BERT
Last updated
Last updated
The BERT model was proposed in by Jacob Devlin, Ming-Wei Chang, Kenton Lee and Kristina Toutanova. It’s a bidirectional transformer pretrained using a combination of masked language modeling objective and next sentence prediction on a large corpus comprising the Toronto Book Corpus and Wikipedia.
The abstract from the paper is the following:
We introduce a new language representation model called BERT, which stands for Bidirectional Encoder Representations from Transformers. Unlike recent language representation models, BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly conditioning on both left and right context in all layers. As a result, the pre-trained BERT model can be fine-tuned with just one additional output layer to create state-of-the-art models for a wide range of tasks, such as question answering and language inference, without substantial task-specific architecture modifications.
BERT is conceptually simple and empirically powerful. It obtains new state-of-the-art results on eleven natural language processing tasks, including pushing the GLUE score to 80.5% (7.7% point absolute improvement), MultiNLI accuracy to 86.7% (4.6% absolute improvement), SQuAD v1.1 question answering Test F1 to 93.2 (1.5 point absolute improvement) and SQuAD v2.0 Test F1 to 83.1 (5.1 point absolute improvement).
Tips:
BERT is a model with absolute position embeddings so it’s usually advised to pad the inputs on the right rather than the left.
BERT was trained with the masked language modeling (MLM) and next sentence prediction (NSP) objectives. It is efficient at predicting masked tokens and at NLU in general, but is not optimal for text generation.
Corrupts the inputs by using random masking, more precisely, during pretraining, a given percentage of tokens (usually 15%) is masked by:
a special mask token with probability 0.8
a random token different from the one masked with probability 0.1
the same token with probability 0.1
The model must predict the original sentence, but has a second objective: inputs are two sentences A and B (with a separation token in between). With probability 50%, the sentences are consecutive in the corpus, in the remaining 50% they are not related. The model has to predict if the sentences are consecutive or not.
This model was contributed by . The original code can be found .
A list of official BOINC AI and community (indicated by 🌎) resources to help you get started with BERT. If you’re interested in submitting a resource to be included here, please feel free to open a Pull Request and we’ll review it! The resource should ideally demonstrate something new instead of duplicating an existing resource.
Text Classification
Token Classification
Fill-Mask
Question Answering
Multiple choice
⚡️ Inference
⚙️ Pretraining
🚀 Deploy
( vocab_size = 30522hidden_size = 768num_hidden_layers = 12num_attention_heads = 12intermediate_size = 3072hidden_act = 'gelu'hidden_dropout_prob = 0.1attention_probs_dropout_prob = 0.1max_position_embeddings = 512type_vocab_size = 2initializer_range = 0.02layer_norm_eps = 1e-12pad_token_id = 0position_embedding_type = 'absolute'use_cache = Trueclassifier_dropout = None**kwargs )
Parameters
hidden_size (int
, optional, defaults to 768) — Dimensionality of the encoder layers and the pooler layer.
num_hidden_layers (int
, optional, defaults to 12) — Number of hidden layers in the Transformer encoder.
num_attention_heads (int
, optional, defaults to 12) — Number of attention heads for each attention layer in the Transformer encoder.
intermediate_size (int
, optional, defaults to 3072) — Dimensionality of the “intermediate” (often named feed-forward) layer in the Transformer encoder.
hidden_act (str
or Callable
, optional, defaults to "gelu"
) — The non-linear activation function (function or string) in the encoder and pooler. If string, "gelu"
, "relu"
, "silu"
and "gelu_new"
are supported.
hidden_dropout_prob (float
, optional, defaults to 0.1) — The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_probs_dropout_prob (float
, optional, defaults to 0.1) — The dropout ratio for the attention probabilities.
max_position_embeddings (int
, optional, defaults to 512) — The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048).
initializer_range (float
, optional, defaults to 0.02) — The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (float
, optional, defaults to 1e-12) — The epsilon used by the layer normalization layers.
is_decoder (bool
, optional, defaults to False
) — Whether the model is used as a decoder or not. If False
, the model is used as an encoder.
use_cache (bool
, optional, defaults to True
) — Whether or not the model should return the last key/values attentions (not used by all models). Only relevant if config.is_decoder=True
.
classifier_dropout (float
, optional) — The dropout ratio for the classification head.
Examples:
Copied
( vocab_filedo_lower_case = Truedo_basic_tokenize = Truenever_split = Noneunk_token = '[UNK]'sep_token = '[SEP]'pad_token = '[PAD]'cls_token = '[CLS]'mask_token = '[MASK]'tokenize_chinese_chars = Truestrip_accents = None**kwargs )
Parameters
vocab_file (str
) — File containing the vocabulary.
do_lower_case (bool
, optional, defaults to True
) — Whether or not to lowercase the input when tokenizing.
do_basic_tokenize (bool
, optional, defaults to True
) — Whether or not to do basic tokenization before WordPiece.
never_split (Iterable
, optional) — Collection of tokens which will never be split during tokenization. Only has an effect when do_basic_tokenize=True
unk_token (str
, optional, defaults to "[UNK]"
) — The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead.
sep_token (str
, optional, defaults to "[SEP]"
) — The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens.
pad_token (str
, optional, defaults to "[PAD]"
) — The token used for padding, for example when batching sequences of different lengths.
cls_token (str
, optional, defaults to "[CLS]"
) — The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens.
mask_token (str
, optional, defaults to "[MASK]"
) — The token used for masking values. This is the token used when training this model with masked language modeling. This is the token which the model will try to predict.
tokenize_chinese_chars (bool
, optional, defaults to True
) — Whether or not to tokenize Chinese characters.
strip_accents (bool
, optional) — Whether or not to strip all accents. If this option is not specified, then it will be determined by the value for lowercase
(as in the original BERT).
Construct a BERT tokenizer. Based on WordPiece.
build_inputs_with_special_tokens
( token_ids_0: typing.List[int]token_ids_1: typing.Optional[typing.List[int]] = None ) → List[int]
Parameters
token_ids_0 (List[int]
) — List of IDs to which the special tokens will be added.
token_ids_1 (List[int]
, optional) — Optional second list of IDs for sequence pairs.
Returns
List[int]
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. A BERT sequence has the following format:
single sequence: [CLS] X [SEP]
pair of sequences: [CLS] A [SEP] B [SEP]
get_special_tokens_mask
( token_ids_0: typing.List[int]token_ids_1: typing.Optional[typing.List[int]] = Nonealready_has_special_tokens: bool = False ) → List[int]
Parameters
token_ids_0 (List[int]
) — List of IDs.
token_ids_1 (List[int]
, optional) — Optional second list of IDs for sequence pairs.
already_has_special_tokens (bool
, optional, defaults to False
) — Whether or not the token list is already formatted with special tokens for the model.
Returns
List[int]
A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer prepare_for_model
method.
create_token_type_ids_from_sequences
( token_ids_0: typing.List[int]token_ids_1: typing.Optional[typing.List[int]] = None ) → List[int]
Parameters
token_ids_0 (List[int]
) — List of IDs.
token_ids_1 (List[int]
, optional) — Optional second list of IDs for sequence pairs.
Returns
List[int]
Create a mask from the two sequences passed to be used in a sequence-pair classification task. A BERT sequence
pair mask has the following format:
Copied
If token_ids_1
is None
, this method only returns the first portion of the mask (0s).
save_vocabulary
( save_directory: strfilename_prefix: typing.Optional[str] = None )
( vocab_file = Nonetokenizer_file = Nonedo_lower_case = Trueunk_token = '[UNK]'sep_token = '[SEP]'pad_token = '[PAD]'cls_token = '[CLS]'mask_token = '[MASK]'tokenize_chinese_chars = Truestrip_accents = None**kwargs )
Parameters
vocab_file (str
) — File containing the vocabulary.
do_lower_case (bool
, optional, defaults to True
) — Whether or not to lowercase the input when tokenizing.
unk_token (str
, optional, defaults to "[UNK]"
) — The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead.
sep_token (str
, optional, defaults to "[SEP]"
) — The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens.
pad_token (str
, optional, defaults to "[PAD]"
) — The token used for padding, for example when batching sequences of different lengths.
cls_token (str
, optional, defaults to "[CLS]"
) — The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens.
mask_token (str
, optional, defaults to "[MASK]"
) — The token used for masking values. This is the token used when training this model with masked language modeling. This is the token which the model will try to predict.
clean_text (bool
, optional, defaults to True
) — Whether or not to clean the text before tokenization by removing any control characters and replacing all whitespaces by the classic one.
strip_accents (bool
, optional) — Whether or not to strip all accents. If this option is not specified, then it will be determined by the value for lowercase
(as in the original BERT).
wordpieces_prefix (str
, optional, defaults to "##"
) — The prefix for subwords.
