiginput_shape: typing.Tuple = (1, 1)seed: int = 0dtype: dtype = <class 'jax.numpy.float32'>_do_init: bool = Truegradient_checkpointing: bool = False**kwargs )

Parameters

The bare RoBERTa Model transformer outputting raw hidden-states without any specific head on top.

Finally, this model supports inherent JAX features such as:

__call__

Parameters

  • input_ids (numpy.ndarray of shape (batch_size, sequence_length)) — Indices of input sequence tokens in the vocabulary.

  • attention_mask (numpy.ndarray of shape (batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:

    • 1 for tokens that are not masked,

    • 0 for tokens that are masked.

  • token_type_ids (numpy.ndarray of shape (batch_size, sequence_length), optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]:

    • 0 corresponds to a sentence A token,

    • 1 corresponds to a sentence B token.

  • position_ids (numpy.ndarray of shape (batch_size, sequence_length), optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1].

  • head_mask (numpy.ndarray of shape (batch_size, sequence_length), optional) -- Mask to nullify selected heads of the attention modules. Mask values selected in [0, 1]`:

    • 1 indicates the head is not masked,

    • 0 indicates the head is masked.

Returns

  • last_hidden_state (jnp.ndarray of shape (batch_size, sequence_length, hidden_size)) — Sequence of hidden-states at the output of the last layer of the model.

  • pooler_output (jnp.ndarray of shape (batch_size, hidden_size)) — Last layer hidden-state of the first token of the sequence (classification token) further processed by a Linear layer and a Tanh activation function. The Linear layer weights are trained from the next sentence prediction (classification) objective during pretraining.

  • hidden_states (tuple(jnp.ndarray), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) — Tuple of jnp.ndarray (one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the model at the output of each layer plus the initial embedding outputs.

  • attentions (tuple(jnp.ndarray), optional, returned when output_attentions=True is passed or when config.output_attentions=True) — Tuple of jnp.ndarray (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

The FlaxRobertaPreTrainedModel forward method, overrides the __call__ special method.

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Example:

Copied

>>> from transformers import AutoTokenizer, FlaxRobertaModel

>>> tokenizer = AutoTokenizer.from_pretrained("roberta-base")
>>> model = FlaxRobertaModel.from_pretrained("roberta-base")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="jax")
>>> outputs = model(**inputs)

>>> last_hidden_states = outputs.last_hidden_state

FlaxRobertaForCausalLM

class transformers.FlaxRobertaForCausalLM

( config: RobertaConfiginput_shape: typing.Tuple = (1, 1)seed: int = 0dtype: dtype = <class 'jax.numpy.float32'>_do_init: bool = Truegradient_checkpointing: bool = False**kwargs )

Parameters

Roberta Model with a language modeling head on top (a linear layer on top of the hidden-states output) e.g for autoregressive tasks.

Finally, this model supports inherent JAX features such as:

__call__

Parameters

  • input_ids (numpy.ndarray of shape (batch_size, sequence_length)) — Indices of input sequence tokens in the vocabulary.

  • attention_mask (numpy.ndarray of shape (batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:

    • 1 for tokens that are not masked,

    • 0 for tokens that are masked.

  • token_type_ids (numpy.ndarray of shape (batch_size, sequence_length), optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]:

    • 0 corresponds to a sentence A token,

    • 1 corresponds to a sentence B token.

  • position_ids (numpy.ndarray of shape (batch_size, sequence_length), optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1].

  • head_mask (numpy.ndarray of shape (batch_size, sequence_length), optional) -- Mask to nullify selected heads of the attention modules. Mask values selected in [0, 1]`:

    • 1 indicates the head is not masked,

    • 0 indicates the head is masked.

Returns

  • logits (jnp.ndarray of shape (batch_size, sequence_length, config.vocab_size)) — Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).

  • hidden_states (tuple(jnp.ndarray), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) — Tuple of jnp.ndarray (one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the model at the output of each layer plus the initial embedding outputs.

  • attentions (tuple(jnp.ndarray), optional, returned when output_attentions=True is passed or when config.output_attentions=True) — Tuple of jnp.ndarray (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

  • cross_attentions (tuple(jnp.ndarray), optional, returned when output_attentions=True is passed or when config.output_attentions=True) — Tuple of jnp.ndarray (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Cross attentions weights after the attention softmax, used to compute the weighted average in the cross-attention heads.

  • past_key_values (tuple(tuple(jnp.ndarray)), optional, returned when use_cache=True is passed or when config.use_cache=True) — Tuple of jnp.ndarray tuples of length config.n_layers, with each tuple containing the cached key, value states of the self-attention and the cross-attention layers if model is used in encoder-decoder setting. Only relevant if config.is_decoder = True.

    Contains pre-computed hidden-states (key and values in the attention blocks) that can be used (see past_key_values input) to speed up sequential decoding.

The FlaxRobertaPreTrainedModel forward method, overrides the __call__ special method.

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Example:

Copied

>>> from transformers import AutoTokenizer, FlaxRobertaForCausalLM

>>> tokenizer = AutoTokenizer.from_pretrained("roberta-base")
>>> model = FlaxRobertaForCausalLM.from_pretrained("roberta-base")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="np")
>>> outputs = model(**inputs)

>>> # retrieve logts for next token
>>> next_token_logits = outputs.logits[:, -1]

FlaxRobertaForMaskedLM

class transformers.FlaxRobertaForMaskedLM

( config: RobertaConfiginput_shape: typing.Tuple = (1, 1)seed: int = 0dtype: dtype = <class 'jax.numpy.float32'>_do_init: bool = Truegradient_checkpointing: bool = False**kwargs )

Parameters

RoBERTa Model with a language modeling head on top.

Finally, this model supports inherent JAX features such as:

__call__

Parameters

  • input_ids (numpy.ndarray of shape (batch_size, sequence_length)) — Indices of input sequence tokens in the vocabulary.

  • attention_mask (numpy.ndarray of shape (batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:

    • 1 for tokens that are not masked,

    • 0 for tokens that are masked.

  • token_type_ids (numpy.ndarray of shape (batch_size, sequence_length), optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]:

    • 0 corresponds to a sentence A token,

    • 1 corresponds to a sentence B token.

  • position_ids (numpy.ndarray of shape (batch_size, sequence_length), optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1].

  • head_mask (numpy.ndarray of shape (batch_size, sequence_length), optional) -- Mask to nullify selected heads of the attention modules. Mask values selected in [0, 1]`:

    • 1 indicates the head is not masked,

    • 0 indicates the head is masked.

Returns

  • last_hidden_state (jnp.ndarray of shape (batch_size, sequence_length, hidden_size)) — Sequence of hidden-states at the output of the last layer of the model.