Construct a “fast” BERT tokenizer (backed by BOINC AI’s tokenizers library). Based on WordPiece.
build_inputs_with_special_tokens
( token_ids_0token_ids_1 = None ) → List[int]
Parameters
token_ids_0 (List[int]
) — List of IDs to which the special tokens will be added.
token_ids_1 (List[int]
, optional) — Optional second list of IDs for sequence pairs.
Returns
List[int]
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. A BERT sequence has the following format:
single sequence: [CLS] X [SEP]
pair of sequences: [CLS] A [SEP] B [SEP]
create_token_type_ids_from_sequences
( token_ids_0: typing.List[int]token_ids_1: typing.Optional[typing.List[int]] = None ) → List[int]
Parameters
token_ids_0 (List[int]
) — List of IDs.
token_ids_1 (List[int]
, optional) — Optional second list of IDs for sequence pairs.
Returns
List[int]
Create a mask from the two sequences passed to be used in a sequence-pair classification task. A BERT sequence
pair mask has the following format:
Copied
If token_ids_1
is None
, this method only returns the first portion of the mask (0s).
( *args**kwargs )
Parameters
vocab_list (list
) — List containing the vocabulary.
do_lower_case (bool
, optional, defaults to True
) — Whether or not to lowercase the input when tokenizing.
cls_token_id (str
, optional, defaults to "[CLS]"
) — The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens.
sep_token_id (str
, optional, defaults to "[SEP]"
) — The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens.
pad_token_id (str
, optional, defaults to "[PAD]"
) — The token used for padding, for example when batching sequences of different lengths.
padding (str
, defaults to "longest"
) — The type of padding to use. Can be either "longest"
, to pad only up to the longest sample in the batch, or `“max_length”, to pad all inputs to the maximum length supported by the tokenizer.
truncation (bool
, optional, defaults to True
) — Whether to truncate the sequence to the maximum length.
max_length (int
, optional, defaults to 512
) — The maximum length of the sequence, used for padding (if padding
is “max_length”) and/or truncation (if truncation
is True
).
pad_to_multiple_of (int
, optional, defaults to None
) — If set, the sequence will be padded to a multiple of this value.
return_token_type_ids (bool
, optional, defaults to True
) — Whether to return token_type_ids.
return_attention_mask (bool
, optional, defaults to True
) — Whether to return the attention_mask.
use_fast_bert_tokenizer (bool
, optional, defaults to True
) — If True, will use the FastBertTokenizer class from Tensorflow Text. If False, will use the BertTokenizer class instead. BertTokenizer supports some additional options, but is slower and cannot be exported to TFLite.
This is an in-graph tokenizer for BERT. It should be initialized similarly to other tokenizers, using the from_pretrained()
method. It can also be initialized with the from_tokenizer()
method, which imports settings from an existing standard tokenizer object.
In-graph tokenizers, unlike other BOINC AI tokenizers, are actually Keras layers and are designed to be run when the model is called, rather than during preprocessing. As a result, they have somewhat more limited options than standard tokenizer classes. They are most useful when you want to create an end-to-end model that goes straight from tf.string
inputs to outputs.
from_pretrained
( pretrained_model_name_or_path: typing.Union[str, os.PathLike]*init_inputs**kwargs )
Parameters
pretrained_model_name_or_path (str
or os.PathLike
) — The name or path to the pre-trained tokenizer.
Instantiate a TFBertTokenizer
from a pre-trained tokenizer.
Examples:
Copied
from_tokenizer
( tokenizer: PreTrainedTokenizerBase**kwargs )
Parameters
tokenizer (PreTrainedTokenizerBase
) — The tokenizer to use to initialize the TFBertTokenizer
.
Initialize a TFBertTokenizer
from an existing Tokenizer
.
Examples:
Copied
( loss: typing.Optional[torch.FloatTensor] = Noneprediction_logits: FloatTensor = Noneseq_relationship_logits: FloatTensor = Nonehidden_states: typing.Optional[typing.Tuple[torch.FloatTensor]] = Noneattentions: typing.Optional[typing.Tuple[torch.FloatTensor]] = None )
Parameters
loss (optional, returned when labels
is provided, torch.FloatTensor
of shape (1,)
) — Total loss as the sum of the masked language modeling loss and the next sequence prediction (classification) loss.
prediction_logits (torch.FloatTensor
of shape (batch_size, sequence_length, config.vocab_size)
) — Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
seq_relationship_logits (torch.FloatTensor
of shape (batch_size, 2)
) — Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation before SoftMax).
hidden_states (tuple(torch.FloatTensor)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of torch.FloatTensor
(one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size)
.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (tuple(torch.FloatTensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of torch.FloatTensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
( loss: tf.Tensor | None = Noneprediction_logits: tf.Tensor = Noneseq_relationship_logits: tf.Tensor = Nonehidden_states: Optional[Union[Tuple[tf.Tensor], tf.Tensor]] = Noneattentions: Optional[Union[Tuple[tf.Tensor], tf.Tensor]] = None )
Parameters
prediction_logits (tf.Tensor
of shape (batch_size, sequence_length, config.vocab_size)
) — Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
seq_relationship_logits (tf.Tensor
of shape (batch_size, 2)
) — Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation before SoftMax).
hidden_states (tuple(tf.Tensor)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of tf.Tensor
(one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size)
.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (tuple(tf.Tensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of tf.Tensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
( prediction_logits: Array = Noneseq_relationship_logits: Array = Nonehidden_states: typing.Optional[typing.Tuple[jax.Array]] = Noneattentions: typing.Optional[typing.Tuple[jax.Array]] = None )
Parameters
prediction_logits (jnp.ndarray
of shape (batch_size, sequence_length, config.vocab_size)
) — Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
seq_relationship_logits (jnp.ndarray
of shape (batch_size, 2)
) — Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation before SoftMax).
hidden_states (tuple(jnp.ndarray)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of jnp.ndarray
(one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size)
.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (tuple(jnp.ndarray)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of jnp.ndarray
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
replace
( **updates )
“Returns a new object replacing the specified fields with new values.
( configadd_pooling_layer = True )
Parameters
The bare Bert Model transformer outputting raw hidden-states without any specific head on top.
To behave as an decoder the model needs to be initialized with the is_decoder
argument of the configuration set to True
. To be used in a Seq2Seq model, the model needs to initialized with both is_decoder
argument and add_cross_attention
set to True
; an encoder_hidden_states
is then expected as an input to the forward pass.
forward
Parameters
input_ids (torch.LongTensor
of shape (batch_size, sequence_length)
) — Indices of input sequence tokens in the vocabulary.
attention_mask (torch.FloatTensor
of shape (batch_size, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]
:
1 for tokens that are not masked,
0 for tokens that are masked.
token_type_ids (torch.LongTensor
of shape (batch_size, sequence_length)
, optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]
:
0 corresponds to a sentence A token,
1 corresponds to a sentence B token.
position_ids (torch.LongTensor
of shape (batch_size, sequence_length)
, optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1]
.
head_mask (torch.FloatTensor
of shape (num_heads,)
or (num_layers, num_heads)
, optional) — Mask to nullify selected heads of the self-attention modules. Mask values selected in [0, 1]
:
1 indicates the head is not masked,
0 indicates the head is masked.
inputs_embeds (torch.FloatTensor
of shape (batch_size, sequence_length, hidden_size)
, optional) — Optionally, instead of passing input_ids
you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids
indices into associated vectors than the model’s internal embedding lookup matrix.
output_attentions (bool
, optional) — Whether or not to return the attentions tensors of all attention layers. See attentions
under returned tensors for more detail.
output_hidden_states (bool
, optional) — Whether or not to return the hidden states of all layers. See hidden_states
under returned tensors for more detail.
encoder_hidden_states (torch.FloatTensor
of shape (batch_size, sequence_length, hidden_size)
, optional) — Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder.
encoder_attention_mask (torch.FloatTensor
of shape (batch_size, sequence_length)
, optional) — Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in [0, 1]
:
1 for tokens that are not masked,
0 for tokens that are masked.
past_key_values (tuple(tuple(torch.FloatTensor))
of length config.n_layers
with each tuple having 4 tensors of shape (batch_size, num_heads, sequence_length - 1, embed_size_per_head)
) — Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
If past_key_values
are used, the user can optionally input only the last decoder_input_ids
(those that don’t have their past key value states given to this model) of shape (batch_size, 1)
instead of all decoder_input_ids
of shape (batch_size, sequence_length)
.
use_cache (bool
, optional) — If set to True
, past_key_values
key value states are returned and can be used to speed up decoding (see past_key_values
).
Returns
last_hidden_state (torch.FloatTensor
of shape (batch_size, sequence_length, hidden_size)
) — Sequence of hidden-states at the output of the last layer of the model.
pooler_output (torch.FloatTensor
of shape (batch_size, hidden_size)
) — Last layer hidden-state of the first token of the sequence (classification token) after further processing through the layers used for the auxiliary pretraining task. E.g. for BERT-family of models, this returns the classification token after processing through a linear layer and a tanh activation function. The linear layer weights are trained from the next sentence prediction (classification) objective during pretraining.
hidden_states (tuple(torch.FloatTensor)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of torch.FloatTensor
(one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size)
.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (tuple(torch.FloatTensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of torch.FloatTensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
cross_attentions (tuple(torch.FloatTensor)
, optional, returned when output_attentions=True
and config.add_cross_attention=True
is passed or when config.output_attentions=True
) — Tuple of torch.FloatTensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the decoder’s cross-attention layer, after the attention softmax, used to compute the weighted average in the cross-attention heads.
past_key_values (tuple(tuple(torch.FloatTensor))
, optional, returned when use_cache=True
is passed or when config.use_cache=True
) — Tuple of tuple(torch.FloatTensor)
of length config.n_layers
, with each tuple having 2 tensors of shape (batch_size, num_heads, sequence_length, embed_size_per_head)
) and optionally if config.is_encoder_decoder=True
2 additional tensors of shape (batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
.
Contains pre-computed hidden-states (key and values in the self-attention blocks and optionally if config.is_encoder_decoder=True
in the cross-attention blocks) that can be used (see past_key_values
input) to speed up sequential decoding.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.
Example:
Copied
( config )
Parameters
Bert Model with two heads on top as done during the pretraining: a masked language modeling
head and a next sentence prediction (classification)
head.
forward
Parameters
input_ids (torch.LongTensor
of shape (batch_size, sequence_length)
) — Indices of input sequence tokens in the vocabulary.
attention_mask (torch.FloatTensor
of shape (batch_size, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]
:
1 for tokens that are not masked,
0 for tokens that are masked.
token_type_ids (torch.LongTensor
of shape (batch_size, sequence_length)
, optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]
:
0 corresponds to a sentence A token,
1 corresponds to a sentence B token.
position_ids (torch.LongTensor
of shape (batch_size, sequence_length)
, optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1]
.
head_mask (torch.FloatTensor
of shape (num_heads,)
or (num_layers, num_heads)
, optional) — Mask to nullify selected heads of the self-attention modules. Mask values selected in [0, 1]
:
1 indicates the head is not masked,
0 indicates the head is masked.
inputs_embeds (torch.FloatTensor
of shape (batch_size, sequence_length, hidden_size)
, optional) — Optionally, instead of passing input_ids
you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids
indices into associated vectors than the model’s internal embedding lookup matrix.
output_attentions (bool
, optional) — Whether or not to return the attentions tensors of all attention layers. See attentions
under returned tensors for more detail.
output_hidden_states (bool
, optional) — Whether or not to return the hidden states of all layers. See hidden_states
under returned tensors for more detail.
labels (torch.LongTensor
of shape (batch_size, sequence_length)
, optional): Labels for computing the masked language modeling loss. Indices should be in [-100, 0, ..., config.vocab_size]
(see input_ids
docstring) Tokens with indices set to -100
are ignored (masked), the loss is only computed for the tokens with labels in [0, ..., config.vocab_size]
next_sentence_label (torch.LongTensor
of shape (batch_size,)
, optional): Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair (see input_ids
docstring) Indices should be in [0, 1]
:
0 indicates sequence B is a continuation of sequence A,
1 indicates sequence B is a random sequence. kwargs (Dict[str, any]
, optional, defaults to {}): Used to hide legacy arguments that have been deprecated.
Returns
loss (optional, returned when labels
is provided, torch.FloatTensor
of shape (1,)
) — Total loss as the sum of the masked language modeling loss and the next sequence prediction (classification) loss.
prediction_logits (torch.FloatTensor
of shape (batch_size, sequence_length, config.vocab_size)
) — Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
seq_relationship_logits (torch.FloatTensor
of shape (batch_size, 2)
) — Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation before SoftMax).
hidden_states (tuple(torch.FloatTensor)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of torch.FloatTensor
(one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size)
.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (tuple(torch.FloatTensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of torch.FloatTensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.
Example:
Copied
( config )
Parameters
Bert Model with a language modeling
head on top for CLM fine-tuning.
forward
Parameters
input_ids (torch.LongTensor
of shape (batch_size, sequence_length)
) — Indices of input sequence tokens in the vocabulary.
attention_mask (torch.FloatTensor
of shape (batch_size, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]
:
1 for tokens that are not masked,
0 for tokens that are masked.
token_type_ids (torch.LongTensor
of shape (batch_size, sequence_length)
, optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]
:
0 corresponds to a sentence A token,
1 corresponds to a sentence B token.
position_ids (torch.LongTensor
of shape (batch_size, sequence_length)
, optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1]
.
head_mask (torch.FloatTensor
of shape (num_heads,)
or (num_layers, num_heads)
, optional) — Mask to nullify selected heads of the self-attention modules. Mask values selected in [0, 1]
:
1 indicates the head is not masked,
0 indicates the head is masked.
inputs_embeds (torch.FloatTensor
of shape (batch_size, sequence_length, hidden_size)
, optional) — Optionally, instead of passing input_ids
you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids
indices into associated vectors than the model’s internal embedding lookup matrix.
output_attentions (bool
, optional) — Whether or not to return the attentions tensors of all attention layers. See attentions
under returned tensors for more detail.
output_hidden_states (bool
, optional) — Whether or not to return the hidden states of all layers. See hidden_states
under returned tensors for more detail.
encoder_hidden_states (torch.FloatTensor
of shape (batch_size, sequence_length, hidden_size)
, optional) — Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder.
encoder_attention_mask (torch.FloatTensor
of shape (batch_size, sequence_length)
, optional) — Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in [0, 1]
:
1 for tokens that are not masked,
0 for tokens that are masked.
labels (torch.LongTensor
of shape (batch_size, sequence_length)
, optional) — Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in [-100, 0, ..., config.vocab_size]
(see input_ids
docstring) Tokens with indices set to -100
are ignored (masked), the loss is only computed for the tokens with labels n [0, ..., config.vocab_size]
past_key_values (tuple(tuple(torch.FloatTensor))
of length config.n_layers
with each tuple having 4 tensors of shape (batch_size, num_heads, sequence_length - 1, embed_size_per_head)
) — Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
If past_key_values
are used, the user can optionally input only the last decoder_input_ids
(those that don’t have their past key value states given to this model) of shape (batch_size, 1)
instead of all decoder_input_ids
of shape (batch_size, sequence_length)
.
use_cache (bool
, optional) — If set to True
, past_key_values
key value states are returned and can be used to speed up decoding (see past_key_values
).
Returns
loss (torch.FloatTensor
of shape (1,)
, optional, returned when labels
is provided) — Language modeling loss (for next-token prediction).
logits (torch.FloatTensor
of shape (batch_size, sequence_length, config.vocab_size)
) — Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
hidden_states (tuple(torch.FloatTensor)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of torch.FloatTensor
(one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size)
.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (tuple(torch.FloatTensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of torch.FloatTensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
cross_attentions (tuple(torch.FloatTensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of torch.FloatTensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Cross attentions weights after the attention softmax, used to compute the weighted average in the cross-attention heads.
past_key_values (tuple(tuple(torch.FloatTensor))
, optional, returned when use_cache=True
is passed or when config.use_cache=True
) — Tuple of torch.FloatTensor
tuples of length config.n_layers
, with each tuple containing the cached key, value states of the self-attention and the cross-attention layers if model is used in encoder-decoder setting. Only relevant if config.is_decoder = True
.
Contains pre-computed hidden-states (key and values in the attention blocks) that can be used (see past_key_values
input) to speed up sequential decoding.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.
Example:
Copied
( config )
Parameters
Bert Model with a language modeling
head on top.
forward
Parameters
input_ids (torch.LongTensor
of shape (batch_size, sequence_length)
) — Indices of input sequence tokens in the vocabulary.
attention_mask (torch.FloatTensor
of shape (batch_size, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]
:
1 for tokens that are not masked,
0 for tokens that are masked.
token_type_ids (torch.LongTensor
of shape (batch_size, sequence_length)
, optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]
:
0 corresponds to a sentence A token,
1 corresponds to a sentence B token.
position_ids (torch.LongTensor
of shape (batch_size, sequence_length)
, optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1]
.
head_mask (torch.FloatTensor
of shape (num_heads,)
or (num_layers, num_heads)
, optional) — Mask to nullify selected heads of the self-attention modules. Mask values selected in [0, 1]
:
1 indicates the head is not masked,
0 indicates the head is masked.
inputs_embeds (torch.FloatTensor
of shape (batch_size, sequence_length, hidden_size)
, optional) — Optionally, instead of passing input_ids
you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids
indices into associated vectors than the model’s internal embedding lookup matrix.
output_attentions (bool
, optional) — Whether or not to return the attentions tensors of all attention layers. See attentions
under returned tensors for more detail.
output_hidden_states (bool
, optional) — Whether or not to return the hidden states of all layers. See hidden_states
under returned tensors for more detail.
labels (torch.LongTensor
of shape (batch_size, sequence_length)
, optional) — Labels for computing the masked language modeling loss. Indices should be in [-100, 0, ..., config.vocab_size]
(see input_ids
docstring) Tokens with indices set to -100
are ignored (masked), the loss is only computed for the tokens with labels in [0, ..., config.vocab_size]
Returns
loss (torch.FloatTensor
of shape (1,)
, optional, returned when labels
is provided) — Masked language modeling (MLM) loss.
logits (torch.FloatTensor
of shape (batch_size, sequence_length, config.vocab_size)
) — Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
hidden_states (tuple(torch.FloatTensor)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of torch.FloatTensor
(one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size)
.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (tuple(torch.FloatTensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of torch.FloatTensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.