  • pooler_output (jnp.ndarray of shape (batch_size, hidden_size)) — Last layer hidden-state of the first token of the sequence (classification token) further processed by a Linear layer and a Tanh activation function. The Linear layer weights are trained from the next sentence prediction (classification) objective during pretraining.

  • hidden_states (tuple(jnp.ndarray), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) — Tuple of jnp.ndarray (one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the model at the output of each layer plus the initial embedding outputs.

  • attentions (tuple(jnp.ndarray), optional, returned when output_attentions=True is passed or when config.output_attentions=True) — Tuple of jnp.ndarray (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

The FlaxRobertaPreTrainedModel forward method, overrides the __call__ special method.

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Example:

Copied

>>> from transformers import AutoTokenizer, FlaxRobertaForMaskedLM

>>> tokenizer = AutoTokenizer.from_pretrained("roberta-base")
>>> model = FlaxRobertaForMaskedLM.from_pretrained("roberta-base")

>>> inputs = tokenizer("The capital of France is [MASK].", return_tensors="jax")

>>> outputs = model(**inputs)
>>> logits = outputs.logits

FlaxRobertaForSequenceClassification

class transformers.FlaxRobertaForSequenceClassification

( config: RobertaConfiginput_shape: typing.Tuple = (1, 1)seed: int = 0dtype: dtype = <class 'jax.numpy.float32'>_do_init: bool = Truegradient_checkpointing: bool = False**kwargs )

Parameters

Roberta Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks.

Finally, this model supports inherent JAX features such as:

__call__

Parameters

  • input_ids (numpy.ndarray of shape (batch_size, sequence_length)) — Indices of input sequence tokens in the vocabulary.

  • attention_mask (numpy.ndarray of shape (batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:

    • 1 for tokens that are not masked,

    • 0 for tokens that are masked.

  • token_type_ids (numpy.ndarray of shape (batch_size, sequence_length), optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]:

    • 0 corresponds to a sentence A token,

    • 1 corresponds to a sentence B token.

  • position_ids (numpy.ndarray of shape (batch_size, sequence_length), optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1].

  • head_mask (numpy.ndarray of shape (batch_size, sequence_length), optional) -- Mask to nullify selected heads of the attention modules. Mask values selected in [0, 1]`:

    • 1 indicates the head is not masked,

    • 0 indicates the head is masked.

Returns

  • logits (jnp.ndarray of shape (batch_size, config.num_labels)) — Classification (or regression if config.num_labels==1) scores (before SoftMax).

  • hidden_states (tuple(jnp.ndarray), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) — Tuple of jnp.ndarray (one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the model at the output of each layer plus the initial embedding outputs.

  • attentions (tuple(jnp.ndarray), optional, returned when output_attentions=True is passed or when config.output_attentions=True) — Tuple of jnp.ndarray (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

The FlaxRobertaPreTrainedModel forward method, overrides the __call__ special method.

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Example:

Copied

>>> from transformers import AutoTokenizer, FlaxRobertaForSequenceClassification

>>> tokenizer = AutoTokenizer.from_pretrained("roberta-base")
>>> model = FlaxRobertaForSequenceClassification.from_pretrained("roberta-base")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="jax")

>>> outputs = model(**inputs)
>>> logits = outputs.logits

FlaxRobertaForMultipleChoice

class transformers.FlaxRobertaForMultipleChoice

( config: RobertaConfiginput_shape: typing.Tuple = (1, 1)seed: int = 0dtype: dtype = <class 'jax.numpy.float32'>_do_init: bool = Truegradient_checkpointing: bool = False**kwargs )

Parameters

Roberta Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a softmax) e.g. for RocStories/SWAG tasks.

Finally, this model supports inherent JAX features such as:

__call__

Parameters

  • input_ids (numpy.ndarray of shape (batch_size, num_choices, sequence_length)) — Indices of input sequence tokens in the vocabulary.

  • attention_mask (numpy.ndarray of shape (batch_size, num_choices, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:

    • 1 for tokens that are not masked,

    • 0 for tokens that are masked.

  • token_type_ids (numpy.ndarray of shape (batch_size, num_choices, sequence_length), optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]:

    • 0 corresponds to a sentence A token,

    • 1 corresponds to a sentence B token.

  • position_ids (numpy.ndarray of shape (batch_size, num_choices, sequence_length), optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1].

  • head_mask (numpy.ndarray of shape (batch_size, num_choices, sequence_length), optional) -- Mask to nullify selected heads of the attention modules. Mask values selected in [0, 1]`:

    • 1 indicates the head is not masked,

    • 0 indicates the head is masked.

Returns

  • logits (jnp.ndarray of shape (batch_size, num_choices)) — num_choices is the second dimension of the input tensors. (see input_ids above).

    Classification scores (before SoftMax).

  • hidden_states (tuple(jnp.ndarray), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) — Tuple of jnp.ndarray (one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the model at the output of each layer plus the initial embedding outputs.

  • attentions (tuple(jnp.ndarray), optional, returned when output_attentions=True is passed or when config.output_attentions=True) — Tuple of jnp.ndarray (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

The FlaxRobertaPreTrainedModel forward method, overrides the __call__ special method.

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Example:

Copied

>>> from transformers import AutoTokenizer, FlaxRobertaForMultipleChoice

>>> tokenizer = AutoTokenizer.from_pretrained("roberta-base")
>>> model = FlaxRobertaForMultipleChoice.from_pretrained("roberta-base")

>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
>>> choice0 = "It is eaten with a fork and a knife."
>>> choice1 = "It is eaten while held in the hand."

>>> encoding = tokenizer([prompt, prompt], [choice0, choice1], return_tensors="jax", padding=True)
>>> outputs = model(**{k: v[None, :] for k, v in encoding.items()})

>>> logits = outputs.logits

FlaxRobertaForTokenClassification

class transformers.FlaxRobertaForTokenClassification

( config: RobertaConfiginput_shape: typing.Tuple = (1, 1)seed: int = 0dtype: dtype = <class 'jax.numpy.float32'>_do_init: bool = Truegradient_checkpointing: bool = False**kwargs )

Parameters

Roberta Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks.

Finally, this model supports inherent JAX features such as:

__call__

Parameters

  • input_ids (numpy.ndarray of shape (batch_size, sequence_length)) — Indices of input sequence tokens in the vocabulary.

  • attention_mask (numpy.ndarray of shape (batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:

    • 1 for tokens that are not masked,

    • 0 for tokens that are masked.

  • token_type_ids (numpy.ndarray of shape (batch_size, sequence_length), optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]:

    • 0 corresponds to a sentence A token,

    • 1 corresponds to a sentence B token.

  • position_ids (numpy.ndarray of shape (batch_size, sequence_length), optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1].

  • head_mask (numpy.ndarray of shape (batch_size, sequence_length), optional) -- Mask to nullify selected heads of the attention modules. Mask values selected in [0, 1]`:

    • 1 indicates the head is not masked,

    • 0 indicates the head is masked.