Example:
Copied
( config )
Parameters
Bert Model with a next sentence prediction (classification)
head on top.
forward
Parameters
input_ids (torch.LongTensor
of shape (batch_size, sequence_length)
) — Indices of input sequence tokens in the vocabulary.
attention_mask (torch.FloatTensor
of shape (batch_size, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]
:
1 for tokens that are not masked,
0 for tokens that are masked.
token_type_ids (torch.LongTensor
of shape (batch_size, sequence_length)
, optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]
:
0 corresponds to a sentence A token,
1 corresponds to a sentence B token.
position_ids (torch.LongTensor
of shape (batch_size, sequence_length)
, optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1]
.
head_mask (torch.FloatTensor
of shape (num_heads,)
or (num_layers, num_heads)
, optional) — Mask to nullify selected heads of the self-attention modules. Mask values selected in [0, 1]
:
1 indicates the head is not masked,
0 indicates the head is masked.
inputs_embeds (torch.FloatTensor
of shape (batch_size, sequence_length, hidden_size)
, optional) — Optionally, instead of passing input_ids
you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids
indices into associated vectors than the model’s internal embedding lookup matrix.
output_attentions (bool
, optional) — Whether or not to return the attentions tensors of all attention layers. See attentions
under returned tensors for more detail.
output_hidden_states (bool
, optional) — Whether or not to return the hidden states of all layers. See hidden_states
under returned tensors for more detail.
labels (torch.LongTensor
of shape (batch_size,)
, optional) — Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair (see input_ids
docstring). Indices should be in [0, 1]
:
0 indicates sequence B is a continuation of sequence A,
1 indicates sequence B is a random sequence.
Returns
loss (torch.FloatTensor
of shape (1,)
, optional, returned when next_sentence_label
is provided) — Next sequence prediction (classification) loss.
logits (torch.FloatTensor
of shape (batch_size, 2)
) — Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation before SoftMax).
hidden_states (tuple(torch.FloatTensor)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of torch.FloatTensor
(one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size)
.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (tuple(torch.FloatTensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of torch.FloatTensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.
Example:
Copied
( config )
Parameters
Bert Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks.
forward
Parameters
input_ids (torch.LongTensor
of shape (batch_size, sequence_length)
) — Indices of input sequence tokens in the vocabulary.
attention_mask (torch.FloatTensor
of shape (batch_size, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]
:
1 for tokens that are not masked,
0 for tokens that are masked.
token_type_ids (torch.LongTensor
of shape (batch_size, sequence_length)
, optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]
:
0 corresponds to a sentence A token,
1 corresponds to a sentence B token.
position_ids (torch.LongTensor
of shape (batch_size, sequence_length)
, optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1]
.
head_mask (torch.FloatTensor
of shape (num_heads,)
or (num_layers, num_heads)
, optional) — Mask to nullify selected heads of the self-attention modules. Mask values selected in [0, 1]
:
1 indicates the head is not masked,
0 indicates the head is masked.
inputs_embeds (torch.FloatTensor
of shape (batch_size, sequence_length, hidden_size)
, optional) — Optionally, instead of passing input_ids
you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids
indices into associated vectors than the model’s internal embedding lookup matrix.
output_attentions (bool
, optional) — Whether or not to return the attentions tensors of all attention layers. See attentions
under returned tensors for more detail.
output_hidden_states (bool
, optional) — Whether or not to return the hidden states of all layers. See hidden_states
under returned tensors for more detail.
labels (torch.LongTensor
of shape (batch_size,)
, optional) — Labels for computing the sequence classification/regression loss. Indices should be in [0, ..., config.num_labels - 1]
. If config.num_labels == 1
a regression loss is computed (Mean-Square loss), If config.num_labels > 1
a classification loss is computed (Cross-Entropy).
Returns
loss (torch.FloatTensor
of shape (1,)
, optional, returned when labels
is provided) — Classification (or regression if config.num_labels==1) loss.
logits (torch.FloatTensor
of shape (batch_size, config.num_labels)
) — Classification (or regression if config.num_labels==1) scores (before SoftMax).
hidden_states (tuple(torch.FloatTensor)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of torch.FloatTensor
(one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size)
.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (tuple(torch.FloatTensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of torch.FloatTensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.
Example of single-label classification:
Copied
Example of multi-label classification:
Copied
( config )
Parameters
Bert Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a softmax) e.g. for RocStories/SWAG tasks.
forward
Parameters
input_ids (torch.LongTensor
of shape (batch_size, num_choices, sequence_length)
) — Indices of input sequence tokens in the vocabulary.
attention_mask (torch.FloatTensor
of shape (batch_size, num_choices, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]
:
1 for tokens that are not masked,
0 for tokens that are masked.
token_type_ids (torch.LongTensor
of shape (batch_size, num_choices, sequence_length)
, optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]
:
0 corresponds to a sentence A token,
1 corresponds to a sentence B token.
position_ids (torch.LongTensor
of shape (batch_size, num_choices, sequence_length)
, optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1]
.
head_mask (torch.FloatTensor
of shape (num_heads,)
or (num_layers, num_heads)
, optional) — Mask to nullify selected heads of the self-attention modules. Mask values selected in [0, 1]
:
1 indicates the head is not masked,
0 indicates the head is masked.
inputs_embeds (torch.FloatTensor
of shape (batch_size, num_choices, sequence_length, hidden_size)
, optional) — Optionally, instead of passing input_ids
you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids
indices into associated vectors than the model’s internal embedding lookup matrix.
output_attentions (bool
, optional) — Whether or not to return the attentions tensors of all attention layers. See attentions
under returned tensors for more detail.
output_hidden_states (bool
, optional) — Whether or not to return the hidden states of all layers. See hidden_states
under returned tensors for more detail.
labels (torch.LongTensor
of shape (batch_size,)
, optional) — Labels for computing the multiple choice classification loss. Indices should be in [0, ..., num_choices-1]
where num_choices
is the size of the second dimension of the input tensors. (See input_ids
above)
Returns
loss (torch.FloatTensor
of shape (1,), optional, returned when labels
is provided) — Classification loss.
logits (torch.FloatTensor
of shape (batch_size, num_choices)
) — num_choices is the second dimension of the input tensors. (see input_ids above).
Classification scores (before SoftMax).
hidden_states (tuple(torch.FloatTensor)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of torch.FloatTensor
(one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size)
.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (tuple(torch.FloatTensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of torch.FloatTensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.
Example:
Copied
( config )
Parameters
Bert Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks.
forward
Parameters
input_ids (torch.LongTensor
of shape (batch_size, sequence_length)
) — Indices of input sequence tokens in the vocabulary.
attention_mask (torch.FloatTensor
of shape (batch_size, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]
:
1 for tokens that are not masked,
0 for tokens that are masked.
token_type_ids (torch.LongTensor
of shape (batch_size, sequence_length)
, optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]
:
0 corresponds to a sentence A token,
1 corresponds to a sentence B token.
position_ids (torch.LongTensor
of shape (batch_size, sequence_length)
, optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1]
.
head_mask (torch.FloatTensor
of shape (num_heads,)
or (num_layers, num_heads)
, optional) — Mask to nullify selected heads of the self-attention modules. Mask values selected in [0, 1]
:
1 indicates the head is not masked,
0 indicates the head is masked.
inputs_embeds (torch.FloatTensor
of shape (batch_size, sequence_length, hidden_size)
, optional) — Optionally, instead of passing input_ids
you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids
indices into associated vectors than the model’s internal embedding lookup matrix.
output_attentions (bool
, optional) — Whether or not to return the attentions tensors of all attention layers. See attentions
under returned tensors for more detail.
output_hidden_states (bool
, optional) — Whether or not to return the hidden states of all layers. See hidden_states
under returned tensors for more detail.
labels (torch.LongTensor
of shape (batch_size, sequence_length)
, optional) — Labels for computing the token classification loss. Indices should be in [0, ..., config.num_labels - 1]
.
Returns
loss (torch.FloatTensor
of shape (1,)
, optional, returned when labels
is provided) — Classification loss.
logits (torch.FloatTensor
of shape (batch_size, sequence_length, config.num_labels)
) — Classification scores (before SoftMax).
hidden_states (tuple(torch.FloatTensor)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of torch.FloatTensor
(one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size)
.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (tuple(torch.FloatTensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of torch.FloatTensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.
Example:
Copied
( config )
Parameters
Bert Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of the hidden-states output to compute span start logits
and span end logits
).
forward
Parameters
input_ids (torch.LongTensor
of shape (batch_size, sequence_length)
) — Indices of input sequence tokens in the vocabulary.
attention_mask (torch.FloatTensor
of shape (batch_size, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]
:
1 for tokens that are not masked,
0 for tokens that are masked.
token_type_ids (torch.LongTensor
of shape (batch_size, sequence_length)
, optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]
:
0 corresponds to a sentence A token,
1 corresponds to a sentence B token.
position_ids (torch.LongTensor
of shape (batch_size, sequence_length)
, optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1]
.
head_mask (torch.FloatTensor
of shape (num_heads,)
or (num_layers, num_heads)
, optional) — Mask to nullify selected heads of the self-attention modules. Mask values selected in [0, 1]
:
1 indicates the head is not masked,
0 indicates the head is masked.
inputs_embeds (torch.FloatTensor
of shape (batch_size, sequence_length, hidden_size)
, optional) — Optionally, instead of passing input_ids
you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids
indices into associated vectors than the model’s internal embedding lookup matrix.
output_attentions (bool
, optional) — Whether or not to return the attentions tensors of all attention layers. See attentions
under returned tensors for more detail.
output_hidden_states (bool
, optional) — Whether or not to return the hidden states of all layers. See hidden_states
under returned tensors for more detail.
start_positions (torch.LongTensor
of shape (batch_size,)
, optional) — Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (sequence_length
). Position outside of the sequence are not taken into account for computing the loss.
end_positions (torch.LongTensor
of shape (batch_size,)
, optional) — Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (sequence_length
). Position outside of the sequence are not taken into account for computing the loss.
Returns
loss (torch.FloatTensor
of shape (1,)
, optional, returned when labels
is provided) — Total span extraction loss is the sum of a Cross-Entropy for the start and end positions.
start_logits (torch.FloatTensor
of shape (batch_size, sequence_length)
) — Span-start scores (before SoftMax).
end_logits (torch.FloatTensor
of shape (batch_size, sequence_length)
) — Span-end scores (before SoftMax).
hidden_states (tuple(torch.FloatTensor)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of torch.FloatTensor
(one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size)
.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (tuple(torch.FloatTensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of torch.FloatTensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.
Example:
Copied
( *args**kwargs )
Parameters
The bare Bert Model transformer outputting raw hidden-states without any specific head on top.
TensorFlow models and layers in transformers
accept two formats as input:
having all inputs as keyword arguments (like PyTorch models), or
having all inputs as a list, tuple or dict in the first positional argument.
The reason the second format is supported is that Keras methods prefer this format when passing inputs to models and layers. Because of this support, when using methods like model.fit()
things should “just work” for you - just pass your inputs and labels in any format that model.fit()
supports! If, however, you want to use the second format outside of Keras methods like fit()
and predict()
, such as when creating your own layers or models with the Keras Functional
API, there are three possibilities you can use to gather all the input Tensors in the first positional argument:
a single Tensor with input_ids
only and nothing else: model(input_ids)
a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: model([input_ids, attention_mask])
or model([input_ids, attention_mask, token_type_ids])
a dictionary with one or several input Tensors associated to the input names given in the docstring: model({"input_ids": input_ids, "token_type_ids": token_type_ids})
call
Parameters
input_ids (np.ndarray
, tf.Tensor
, List[tf.Tensor]
`Dict[str, tf.Tensor]
or Dict[str, np.ndarray]
and each example must have the shape (batch_size, sequence_length)
) — Indices of input sequence tokens in the vocabulary.
attention_mask (np.ndarray
or tf.Tensor
of shape (batch_size, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]
:
1 for tokens that are not masked,
0 for tokens that are masked.
token_type_ids (np.ndarray
or tf.Tensor
of shape (batch_size, sequence_length)
, optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]
:
0 corresponds to a sentence A token,
1 corresponds to a sentence B token.
position_ids (np.ndarray
or tf.Tensor
of shape (batch_size, sequence_length)
, optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1]
.
head_mask (np.ndarray
or tf.Tensor
of shape (num_heads,)
or (num_layers, num_heads)
, optional) — Mask to nullify selected heads of the self-attention modules. Mask values selected in [0, 1]
:
1 indicates the head is not masked,
0 indicates the head is masked.
inputs_embeds (np.ndarray
or tf.Tensor
of shape (batch_size, sequence_length, hidden_size)
, optional) — Optionally, instead of passing input_ids
you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids
indices into associated vectors than the model’s internal embedding lookup matrix.
output_attentions (bool
, optional) — Whether or not to return the attentions tensors of all attention layers. See attentions
under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead.
output_hidden_states (bool
, optional) — Whether or not to return the hidden states of all layers. See hidden_states
under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead.
training (bool
, optional, defaults to `False“) — Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation).
encoder_hidden_states (tf.Tensor
of shape (batch_size, sequence_length, hidden_size)
, optional) — Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder.
encoder_attention_mask (tf.Tensor
of shape (batch_size, sequence_length)
, optional) — Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in [0, 1]
:
1 for tokens that are not masked,
0 for tokens that are masked.
past_key_values (Tuple[Tuple[tf.Tensor]]
of length config.n_layers
) — contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If past_key_values
are used, the user can optionally input only the last decoder_input_ids
(those that don’t have their past key value states given to this model) of shape (batch_size, 1)
instead of all decoder_input_ids
of shape (batch_size, sequence_length)
.
use_cache (bool
, optional, defaults to True
) — If set to True
, past_key_values
key value states are returned and can be used to speed up decoding (see past_key_values
). Set to False
during training, True
during generation
Returns
last_hidden_state (tf.Tensor
of shape (batch_size, sequence_length, hidden_size)
) — Sequence of hidden-states at the output of the last layer of the model.
pooler_output (tf.Tensor
of shape (batch_size, hidden_size)
) — Last layer hidden-state of the first token of the sequence (classification token) further processed by a Linear layer and a Tanh activation function. The Linear layer weights are trained from the next sentence prediction (classification) objective during pretraining.
This output is usually not a good summary of the semantic content of the input, you’re often better with averaging or pooling the sequence of hidden-states for the whole input sequence.
past_key_values (List[tf.Tensor]
, optional, returned when use_cache=True
is passed or when config.use_cache=True
) — List of tf.Tensor
of length config.n_layers
, with each tensor of shape (2, batch_size, num_heads, sequence_length, embed_size_per_head)
).
Contains pre-computed hidden-states (key and values in the attention blocks) that can be used (see past_key_values
input) to speed up sequential decoding.
hidden_states (tuple(tf.Tensor)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of tf.Tensor
(one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size)
.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (tuple(tf.Tensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of tf.Tensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
cross_attentions (tuple(tf.Tensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of tf.Tensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the decoder’s cross-attention layer, after the attention softmax, used to compute the weighted average in the cross-attention heads.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.
Example:
Copied
( *args**kwargs )
Parameters
Bert Model with two heads on top as done during the pretraining: a masked language modeling
head and a next sentence prediction (classification)
head.
TensorFlow models and layers in transformers
accept two formats as input:
having all inputs as keyword arguments (like PyTorch models), or
having all inputs as a list, tuple or dict in the first positional argument.
The reason the second format is supported is that Keras methods prefer this format when passing inputs to models and layers. Because of this support, when using methods like model.fit()
things should “just work” for you - just pass your inputs and labels in any format that model.fit()
supports! If, however, you want to use the second format outside of Keras methods like fit()
and predict()
, such as when creating your own layers or models with the Keras Functional
API, there are three possibilities you can use to gather all the input Tensors in the first positional argument:
a single Tensor with input_ids
only and nothing else: model(input_ids)
a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: model([input_ids, attention_mask])
or model([input_ids, attention_mask, token_type_ids])
a dictionary with one or several input Tensors associated to the input names given in the docstring: model({"input_ids": input_ids, "token_type_ids": token_type_ids})
call
Parameters
input_ids (np.ndarray
, tf.Tensor
, List[tf.Tensor]
`Dict[str, tf.Tensor]
or Dict[str, np.ndarray]
and each example must have the shape (batch_size, sequence_length)
) — Indices of input sequence tokens in the vocabulary.
attention_mask (np.ndarray
or tf.Tensor
of shape (batch_size, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]
:
1 for tokens that are not masked,
0 for tokens that are masked.
token_type_ids (np.ndarray
or tf.Tensor
of shape (batch_size, sequence_length)
, optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]
:
0 corresponds to a sentence A token,
1 corresponds to a sentence B token.