Returns

  • logits (jnp.ndarray of shape (batch_size, sequence_length, config.num_labels)) — Classification scores (before SoftMax).

  • hidden_states (tuple(jnp.ndarray), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) — Tuple of jnp.ndarray (one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the model at the output of each layer plus the initial embedding outputs.

  • attentions (tuple(jnp.ndarray), optional, returned when output_attentions=True is passed or when config.output_attentions=True) — Tuple of jnp.ndarray (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

The FlaxRobertaPreTrainedModel forward method, overrides the __call__ special method.

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Example:

Copied

>>> from transformers import AutoTokenizer, FlaxRobertaForTokenClassification

>>> tokenizer = AutoTokenizer.from_pretrained("roberta-base")
>>> model = FlaxRobertaForTokenClassification.from_pretrained("roberta-base")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="jax")

>>> outputs = model(**inputs)
>>> logits = outputs.logits

FlaxRobertaForQuestionAnswering

class transformers.FlaxRobertaForQuestionAnswering

( config: RobertaConfiginput_shape: typing.Tuple = (1, 1)seed: int = 0dtype: dtype = <class 'jax.numpy.float32'>_do_init: bool = Truegradient_checkpointing: bool = False**kwargs )

Parameters

Roberta Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of the hidden-states output to compute span start logits and span end logits).

Finally, this model supports inherent JAX features such as:

__call__

Parameters

  • input_ids (numpy.ndarray of shape (batch_size, sequence_length)) — Indices of input sequence tokens in the vocabulary.

  • attention_mask (numpy.ndarray of shape (batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:

    • 1 for tokens that are not masked,

    • 0 for tokens that are masked.

  • token_type_ids (numpy.ndarray of shape (batch_size, sequence_length), optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]:

    • 0 corresponds to a sentence A token,

    • 1 corresponds to a sentence B token.

  • position_ids (numpy.ndarray of shape (batch_size, sequence_length), optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1].

  • head_mask (numpy.ndarray of shape (batch_size, sequence_length), optional) -- Mask to nullify selected heads of the attention modules. Mask values selected in [0, 1]`:

    • 1 indicates the head is not masked,

    • 0 indicates the head is masked.

Returns

  • start_logits (jnp.ndarray of shape (batch_size, sequence_length)) — Span-start scores (before SoftMax).

  • end_logits (jnp.ndarray of shape (batch_size, sequence_length)) — Span-end scores (before SoftMax).

  • hidden_states (tuple(jnp.ndarray), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) — Tuple of jnp.ndarray (one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the model at the output of each layer plus the initial embedding outputs.

  • attentions (tuple(jnp.ndarray), optional, returned when output_attentions=True is passed or when config.output_attentions=True) — Tuple of jnp.ndarray (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

The FlaxRobertaPreTrainedModel forward method, overrides the __call__ special method.

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Example:

Copied

>>> from transformers import AutoTokenizer, FlaxRobertaForQuestionAnswering

>>> tokenizer = AutoTokenizer.from_pretrained("roberta-base")
>>> model = FlaxRobertaForQuestionAnswering.from_pretrained("roberta-base")

>>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"
>>> inputs = tokenizer(question, text, return_tensors="jax")

>>> outputs = model(**inputs)
>>> start_scores = outputs.start_logits
>>> end_scores = outputs.end_logits

This model was contributed by . The original code can be found .

A blog on using RoBERTa and the .

A blog on using RoBERTa.

A notebook on how to . 🌎

is supported by this and .

is supported by this and .

is supported by this and .

is supported by this and .

is supported by this and .

is supported by this .

chapter of the 🌎 BOINC AI Course.

A blog on with RoBERTa.

is supported by this and .

is supported by this and .

is supported by this and .

chapter of the 🌎 BOINC AI Course.

A blog on with RoBERTa for question answering.

is supported by this and .

is supported by this and .

is supported by this .

chapter of the 🌎 BOINC AI Course.

is supported by this and .

is supported by this and .

config () — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the method to load the model weights.

This model inherits from . Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)

This model is also a PyTorch subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.

( input_ids: typing.Optional[torch.LongTensor] = Noneattention_mask: typing.Optional[torch.FloatTensor] = Nonetoken_type_ids: typing.Optional[torch.LongTensor] = Noneposition_ids: typing.Optional[torch.LongTensor] = Nonehead_mask: typing.Optional[torch.FloatTensor] = Noneinputs_embeds: typing.Optional[torch.FloatTensor] = Noneencoder_hidden_states: typing.Optional[torch.FloatTensor] = Noneencoder_attention_mask: typing.Optional[torch.FloatTensor] = Nonelabels: typing.Optional[torch.LongTensor] = Nonepast_key_values: typing.Tuple[typing.Tuple[torch.FloatTensor]] = Noneuse_cache: typing.Optional[bool] = Noneoutput_attentions: typing.Optional[bool] = Noneoutput_hidden_states: typing.Optional[bool] = Nonereturn_dict: typing.Optional[bool] = None ) → or tuple(torch.FloatTensor)

Indices can be obtained using . See and for details.

return_dict (bool, optional) — Whether or not to return a instead of a plain tuple.

or tuple(torch.FloatTensor)

A or a tuple of torch.FloatTensor (if return_dict=False is passed or when config.return_dict=False) comprising various elements depending on the configuration () and inputs.

The forward method, overrides the __call__ special method.

config () — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the method to load the model weights.

This model inherits from . Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)

This model is also a PyTorch subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.

( input_ids: typing.Optional[torch.LongTensor] = Noneattention_mask: typing.Optional[torch.FloatTensor] = Nonetoken_type_ids: typing.Optional[torch.LongTensor] = Noneposition_ids: typing.Optional[torch.LongTensor] = Nonehead_mask: typing.Optional[torch.FloatTensor] = Noneinputs_embeds: typing.Optional[torch.FloatTensor] = Noneencoder_hidden_states: typing.Optional[torch.FloatTensor] = Noneencoder_attention_mask: typing.Optional[torch.FloatTensor] = Nonelabels: typing.Optional[torch.LongTensor] = Noneoutput_attentions: typing.Optional[bool] = Noneoutput_hidden_states: typing.Optional[bool] = Nonereturn_dict: typing.Optional[bool] = None ) → or tuple(torch.FloatTensor)

Indices can be obtained using . See and for details.

return_dict (bool, optional) — Whether or not to return a instead of a plain tuple.

or tuple(torch.FloatTensor)

A or a tuple of torch.FloatTensor (if return_dict=False is passed or when config.return_dict=False) comprising various elements depending on the configuration () and inputs.

The forward method, overrides the __call__ special method.

config () — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the method to load the model weights.

This model inherits from . Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)

This model is also a PyTorch subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.