position_ids (np.ndarray
or tf.Tensor
of shape (batch_size, sequence_length)
, optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1]
.
head_mask (np.ndarray
or tf.Tensor
of shape (num_heads,)
or (num_layers, num_heads)
, optional) — Mask to nullify selected heads of the self-attention modules. Mask values selected in [0, 1]
:
1 indicates the head is not masked,
0 indicates the head is masked.
inputs_embeds (np.ndarray
or tf.Tensor
of shape (batch_size, sequence_length, hidden_size)
, optional) — Optionally, instead of passing input_ids
you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids
indices into associated vectors than the model’s internal embedding lookup matrix.
output_attentions (bool
, optional) — Whether or not to return the attentions tensors of all attention layers. See attentions
under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead.
output_hidden_states (bool
, optional) — Whether or not to return the hidden states of all layers. See hidden_states
under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead.
training (bool
, optional, defaults to `False“) — Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation).
labels (tf.Tensor
of shape (batch_size, sequence_length)
, optional) — Labels for computing the masked language modeling loss. Indices should be in [-100, 0, ..., config.vocab_size]
(see input_ids
docstring) Tokens with indices set to -100
are ignored (masked), the loss is only computed for the tokens with labels in [0, ..., config.vocab_size]
next_sentence_label (tf.Tensor
of shape (batch_size,)
, optional) — Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair (see input_ids
docstring) Indices should be in [0, 1]
:
0 indicates sequence B is a continuation of sequence A,
1 indicates sequence B is a random sequence.
kwargs (Dict[str, any]
, optional, defaults to {}) — Used to hide legacy arguments that have been deprecated.
Returns
prediction_logits (tf.Tensor
of shape (batch_size, sequence_length, config.vocab_size)
) — Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
seq_relationship_logits (tf.Tensor
of shape (batch_size, 2)
) — Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation before SoftMax).
hidden_states (tuple(tf.Tensor)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of tf.Tensor
(one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size)
.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (tuple(tf.Tensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of tf.Tensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.
Examples:
Copied
( *args**kwargs )
call
Returns
loss (tf.Tensor
of shape (n,)
, optional, where n is the number of non-masked labels, returned when labels
is provided) — Language modeling loss (for next-token prediction).
logits (tf.Tensor
of shape (batch_size, sequence_length, config.vocab_size)
) — Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
hidden_states (tuple(tf.Tensor)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of tf.Tensor
(one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size)
.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (tuple(tf.Tensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of tf.Tensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
cross_attentions (tuple(tf.Tensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of tf.Tensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the decoder’s cross-attention layer, after the attention softmax, used to compute the weighted average in the cross-attention heads.
past_key_values (List[tf.Tensor]
, optional, returned when use_cache=True
is passed or when config.use_cache=True
) — List of tf.Tensor
of length config.n_layers
, with each tensor of shape (2, batch_size, num_heads, sequence_length, embed_size_per_head)
).
Contains pre-computed hidden-states (key and values in the attention blocks) that can be used (see past_key_values
input) to speed up sequential decoding.
encoder_hidden_states (tf.Tensor
of shape (batch_size, sequence_length, hidden_size)
, optional): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder. encoder_attention_mask (tf.Tensor
of shape (batch_size, sequence_length)
, optional): Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in [0, 1]
:
1 for tokens that are not masked,
0 for tokens that are masked.
past_key_values (Tuple[Tuple[tf.Tensor]]
of length config.n_layers
) contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If past_key_values
are used, the user can optionally input only the last decoder_input_ids
(those that don’t have their past key value states given to this model) of shape (batch_size, 1)
instead of all decoder_input_ids
of shape (batch_size, sequence_length)
. use_cache (bool
, optional, defaults to True
): If set to True
, past_key_values
key value states are returned and can be used to speed up decoding (see past_key_values
). Set to False
during training, True
during generation labels (tf.Tensor
or np.ndarray
of shape (batch_size, sequence_length)
, optional): Labels for computing the cross entropy classification loss. Indices should be in [0, ..., config.vocab_size - 1]
.
Example:
Copied
( *args**kwargs )
Parameters
Bert Model with a language modeling
head on top.
TensorFlow models and layers in transformers
accept two formats as input:
having all inputs as keyword arguments (like PyTorch models), or
having all inputs as a list, tuple or dict in the first positional argument.
The reason the second format is supported is that Keras methods prefer this format when passing inputs to models and layers. Because of this support, when using methods like model.fit()
things should “just work” for you - just pass your inputs and labels in any format that model.fit()
supports! If, however, you want to use the second format outside of Keras methods like fit()
and predict()
, such as when creating your own layers or models with the Keras Functional
API, there are three possibilities you can use to gather all the input Tensors in the first positional argument:
a single Tensor with input_ids
only and nothing else: model(input_ids)
a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: model([input_ids, attention_mask])
or model([input_ids, attention_mask, token_type_ids])
a dictionary with one or several input Tensors associated to the input names given in the docstring: model({"input_ids": input_ids, "token_type_ids": token_type_ids})
call
Parameters
input_ids (np.ndarray
, tf.Tensor
, List[tf.Tensor]
`Dict[str, tf.Tensor]
or Dict[str, np.ndarray]
and each example must have the shape (batch_size, sequence_length)
) — Indices of input sequence tokens in the vocabulary.
attention_mask (np.ndarray
or tf.Tensor
of shape (batch_size, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]
:
1 for tokens that are not masked,
0 for tokens that are masked.
token_type_ids (np.ndarray
or tf.Tensor
of shape (batch_size, sequence_length)
, optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]
:
0 corresponds to a sentence A token,
1 corresponds to a sentence B token.
position_ids (np.ndarray
or tf.Tensor
of shape (batch_size, sequence_length)
, optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1]
.
head_mask (np.ndarray
or tf.Tensor
of shape (num_heads,)
or (num_layers, num_heads)
, optional) — Mask to nullify selected heads of the self-attention modules. Mask values selected in [0, 1]
:
1 indicates the head is not masked,
0 indicates the head is masked.
inputs_embeds (np.ndarray
or tf.Tensor
of shape (batch_size, sequence_length, hidden_size)
, optional) — Optionally, instead of passing input_ids
you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids
indices into associated vectors than the model’s internal embedding lookup matrix.
output_attentions (bool
, optional) — Whether or not to return the attentions tensors of all attention layers. See attentions
under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead.
output_hidden_states (bool
, optional) — Whether or not to return the hidden states of all layers. See hidden_states
under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead.
training (bool
, optional, defaults to `False“) — Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation).
labels (tf.Tensor
or np.ndarray
of shape (batch_size, sequence_length)
, optional) — Labels for computing the masked language modeling loss. Indices should be in [-100, 0, ..., config.vocab_size]
(see input_ids
docstring) Tokens with indices set to -100
are ignored (masked), the loss is only computed for the tokens with labels in [0, ..., config.vocab_size]
Returns
loss (tf.Tensor
of shape (n,)
, optional, where n is the number of non-masked labels, returned when labels
is provided) — Masked language modeling (MLM) loss.
logits (tf.Tensor
of shape (batch_size, sequence_length, config.vocab_size)
) — Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
hidden_states (tuple(tf.Tensor)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of tf.Tensor
(one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size)
.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (tuple(tf.Tensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of tf.Tensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.
Example:
Copied
Copied
( *args**kwargs )
Parameters
Bert Model with a next sentence prediction (classification)
head on top.
TensorFlow models and layers in transformers
accept two formats as input:
having all inputs as keyword arguments (like PyTorch models), or
having all inputs as a list, tuple or dict in the first positional argument.
The reason the second format is supported is that Keras methods prefer this format when passing inputs to models and layers. Because of this support, when using methods like model.fit()
things should “just work” for you - just pass your inputs and labels in any format that model.fit()
supports! If, however, you want to use the second format outside of Keras methods like fit()
and predict()
, such as when creating your own layers or models with the Keras Functional
API, there are three possibilities you can use to gather all the input Tensors in the first positional argument:
a single Tensor with input_ids
only and nothing else: model(input_ids)
a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: model([input_ids, attention_mask])
or model([input_ids, attention_mask, token_type_ids])
a dictionary with one or several input Tensors associated to the input names given in the docstring: model({"input_ids": input_ids, "token_type_ids": token_type_ids})
call
Parameters
input_ids (np.ndarray
, tf.Tensor
, List[tf.Tensor]
`Dict[str, tf.Tensor]
or Dict[str, np.ndarray]
and each example must have the shape (batch_size, sequence_length)
) — Indices of input sequence tokens in the vocabulary.
attention_mask (np.ndarray
or tf.Tensor
of shape (batch_size, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]
:
1 for tokens that are not masked,
0 for tokens that are masked.
token_type_ids (np.ndarray
or tf.Tensor
of shape (batch_size, sequence_length)
, optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]
:
0 corresponds to a sentence A token,
1 corresponds to a sentence B token.
position_ids (np.ndarray
or tf.Tensor
of shape (batch_size, sequence_length)
, optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1]
.
head_mask (np.ndarray
or tf.Tensor
of shape (num_heads,)
or (num_layers, num_heads)
, optional) — Mask to nullify selected heads of the self-attention modules. Mask values selected in [0, 1]
:
1 indicates the head is not masked,
0 indicates the head is masked.
inputs_embeds (np.ndarray
or tf.Tensor
of shape (batch_size, sequence_length, hidden_size)
, optional) — Optionally, instead of passing input_ids
you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids
indices into associated vectors than the model’s internal embedding lookup matrix.
output_attentions (bool
, optional) — Whether or not to return the attentions tensors of all attention layers. See attentions
under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead.
output_hidden_states (bool
, optional) — Whether or not to return the hidden states of all layers. See hidden_states
under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead.
training (bool
, optional, defaults to `False“) — Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation).