( input_ids: typing.Optional[torch.LongTensor] = Noneattention_mask: typing.Optional[torch.FloatTensor] = Nonetoken_type_ids: typing.Optional[torch.LongTensor] = Noneposition_ids: typing.Optional[torch.LongTensor] = Nonehead_mask: typing.Optional[torch.FloatTensor] = Noneinputs_embeds: typing.Optional[torch.FloatTensor] = Nonelabels: typing.Optional[torch.LongTensor] = Noneoutput_attentions: typing.Optional[bool] = Noneoutput_hidden_states: typing.Optional[bool] = Nonereturn_dict: typing.Optional[bool] = None ) → or tuple(torch.FloatTensor)

Indices can be obtained using . See and for details.

return_dict (bool, optional) — Whether or not to return a instead of a plain tuple.

or tuple(torch.FloatTensor)

A or a tuple of torch.FloatTensor (if return_dict=False is passed or when config.return_dict=False) comprising various elements depending on the configuration () and inputs.

The forward method, overrides the __call__ special method.

config () — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the method to load the model weights.

This model inherits from . Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)

This model is also a PyTorch subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.

( input_ids: typing.Optional[torch.LongTensor] = Nonetoken_type_ids: typing.Optional[torch.LongTensor] = Noneattention_mask: typing.Optional[torch.FloatTensor] = Nonelabels: typing.Optional[torch.LongTensor] = Noneposition_ids: typing.Optional[torch.LongTensor] = Nonehead_mask: typing.Optional[torch.FloatTensor] = Noneinputs_embeds: typing.Optional[torch.FloatTensor] = Noneoutput_attentions: typing.Optional[bool] = Noneoutput_hidden_states: typing.Optional[bool] = Nonereturn_dict: typing.Optional[bool] = None ) → or tuple(torch.FloatTensor)

Indices can be obtained using . See and for details.

return_dict (bool, optional) — Whether or not to return a instead of a plain tuple.

or tuple(torch.FloatTensor)

A or a tuple of torch.FloatTensor (if return_dict=False is passed or when config.return_dict=False) comprising various elements depending on the configuration () and inputs.

The forward method, overrides the __call__ special method.

config () — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the method to load the model weights.

This model inherits from . Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)

This model is also a PyTorch subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.

( input_ids: typing.Optional[torch.LongTensor] = Noneattention_mask: typing.Optional[torch.FloatTensor] = Nonetoken_type_ids: typing.Optional[torch.LongTensor] = Noneposition_ids: typing.Optional[torch.LongTensor] = Nonehead_mask: typing.Optional[torch.FloatTensor] = Noneinputs_embeds: typing.Optional[torch.FloatTensor] = Nonelabels: typing.Optional[torch.LongTensor] = Noneoutput_attentions: typing.Optional[bool] = Noneoutput_hidden_states: typing.Optional[bool] = Nonereturn_dict: typing.Optional[bool] = None ) → or tuple(torch.FloatTensor)

Indices can be obtained using . See and for details.

return_dict (bool, optional) — Whether or not to return a instead of a plain tuple.

or tuple(torch.FloatTensor)

A or a tuple of torch.FloatTensor (if return_dict=False is passed or when config.return_dict=False) comprising various elements depending on the configuration () and inputs.

The forward method, overrides the __call__ special method.

config () — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the method to load the model weights.

This model inherits from . Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)

This model is also a PyTorch subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.

( input_ids: typing.Optional[torch.LongTensor] = Noneattention_mask: typing.Optional[torch.FloatTensor] = Nonetoken_type_ids: typing.Optional[torch.LongTensor] = Noneposition_ids: typing.Optional[torch.LongTensor] = Nonehead_mask: typing.Optional[torch.FloatTensor] = Noneinputs_embeds: typing.Optional[torch.FloatTensor] = Nonestart_positions: typing.Optional[torch.LongTensor] = Noneend_positions: typing.Optional[torch.LongTensor] = Noneoutput_attentions: typing.Optional[bool] = Noneoutput_hidden_states: typing.Optional[bool] = Nonereturn_dict: typing.Optional[bool] = None ) → or tuple(torch.FloatTensor)

Indices can be obtained using . See and for details.

return_dict (bool, optional) — Whether or not to return a instead of a plain tuple.

or tuple(torch.FloatTensor)

A or a tuple of torch.FloatTensor (if return_dict=False is passed or when config.return_dict=False) comprising various elements depending on the configuration () and inputs.

The forward method, overrides the __call__ special method.

config () — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the method to load the model weights.

This model inherits from . Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)

This model is also a subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior.

Note that when creating models and layers with then you don’t need to worry about any of this, as you can just pass inputs like you would to any other Python function!

( input_ids: TFModelInputType | None = Noneattention_mask: np.ndarray | tf.Tensor | None = Nonetoken_type_ids: np.ndarray | tf.Tensor | None = Noneposition_ids: np.ndarray | tf.Tensor | None = Nonehead_mask: np.ndarray | tf.Tensor | None = Noneinputs_embeds: np.ndarray | tf.Tensor | None = Noneencoder_hidden_states: np.ndarray | tf.Tensor | None = Noneencoder_attention_mask: np.ndarray | tf.Tensor | None = Nonepast_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = Noneuse_cache: Optional[bool] = Noneoutput_attentions: Optional[bool] = Noneoutput_hidden_states: Optional[bool] = Nonereturn_dict: Optional[bool] = Nonetraining: Optional[bool] = False ) → or tuple(tf.Tensor)

Indices can be obtained using . See and for details.

return_dict (bool, optional) — Whether or not to return a instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True.

or tuple(tf.Tensor)

A or a tuple of tf.Tensor (if return_dict=False is passed or when config.return_dict=False) comprising various elements depending on the configuration () and inputs.

The forward method, overrides the __call__ special method.

( input_ids: TFModelInputType | None = Noneattention_mask: np.ndarray | tf.Tensor | None = Nonetoken_type_ids: np.ndarray | tf.Tensor | None = Noneposition_ids: np.ndarray | tf.Tensor | None = Nonehead_mask: np.ndarray | tf.Tensor | None = Noneinputs_embeds: np.ndarray | tf.Tensor | None = Noneencoder_hidden_states: np.ndarray | tf.Tensor | None = Noneencoder_attention_mask: np.ndarray | tf.Tensor | None = Nonepast_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = Noneuse_cache: Optional[bool] = Noneoutput_attentions: Optional[bool] = Noneoutput_hidden_states: Optional[bool] = Nonereturn_dict: Optional[bool] = Nonelabels: np.ndarray | tf.Tensor | None = Nonetraining: Optional[bool] = False ) → or tuple(tf.Tensor)

Indices can be obtained using . See and for details.

return_dict (bool, optional) — Whether or not to return a instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True.

or tuple(tf.Tensor)

A or a tuple of tf.Tensor (if return_dict=False is passed or when config.return_dict=False) comprising various elements depending on the configuration () and inputs.