Returns
loss (tf.Tensor
of shape (n,)
, optional, where n is the number of non-masked labels, returned when next_sentence_label
is provided) — Next sentence prediction loss.
logits (tf.Tensor
of shape (batch_size, 2)
) — Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation before SoftMax).
hidden_states (tuple(tf.Tensor)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of tf.Tensor
(one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size)
.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (tuple(tf.Tensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of tf.Tensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.
Examples:
Copied
( *args**kwargs )
Parameters
Bert Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks.
TensorFlow models and layers in transformers
accept two formats as input:
having all inputs as keyword arguments (like PyTorch models), or
having all inputs as a list, tuple or dict in the first positional argument.
The reason the second format is supported is that Keras methods prefer this format when passing inputs to models and layers. Because of this support, when using methods like model.fit()
things should “just work” for you - just pass your inputs and labels in any format that model.fit()
supports! If, however, you want to use the second format outside of Keras methods like fit()
and predict()
, such as when creating your own layers or models with the Keras Functional
API, there are three possibilities you can use to gather all the input Tensors in the first positional argument:
a single Tensor with input_ids
only and nothing else: model(input_ids)
a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: model([input_ids, attention_mask])
or model([input_ids, attention_mask, token_type_ids])
a dictionary with one or several input Tensors associated to the input names given in the docstring: model({"input_ids": input_ids, "token_type_ids": token_type_ids})
call
Parameters
input_ids (np.ndarray
, tf.Tensor
, List[tf.Tensor]
`Dict[str, tf.Tensor]
or Dict[str, np.ndarray]
and each example must have the shape (batch_size, sequence_length)
) — Indices of input sequence tokens in the vocabulary.
attention_mask (np.ndarray
or tf.Tensor
of shape (batch_size, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]
:
1 for tokens that are not masked,
0 for tokens that are masked.
token_type_ids (np.ndarray
or tf.Tensor
of shape (batch_size, sequence_length)
, optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]
:
0 corresponds to a sentence A token,
1 corresponds to a sentence B token.
position_ids (np.ndarray
or tf.Tensor
of shape (batch_size, sequence_length)
, optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1]
.
head_mask (np.ndarray
or tf.Tensor
of shape (num_heads,)
or (num_layers, num_heads)
, optional) — Mask to nullify selected heads of the self-attention modules. Mask values selected in [0, 1]
:
1 indicates the head is not masked,
0 indicates the head is masked.
inputs_embeds (np.ndarray
or tf.Tensor
of shape (batch_size, sequence_length, hidden_size)
, optional) — Optionally, instead of passing input_ids
you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids
indices into associated vectors than the model’s internal embedding lookup matrix.
output_attentions (bool
, optional) — Whether or not to return the attentions tensors of all attention layers. See attentions
under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead.
output_hidden_states (bool
, optional) — Whether or not to return the hidden states of all layers. See hidden_states
under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead.
training (bool
, optional, defaults to `False“) — Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation).
labels (tf.Tensor
or np.ndarray
of shape (batch_size,)
, optional) — Labels for computing the sequence classification/regression loss. Indices should be in [0, ..., config.num_labels - 1]
. If config.num_labels == 1
a regression loss is computed (Mean-Square loss), If config.num_labels > 1
a classification loss is computed (Cross-Entropy).
Returns
loss (tf.Tensor
of shape (batch_size, )
, optional, returned when labels
is provided) — Classification (or regression if config.num_labels==1) loss.
logits (tf.Tensor
of shape (batch_size, config.num_labels)
) — Classification (or regression if config.num_labels==1) scores (before SoftMax).
hidden_states (tuple(tf.Tensor)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of tf.Tensor
(one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size)
.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (tuple(tf.Tensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of tf.Tensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.
Example:
Copied
Copied
( *args**kwargs )
Parameters
Bert Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a softmax) e.g. for RocStories/SWAG tasks.
TensorFlow models and layers in transformers
accept two formats as input:
having all inputs as keyword arguments (like PyTorch models), or
having all inputs as a list, tuple or dict in the first positional argument.
The reason the second format is supported is that Keras methods prefer this format when passing inputs to models and layers. Because of this support, when using methods like model.fit()
things should “just work” for you - just pass your inputs and labels in any format that model.fit()
supports! If, however, you want to use the second format outside of Keras methods like fit()
and predict()
, such as when creating your own layers or models with the Keras Functional
API, there are three possibilities you can use to gather all the input Tensors in the first positional argument:
a single Tensor with input_ids
only and nothing else: model(input_ids)
a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: model([input_ids, attention_mask])
or model([input_ids, attention_mask, token_type_ids])
a dictionary with one or several input Tensors associated to the input names given in the docstring: model({"input_ids": input_ids, "token_type_ids": token_type_ids})
call
Parameters
input_ids (np.ndarray
, tf.Tensor
, List[tf.Tensor]
`Dict[str, tf.Tensor]
or Dict[str, np.ndarray]
and each example must have the shape (batch_size, num_choices, sequence_length)
) — Indices of input sequence tokens in the vocabulary.
attention_mask (np.ndarray
or tf.Tensor
of shape (batch_size, num_choices, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]
:
1 for tokens that are not masked,
0 for tokens that are masked.
token_type_ids (np.ndarray
or tf.Tensor
of shape (batch_size, num_choices, sequence_length)
, optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]
:
0 corresponds to a sentence A token,
1 corresponds to a sentence B token.
position_ids (np.ndarray
or tf.Tensor
of shape (batch_size, num_choices, sequence_length)
, optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1]
.
head_mask (np.ndarray
or tf.Tensor
of shape (num_heads,)
or (num_layers, num_heads)
, optional) — Mask to nullify selected heads of the self-attention modules. Mask values selected in [0, 1]
:
1 indicates the head is not masked,
0 indicates the head is masked.
inputs_embeds (np.ndarray
or tf.Tensor
of shape (batch_size, num_choices, sequence_length, hidden_size)
, optional) — Optionally, instead of passing input_ids
you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids
indices into associated vectors than the model’s internal embedding lookup matrix.
output_attentions (bool
, optional) — Whether or not to return the attentions tensors of all attention layers. See attentions
under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead.
output_hidden_states (bool
, optional) — Whether or not to return the hidden states of all layers. See hidden_states
under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead.
training (bool
, optional, defaults to `False“) — Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation).
labels (tf.Tensor
or np.ndarray
of shape (batch_size,)
, optional) — Labels for computing the multiple choice classification loss. Indices should be in [0, ..., num_choices]
where num_choices
is the size of the second dimension of the input tensors. (See input_ids
above)
Returns
loss (tf.Tensor
of shape (batch_size, ), optional, returned when labels
is provided) — Classification loss.
logits (tf.Tensor
of shape (batch_size, num_choices)
) — num_choices is the second dimension of the input tensors. (see input_ids above).
Classification scores (before SoftMax).
hidden_states (tuple(tf.Tensor)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of tf.Tensor
(one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size)
.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (tuple(tf.Tensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of tf.Tensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.
Example:
Copied
( *args**kwargs )
Parameters
Bert Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks.
TensorFlow models and layers in transformers
accept two formats as input:
having all inputs as keyword arguments (like PyTorch models), or
having all inputs as a list, tuple or dict in the first positional argument.