The forward method, overrides the __call__ special method.

config () — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the method to load the model weights.

This model inherits from . Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)

This model is also a subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior.

Note that when creating models and layers with then you don’t need to worry about any of this, as you can just pass inputs like you would to any other Python function!

( input_ids: TFModelInputType | None = Noneattention_mask: np.ndarray | tf.Tensor | None = Nonetoken_type_ids: np.ndarray | tf.Tensor | None = Noneposition_ids: np.ndarray | tf.Tensor | None = Nonehead_mask: np.ndarray | tf.Tensor | None = Noneinputs_embeds: np.ndarray | tf.Tensor | None = Noneoutput_attentions: Optional[bool] = Noneoutput_hidden_states: Optional[bool] = Nonereturn_dict: Optional[bool] = Nonelabels: np.ndarray | tf.Tensor | None = Nonetraining: Optional[bool] = False ) → or tuple(tf.Tensor)

Indices can be obtained using . See and for details.

return_dict (bool, optional) — Whether or not to return a instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True.

or tuple(tf.Tensor)

A or a tuple of tf.Tensor (if return_dict=False is passed or when config.return_dict=False) comprising various elements depending on the configuration () and inputs.

The forward method, overrides the __call__ special method.

config () — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the method to load the model weights.

This model inherits from . Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)

This model is also a subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior.

Note that when creating models and layers with then you don’t need to worry about any of this, as you can just pass inputs like you would to any other Python function!

( input_ids: TFModelInputType | None = Noneattention_mask: np.ndarray | tf.Tensor | None = Nonetoken_type_ids: np.ndarray | tf.Tensor | None = Noneposition_ids: np.ndarray | tf.Tensor | None = Nonehead_mask: np.ndarray | tf.Tensor | None = Noneinputs_embeds: np.ndarray | tf.Tensor | None = Noneoutput_attentions: Optional[bool] = Noneoutput_hidden_states: Optional[bool] = Nonereturn_dict: Optional[bool] = Nonelabels: np.ndarray | tf.Tensor | None = Nonetraining: Optional[bool] = False ) → or tuple(tf.Tensor)

Indices can be obtained using . See and for details.

return_dict (bool, optional) — Whether or not to return a instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True.

or tuple(tf.Tensor)

A or a tuple of tf.Tensor (if return_dict=False is passed or when config.return_dict=False) comprising various elements depending on the configuration () and inputs.

The forward method, overrides the __call__ special method.

config () — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the method to load the model weights.

This model inherits from . Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)

This model is also a subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior.

Note that when creating models and layers with then you don’t need to worry about any of this, as you can just pass inputs like you would to any other Python function!

( input_ids: TFModelInputType | None = Noneattention_mask: np.ndarray | tf.Tensor | None = Nonetoken_type_ids: np.ndarray | tf.Tensor | None = Noneposition_ids: np.ndarray | tf.Tensor | None = Nonehead_mask: np.ndarray | tf.Tensor | None = Noneinputs_embeds: np.ndarray | tf.Tensor | None = Noneoutput_attentions: Optional[bool] = Noneoutput_hidden_states: Optional[bool] = Nonereturn_dict: Optional[bool] = Nonelabels: np.ndarray | tf.Tensor | None = Nonetraining: Optional[bool] = False ) → or tuple(tf.Tensor)

Indices can be obtained using . See and for details.

return_dict (bool, optional) — Whether or not to return a instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True.

or tuple(tf.Tensor)

A or a tuple of tf.Tensor (if return_dict=False is passed or when config.return_dict=False) comprising various elements depending on the configuration () and inputs.

The forward method, overrides the __call__ special method.

config () — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the method to load the model weights.

This model inherits from . Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)

This model is also a subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior.

Note that when creating models and layers with then you don’t need to worry about any of this, as you can just pass inputs like you would to any other Python function!

( input_ids: TFModelInputType | None = Noneattention_mask: np.ndarray | tf.Tensor | None = Nonetoken_type_ids: np.ndarray | tf.Tensor | None = Noneposition_ids: np.ndarray | tf.Tensor | None = Nonehead_mask: np.ndarray | tf.Tensor | None = Noneinputs_embeds: np.ndarray | tf.Tensor | None = Noneoutput_attentions: Optional[bool] = Noneoutput_hidden_states: Optional[bool] = Nonereturn_dict: Optional[bool] = Nonelabels: np.ndarray | tf.Tensor | None = Nonetraining: Optional[bool] = False ) → or tuple(tf.Tensor)

Indices can be obtained using . See and for details.

return_dict (bool, optional) — Whether or not to return a instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True.

or tuple(tf.Tensor)

A or a tuple of tf.Tensor (if return_dict=False is passed or when config.return_dict=False) comprising various elements depending on the configuration () and inputs.

The forward method, overrides the __call__ special method.

config () — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the method to load the model weights.

This model inherits from . Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)

This model is also a subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior.

Note that when creating models and layers with then you don’t need to worry about any of this, as you can just pass inputs like you would to any other Python function!

( input_ids: TFModelInputType | None = Noneattention_mask: np.ndarray | tf.Tensor | None = Nonetoken_type_ids: np.ndarray | tf.Tensor | None = Noneposition_ids: np.ndarray | tf.Tensor | None = Nonehead_mask: np.ndarray | tf.Tensor | None = Noneinputs_embeds: np.ndarray | tf.Tensor | None = Noneoutput_attentions: Optional[bool] = Noneoutput_hidden_states: Optional[bool] = Nonereturn_dict: Optional[bool] = Nonestart_positions: np.ndarray | tf.Tensor | None = Noneend_positions: np.ndarray | tf.Tensor | None = Nonetraining: Optional[bool] = False ) → or tuple(tf.Tensor)

Indices can be obtained using . See and for details.

return_dict (bool, optional) — Whether or not to return a instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True.

or tuple(tf.Tensor)

A or a tuple of tf.Tensor (if return_dict=False is passed or when config.return_dict=False) comprising various elements depending on the configuration () and inputs.

The forward method, overrides the __call__ special method.

config () — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the method to load the model weights.

This model inherits from . Check the superclass documentation for the generic methods the library implements for all its model (such as downloading, saving and converting weights from PyTorch models)

This model is also a Flax Linen subclass. Use it as a regular Flax linen Module and refer to the Flax documentation for all matter related to general usage and behavior.

( input_idsattention_mask = Nonetoken_type_ids = Noneposition_ids = Nonehead_mask = Noneencoder_hidden_states = Noneencoder_attention_mask = Noneparams: dict = Nonedropout_rng: PRNGKey = Nonetrain: bool = Falseoutput_attentions: typing.Optional[bool] = Noneoutput_hidden_states: typing.Optional[bool] = Nonereturn_dict: typing.Optional[bool] = Nonepast_key_values: dict = None ) → or tuple(torch.FloatTensor)

Indices can be obtained using . See and for details.

return_dict (bool, optional) — Whether or not to return a instead of a plain tuple.

or tuple(torch.FloatTensor)

A or a tuple of torch.FloatTensor (if return_dict=False is passed or when config.return_dict=False) comprising various elements depending on the configuration () and inputs.

config () — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the method to load the model weights.

This model inherits from . Check the superclass documentation for the generic methods the library implements for all its model (such as downloading, saving and converting weights from PyTorch models)

This model is also a Flax Linen subclass. Use it as a regular Flax linen Module and refer to the Flax documentation for all matter related to general usage and behavior.

( input_idsattention_mask = Nonetoken_type_ids = Noneposition_ids = Nonehead_mask = Noneencoder_hidden_states = Noneencoder_attention_mask = Noneparams: dict = Nonedropout_rng: PRNGKey = Nonetrain: bool = Falseoutput_attentions: typing.Optional[bool] = Noneoutput_hidden_states: typing.Optional[bool] = Nonereturn_dict: typing.Optional[bool] = Nonepast_key_values: dict = None ) → or tuple(torch.FloatTensor)

Indices can be obtained using . See and for details.

return_dict (bool, optional) — Whether or not to return a instead of a plain tuple.

or tuple(torch.FloatTensor)

A or a tuple of torch.FloatTensor (if return_dict=False is passed or when config.return_dict=False) comprising various elements depending on the configuration () and inputs.

config () — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the method to load the model weights.

This model inherits from . Check the superclass documentation for the generic methods the library implements for all its model (such as downloading, saving and converting weights from PyTorch models)

This model is also a Flax Linen subclass. Use it as a regular Flax linen Module and refer to the Flax documentation for all matter related to general usage and behavior.

( input_idsattention_mask = Nonetoken_type_ids = Noneposition_ids = Nonehead_mask = Noneencoder_hidden_states = Noneencoder_attention_mask = Noneparams: dict = Nonedropout_rng: PRNGKey = Nonetrain: bool = Falseoutput_attentions: typing.Optional[bool] = Noneoutput_hidden_states: typing.Optional[bool] = Nonereturn_dict: typing.Optional[bool] = Nonepast_key_values: dict = None ) → or tuple(torch.FloatTensor)

Indices can be obtained using . See and for details.

return_dict (bool, optional) — Whether or not to return a instead of a plain tuple.

or tuple(torch.FloatTensor)

A or a tuple of torch.FloatTensor (if return_dict=False is passed or when config.return_dict=False) comprising various elements depending on the configuration () and inputs.

config () — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the method to load the model weights.

This model inherits from . Check the superclass documentation for the generic methods the library implements for all its model (such as downloading, saving and converting weights from PyTorch models)

This model is also a Flax Linen subclass. Use it as a regular Flax linen Module and refer to the Flax documentation for all matter related to general usage and behavior.

( input_idsattention_mask = Nonetoken_type_ids = Noneposition_ids = Nonehead_mask = Noneencoder_hidden_states = Noneencoder_attention_mask = Noneparams: dict = Nonedropout_rng: PRNGKey = Nonetrain: bool = Falseoutput_attentions: typing.Optional[bool] = Noneoutput_hidden_states: typing.Optional[bool] = Nonereturn_dict: typing.Optional[bool] = Nonepast_key_values: dict = None ) → or tuple(torch.FloatTensor)

Indices can be obtained using . See and for details.

return_dict (bool, optional) — Whether or not to return a instead of a plain tuple.

or tuple(torch.FloatTensor)

A or a tuple of torch.FloatTensor (if return_dict=False is passed or when config.return_dict=False) comprising various elements depending on the configuration () and inputs.

config () — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the method to load the model weights.

This model inherits from . Check the superclass documentation for the generic methods the library implements for all its model (such as downloading, saving and converting weights from PyTorch models)

This model is also a Flax Linen subclass. Use it as a regular Flax linen Module and refer to the Flax documentation for all matter related to general usage and behavior.

( input_idsattention_mask = Nonetoken_type_ids = Noneposition_ids = Nonehead_mask = Noneencoder_hidden_states = Noneencoder_attention_mask = Noneparams: dict = Nonedropout_rng: PRNGKey = Nonetrain: bool = Falseoutput_attentions: typing.Optional[bool] = Noneoutput_hidden_states: typing.Optional[bool] = Nonereturn_dict: typing.Optional[bool] = Nonepast_key_values: dict = None ) → or tuple(torch.FloatTensor)

Indices can be obtained using . See and for details.

return_dict (bool, optional) — Whether or not to return a instead of a plain tuple.

or tuple(torch.FloatTensor)

A or a tuple of torch.FloatTensor (if return_dict=False is passed or when config.return_dict=False) comprising various elements depending on the configuration () and inputs.

config () — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the method to load the model weights.

This model inherits from . Check the superclass documentation for the generic methods the library implements for all its model (such as downloading, saving and converting weights from PyTorch models)

This model is also a Flax Linen subclass. Use it as a regular Flax linen Module and refer to the Flax documentation for all matter related to general usage and behavior.

( input_idsattention_mask = Nonetoken_type_ids = Noneposition_ids = Nonehead_mask = Noneencoder_hidden_states = Noneencoder_attention_mask = Noneparams: dict = Nonedropout_rng: PRNGKey = Nonetrain: bool = Falseoutput_attentions: typing.Optional[bool] = Noneoutput_hidden_states: typing.Optional[bool] = Nonereturn_dict: typing.Optional[bool] = Nonepast_key_values: dict = None ) → or tuple(torch.FloatTensor)

Indices can be obtained using . See and for details.

return_dict (bool, optional) — Whether or not to return a instead of a plain tuple.

or tuple(torch.FloatTensor)

A or a tuple of torch.FloatTensor (if return_dict=False is passed or when config.return_dict=False) comprising various elements depending on the configuration () and inputs.

config () — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the method to load the model weights.

This model inherits from . Check the superclass documentation for the generic methods the library implements for all its model (such as downloading, saving and converting weights from PyTorch models)

This model is also a Flax Linen subclass. Use it as a regular Flax linen Module and refer to the Flax documentation for all matter related to general usage and behavior.

( input_idsattention_mask = Nonetoken_type_ids = Noneposition_ids = Nonehead_mask = Noneencoder_hidden_states = Noneencoder_attention_mask = Noneparams: dict = Nonedropout_rng: PRNGKey = Nonetrain: bool = Falseoutput_attentions: typing.Optional[bool] = Noneoutput_hidden_states: typing.Optional[bool] = Nonereturn_dict: typing.Optional[bool] = Nonepast_key_values: dict = None ) → or tuple(torch.FloatTensor)

Indices can be obtained using . See and for details.

return_dict (bool, optional) — Whether or not to return a instead of a plain tuple.

or tuple(torch.FloatTensor)

A or a tuple of torch.FloatTensor (if return_dict=False is passed or when config.return_dict=False) comprising various elements depending on the configuration () and inputs.

🌍
🌍
🌍
julien-c
here
Getting Started with Sentiment Analysis on Twitter
Inference API
Opinion Classification with Kili and BOINC AI AutoTrain
finetune RoBERTa for sentiment analysis
RobertaForSequenceClassification
example script
notebook
TFRobertaForSequenceClassification
example script
notebook
FlaxRobertaForSequenceClassification
example script
notebook
Text classification task guide
RobertaForTokenClassification
example script
notebook
TFRobertaForTokenClassification
example script
notebook
FlaxRobertaForTokenClassification
example script
Token classification
Token classification task guide
How to train a new language model from scratch using Transformers and Tokenizers
RobertaForMaskedLM
example script
notebook
TFRobertaForMaskedLM
example script
notebook
FlaxRobertaForMaskedLM
example script
notebook
Masked language modeling
Masked language modeling task guide
Accelerated Inference with Optimum and Transformers Pipelines
RobertaForQuestionAnswering
example script
notebook
TFRobertaForQuestionAnswering
example script
notebook
FlaxRobertaForQuestionAnswering
example script
Question answering
Question answering task guide
RobertaForMultipleChoice
example script
notebook
TFRobertaForMultipleChoice
example script
notebook
Multiple choice task guide
<source>
RobertaConfig
from_pretrained()
PreTrainedModel
torch.nn.Module
<source>
transformers.modeling_outputs.CausalLMOutputWithCrossAttentions
AutoTokenizer
PreTrainedTokenizer.encode()
PreTrainedTokenizer.call()
What are input IDs?
What are attention masks?
What are token type IDs?
What are position IDs?
ModelOutput
transformers.modeling_outputs.CausalLMOutputWithCrossAttentions
transformers.modeling_outputs.CausalLMOutputWithCrossAttentions
RobertaConfig
RobertaForCausalLM
<source>
RobertaConfig
from_pretrained()
PreTrainedModel
torch.nn.Module
<source>
transformers.modeling_outputs.MaskedLMOutput
AutoTokenizer
PreTrainedTokenizer.encode()
PreTrainedTokenizer.call()
What are input IDs?
What are attention masks?
What are token type IDs?
What are position IDs?
ModelOutput
transformers.modeling_outputs.MaskedLMOutput
transformers.modeling_outputs.MaskedLMOutput
RobertaConfig
RobertaForMaskedLM
<source>
RobertaConfig
from_pretrained()
PreTrainedModel
torch.nn.Module
<source>
transformers.modeling_outputs.SequenceClassifierOutput
AutoTokenizer
PreTrainedTokenizer.encode()
PreTrainedTokenizer.call()
What are input IDs?
What are attention masks?
What are token type IDs?
What are position IDs?
ModelOutput
transformers.modeling_outputs.SequenceClassifierOutput
transformers.modeling_outputs.SequenceClassifierOutput
RobertaConfig
RobertaForSequenceClassification
<source>
RobertaConfig
from_pretrained()
PreTrainedModel
torch.nn.Module
<source>
transformers.modeling_outputs.MultipleChoiceModelOutput
AutoTokenizer
PreTrainedTokenizer.encode()
PreTrainedTokenizer.call()
What are input IDs?
What are attention masks?
What are token type IDs?
What are position IDs?
ModelOutput
transformers.modeling_outputs.MultipleChoiceModelOutput
transformers.modeling_outputs.MultipleChoiceModelOutput
RobertaConfig
RobertaForMultipleChoice
<source>
RobertaConfig
from_pretrained()
PreTrainedModel
torch.nn.Module
<source>
transformers.modeling_outputs.TokenClassifierOutput
AutoTokenizer
PreTrainedTokenizer.encode()
PreTrainedTokenizer.call()
What are input IDs?
What are attention masks?
What are token type IDs?
What are position IDs?
ModelOutput
transformers.modeling_outputs.TokenClassifierOutput
transformers.modeling_outputs.TokenClassifierOutput
RobertaConfig
RobertaForTokenClassification
<source>
RobertaConfig
from_pretrained()
PreTrainedModel
torch.nn.Module
<source>
transformers.modeling_outputs.QuestionAnsweringModelOutput
AutoTokenizer
PreTrainedTokenizer.encode()
PreTrainedTokenizer.call()
What are input IDs?
What are attention masks?
What are token type IDs?
What are position IDs?
ModelOutput
transformers.modeling_outputs.QuestionAnsweringModelOutput
transformers.modeling_outputs.QuestionAnsweringModelOutput
RobertaConfig
RobertaForQuestionAnswering
<source>
RobertaConfig
from_pretrained()
TFPreTrainedModel
tf.keras.Model
subclassing
<source>
transformers.modeling_tf_outputs.TFBaseModelOutputWithPoolingAndCrossAttentions
AutoTokenizer
PreTrainedTokenizer.call()
PreTrainedTokenizer.encode()
What are input IDs?
What are attention masks?
What are token type IDs?
What are position IDs?
ModelOutput
transformers.modeling_tf_outputs.TFBaseModelOutputWithPoolingAndCrossAttentions
transformers.modeling_tf_outputs.TFBaseModelOutputWithPoolingAndCrossAttentions
RobertaConfig
TFRobertaModel
<source>
<source>
transformers.modeling_tf_outputs.TFCausalLMOutputWithCrossAttentions
AutoTokenizer
PreTrainedTokenizer.call()
PreTrainedTokenizer.encode()
What are input IDs?
What are attention masks?
What are token type IDs?
What are position IDs?
ModelOutput
transformers.modeling_tf_outputs.TFCausalLMOutputWithCrossAttentions
transformers.modeling_tf_outputs.TFCausalLMOutputWithCrossAttentions
RobertaConfig
TFRobertaForCausalLM
<source>
RobertaConfig
from_pretrained()
TFPreTrainedModel
tf.keras.Model
subclassing
<source>
transformers.modeling_tf_outputs.TFMaskedLMOutput
AutoTokenizer
PreTrainedTokenizer.call()
PreTrainedTokenizer.encode()
What are input IDs?
What are attention masks?
What are token type IDs?
What are position IDs?
ModelOutput
transformers.modeling_tf_outputs.TFMaskedLMOutput
transformers.modeling_tf_outputs.TFMaskedLMOutput
RobertaConfig
TFRobertaForMaskedLM
<source>
RobertaConfig
from_pretrained()
TFPreTrainedModel
tf.keras.Model
subclassing
<source>
transformers.modeling_tf_outputs.TFSequenceClassifierOutput
AutoTokenizer
PreTrainedTokenizer.call()
PreTrainedTokenizer.encode()
What are input IDs?
What are attention masks?
What are token type IDs?
What are position IDs?
ModelOutput
transformers.modeling_tf_outputs.TFSequenceClassifierOutput
transformers.modeling_tf_outputs.TFSequenceClassifierOutput
RobertaConfig
TFRobertaForSequenceClassification
<source>
RobertaConfig
from_pretrained()
TFPreTrainedModel
tf.keras.Model
subclassing
<source>
transformers.modeling_tf_outputs.TFMultipleChoiceModelOutput
AutoTokenizer
PreTrainedTokenizer.call()
PreTrainedTokenizer.encode()
What are input IDs?
What are attention masks?
What are token type IDs?
What are position IDs?
ModelOutput
transformers.modeling_tf_outputs.TFMultipleChoiceModelOutput
transformers.modeling_tf_outputs.TFMultipleChoiceModelOutput
RobertaConfig
TFRobertaForMultipleChoice
<source>
RobertaConfig
from_pretrained()
TFPreTrainedModel
tf.keras.Model
subclassing
<source>
transformers.modeling_tf_outputs.TFTokenClassifierOutput
AutoTokenizer
PreTrainedTokenizer.call()
PreTrainedTokenizer.encode()
What are input IDs?
What are attention masks?
What are token type IDs?
What are position IDs?
ModelOutput
transformers.modeling_tf_outputs.TFTokenClassifierOutput
transformers.modeling_tf_outputs.TFTokenClassifierOutput
RobertaConfig
TFRobertaForTokenClassification
<source>
RobertaConfig
from_pretrained()
TFPreTrainedModel
tf.keras.Model
subclassing
<source>
transformers.modeling_tf_outputs.TFQuestionAnsweringModelOutput
AutoTokenizer
PreTrainedTokenizer.call()
PreTrainedTokenizer.encode()
What are input IDs?
What are attention masks?
What are token type IDs?
What are position IDs?
ModelOutput
transformers.modeling_tf_outputs.TFQuestionAnsweringModelOutput
transformers.modeling_tf_outputs.TFQuestionAnsweringModelOutput
RobertaConfig
TFRobertaForQuestionAnswering
<source>
RobertaConfig
from_pretrained()
FlaxPreTrainedModel
flax.linen.Module
Just-In-Time (JIT) compilation
Automatic Differentiation
Vectorization
Parallelization
<source>
transformers.modeling_flax_outputs.FlaxBaseModelOutputWithPooling
AutoTokenizer
PreTrainedTokenizer.encode()
PreTrainedTokenizer.call()
What are input IDs?
What are attention masks?
What are token type IDs?
ModelOutput
transformers.modeling_flax_outputs.FlaxBaseModelOutputWithPooling
transformers.modeling_flax_outputs.FlaxBaseModelOutputWithPooling
RobertaConfig
<source>
RobertaConfig
from_pretrained()
FlaxPreTrainedModel
flax.linen.Module
Just-In-Time (JIT) compilation
Automatic Differentiation
Vectorization
Parallelization
<source>
transformers.modeling_flax_outputs.FlaxCausalLMOutputWithCrossAttentions
AutoTokenizer
PreTrainedTokenizer.encode()
PreTrainedTokenizer.call()
What are input IDs?
What are attention masks?
What are token type IDs?
ModelOutput
transformers.modeling_flax_outputs.FlaxCausalLMOutputWithCrossAttentions
transformers.modeling_flax_outputs.FlaxCausalLMOutputWithCrossAttentions
RobertaConfig
<source>
RobertaConfig
from_pretrained()
FlaxPreTrainedModel
flax.linen.Module
Just-In-Time (JIT) compilation
Automatic Differentiation
Vectorization
Parallelization
<source>
transformers.modeling_flax_outputs.FlaxBaseModelOutputWithPooling
AutoTokenizer
PreTrainedTokenizer.encode()
PreTrainedTokenizer.call()
What are input IDs?
What are attention masks?
What are token type IDs?
ModelOutput
transformers.modeling_flax_outputs.FlaxBaseModelOutputWithPooling
transformers.modeling_flax_outputs.FlaxBaseModelOutputWithPooling
RobertaConfig
<source>
RobertaConfig
from_pretrained()
FlaxPreTrainedModel
flax.linen.Module
Just-In-Time (JIT) compilation
Automatic Differentiation
Vectorization
Parallelization
<source>
transformers.modeling_flax_outputs.FlaxSequenceClassifierOutput
AutoTokenizer
PreTrainedTokenizer.encode()
PreTrainedTokenizer.call()
What are input IDs?
What are attention masks?
What are token type IDs?
ModelOutput
transformers.modeling_flax_outputs.FlaxSequenceClassifierOutput
transformers.modeling_flax_outputs.FlaxSequenceClassifierOutput
RobertaConfig
<source>
RobertaConfig
from_pretrained()
FlaxPreTrainedModel
flax.linen.Module
Just-In-Time (JIT) compilation
Automatic Differentiation
Vectorization
Parallelization
<source>
transformers.modeling_flax_outputs.FlaxMultipleChoiceModelOutput
AutoTokenizer
PreTrainedTokenizer.encode()
PreTrainedTokenizer.call()
What are input IDs?
What are attention masks?
What are token type IDs?
ModelOutput
transformers.modeling_flax_outputs.FlaxMultipleChoiceModelOutput
transformers.modeling_flax_outputs.FlaxMultipleChoiceModelOutput
RobertaConfig
<source>
RobertaConfig
from_pretrained()
FlaxPreTrainedModel
flax.linen.Module
Just-In-Time (JIT) compilation
Automatic Differentiation
Vectorization
Parallelization
<source>
transformers.modeling_flax_outputs.FlaxTokenClassifierOutput
AutoTokenizer
PreTrainedTokenizer.encode()
PreTrainedTokenizer.call()
What are input IDs?
What are attention masks?
What are token type IDs?
ModelOutput
transformers.modeling_flax_outputs.FlaxTokenClassifierOutput
transformers.modeling_flax_outputs.FlaxTokenClassifierOutput
RobertaConfig
<source>
RobertaConfig
from_pretrained()
FlaxPreTrainedModel
flax.linen.Module
Just-In-Time (JIT) compilation
Automatic Differentiation
Vectorization
Parallelization
<source>
transformers.modeling_flax_outputs.FlaxQuestionAnsweringModelOutput
AutoTokenizer
PreTrainedTokenizer.encode()
PreTrainedTokenizer.call()
What are input IDs?
What are attention masks?
What are token type IDs?
ModelOutput
transformers.modeling_flax_outputs.FlaxQuestionAnsweringModelOutput
transformers.modeling_flax_outputs.FlaxQuestionAnsweringModelOutput
RobertaConfig
RoBERTa: A Robustly Optimized BERT Pretraining Approach
Myle Ott
BertModel
CamemBERT