The reason the second format is supported is that Keras methods prefer this format when passing inputs to models and layers. Because of this support, when using methods like model.fit()
things should “just work” for you - just pass your inputs and labels in any format that model.fit()
supports! If, however, you want to use the second format outside of Keras methods like fit()
and predict()
, such as when creating your own layers or models with the Keras Functional
API, there are three possibilities you can use to gather all the input Tensors in the first positional argument:
a single Tensor with input_ids
only and nothing else: model(input_ids)
a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: model([input_ids, attention_mask])
or model([input_ids, attention_mask, token_type_ids])
a dictionary with one or several input Tensors associated to the input names given in the docstring: model({"input_ids": input_ids, "token_type_ids": token_type_ids})
call
Parameters
input_ids (np.ndarray
, tf.Tensor
, List[tf.Tensor]
`Dict[str, tf.Tensor]
or Dict[str, np.ndarray]
and each example must have the shape (batch_size, sequence_length)
) — Indices of input sequence tokens in the vocabulary.
attention_mask (np.ndarray
or tf.Tensor
of shape (batch_size, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]
:
1 for tokens that are not masked,
0 for tokens that are masked.
token_type_ids (np.ndarray
or tf.Tensor
of shape (batch_size, sequence_length)
, optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]
:
0 corresponds to a sentence A token,
1 corresponds to a sentence B token.
position_ids (np.ndarray
or tf.Tensor
of shape (batch_size, sequence_length)
, optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1]
.
head_mask (np.ndarray
or tf.Tensor
of shape (num_heads,)
or (num_layers, num_heads)
, optional) — Mask to nullify selected heads of the self-attention modules. Mask values selected in [0, 1]
:
1 indicates the head is not masked,
0 indicates the head is masked.
inputs_embeds (np.ndarray
or tf.Tensor
of shape (batch_size, sequence_length, hidden_size)
, optional) — Optionally, instead of passing input_ids
you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids
indices into associated vectors than the model’s internal embedding lookup matrix.
output_attentions (bool
, optional) — Whether or not to return the attentions tensors of all attention layers. See attentions
under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead.
output_hidden_states (bool
, optional) — Whether or not to return the hidden states of all layers. See hidden_states
under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead.
training (bool
, optional, defaults to `False“) — Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation).
labels (tf.Tensor
or np.ndarray
of shape (batch_size, sequence_length)
, optional) — Labels for computing the token classification loss. Indices should be in [0, ..., config.num_labels - 1]
.
Returns
loss (tf.Tensor
of shape (n,)
, optional, where n is the number of unmasked labels, returned when labels
is provided) — Classification loss.
logits (tf.Tensor
of shape (batch_size, sequence_length, config.num_labels)
) — Classification scores (before SoftMax).
hidden_states (tuple(tf.Tensor)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of tf.Tensor
(one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size)
.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (tuple(tf.Tensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of tf.Tensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.
Example:
Copied
Copied
( *args**kwargs )
Parameters
Bert Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layer on top of the hidden-states output to compute span start logits
and span end logits
).
TensorFlow models and layers in transformers
accept two formats as input:
having all inputs as keyword arguments (like PyTorch models), or
having all inputs as a list, tuple or dict in the first positional argument.
The reason the second format is supported is that Keras methods prefer this format when passing inputs to models and layers. Because of this support, when using methods like model.fit()
things should “just work” for you - just pass your inputs and labels in any format that model.fit()
supports! If, however, you want to use the second format outside of Keras methods like fit()
and predict()
, such as when creating your own layers or models with the Keras Functional
API, there are three possibilities you can use to gather all the input Tensors in the first positional argument:
a single Tensor with input_ids
only and nothing else: model(input_ids)
a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: model([input_ids, attention_mask])
or model([input_ids, attention_mask, token_type_ids])
a dictionary with one or several input Tensors associated to the input names given in the docstring: model({"input_ids": input_ids, "token_type_ids": token_type_ids})
call
Parameters
input_ids (np.ndarray
, tf.Tensor
, List[tf.Tensor]
`Dict[str, tf.Tensor]
or Dict[str, np.ndarray]
and each example must have the shape (batch_size, sequence_length)
) — Indices of input sequence tokens in the vocabulary.
attention_mask (np.ndarray
or tf.Tensor
of shape (batch_size, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]
:
1 for tokens that are not masked,
0 for tokens that are masked.
token_type_ids (np.ndarray
or tf.Tensor
of shape (batch_size, sequence_length)
, optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]
:
0 corresponds to a sentence A token,
1 corresponds to a sentence B token.
position_ids (np.ndarray
or tf.Tensor
of shape (batch_size, sequence_length)
, optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1]
.
head_mask (np.ndarray
or tf.Tensor
of shape (num_heads,)
or (num_layers, num_heads)
, optional) — Mask to nullify selected heads of the self-attention modules. Mask values selected in [0, 1]
:
1 indicates the head is not masked,
0 indicates the head is masked.
inputs_embeds (np.ndarray
or tf.Tensor
of shape (batch_size, sequence_length, hidden_size)
, optional) — Optionally, instead of passing input_ids
you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids
indices into associated vectors than the model’s internal embedding lookup matrix.
output_attentions (bool
, optional) — Whether or not to return the attentions tensors of all attention layers. See attentions
under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead.
output_hidden_states (bool
, optional) — Whether or not to return the hidden states of all layers. See hidden_states
under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead.
training (bool
, optional, defaults to `False“) — Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation).
start_positions (tf.Tensor
or np.ndarray
of shape (batch_size,)
, optional) — Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (sequence_length
). Position outside of the sequence are not taken into account for computing the loss.
end_positions (tf.Tensor
or np.ndarray
of shape (batch_size,)
, optional) — Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (sequence_length
). Position outside of the sequence are not taken into account for computing the loss.
Returns
loss (tf.Tensor
of shape (batch_size, )
, optional, returned when start_positions
and end_positions
are provided) — Total span extraction loss is the sum of a Cross-Entropy for the start and end positions.
start_logits (tf.Tensor
of shape (batch_size, sequence_length)
) — Span-start scores (before SoftMax).
end_logits (tf.Tensor
of shape (batch_size, sequence_length)
) — Span-end scores (before SoftMax).
hidden_states (tuple(tf.Tensor)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of tf.Tensor
(one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size)
.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (tuple(tf.Tensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of tf.Tensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.
Example:
Copied
Copied
( config: BertConfiginput_shape: typing.Tuple = (1, 1)seed: int = 0dtype: dtype = <class 'jax.numpy.float32'>_do_init: bool = Truegradient_checkpointing: bool = False**kwargs )
Parameters
dtype (jax.numpy.dtype
, optional, defaults to jax.numpy.float32
) — The data type of the computation. Can be one of jax.numpy.float32
, jax.numpy.float16
(on GPUs) and jax.numpy.bfloat16
(on TPUs).
This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If specified all the computation will be performed with the given dtype
.
Note that this only specifies the dtype of the computation and does not influence the dtype of model parameters.
dtype (jax.numpy.dtype
, optional, defaults to jax.numpy.float32
) — The data type of the computation. Can be one of jax.numpy.float32
, jax.numpy.float16
(on GPUs) and jax.numpy.bfloat16
(on TPUs).
This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If specified all the computation will be performed with the given dtype
.
Note that this only specifies the dtype of the computation and does not influence the dtype of model parameters.
The bare Bert Model transformer outputting raw hidden-states without any specific head on top.
Finally, this model supports inherent JAX features such as:
__call__
Parameters
input_ids (numpy.ndarray
of shape (batch_size, sequence_length)
) — Indices of input sequence tokens in the vocabulary.
attention_mask (numpy.ndarray
of shape (batch_size, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]
:
1 for tokens that are not masked,
0 for tokens that are masked.
token_type_ids (numpy.ndarray
of shape (batch_size, sequence_length)
, optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]
:
0 corresponds to a sentence A token,
1 corresponds to a sentence B token.
position_ids (numpy.ndarray
of shape (batch_size, sequence_length)
, optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1]
.
head_mask (numpy.ndarray
of shape (batch_size, sequence_length)
, optional) -- Mask to nullify selected heads of the attention modules. Mask values selected in
[0, 1]`:
1 indicates the head is not masked,
0 indicates the head is masked.
Returns
last_hidden_state (jnp.ndarray
of shape (batch_size, sequence_length, hidden_size)
) — Sequence of hidden-states at the output of the last layer of the model.
pooler_output (jnp.ndarray
of shape (batch_size, hidden_size)
) — Last layer hidden-state of the first token of the sequence (classification token) further processed by a Linear layer and a Tanh activation function. The Linear layer weights are trained from the next sentence prediction (classification) objective during pretraining.
hidden_states (tuple(jnp.ndarray)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of jnp.ndarray
(one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size)
.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (tuple(jnp.ndarray)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of jnp.ndarray
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
The FlaxBertPreTrainedModel
forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.
Example:
Copied
( config: BertConfiginput_shape: typing.Tuple = (1, 1)seed: int = 0dtype: dtype = <class 'jax.numpy.float32'>_do_init: bool = Truegradient_checkpointing: bool = False**kwargs )
Parameters
dtype (jax.numpy.dtype
, optional, defaults to jax.numpy.float32
) — The data type of the computation. Can be one of jax.numpy.float32
, jax.numpy.float16
(on GPUs) and jax.numpy.bfloat16
(on TPUs).
This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If specified all the computation will be performed with the given dtype
.
Note that this only specifies the dtype of the computation and does not influence the dtype of model parameters.
dtype (jax.numpy.dtype
, optional, defaults to jax.numpy.float32
) — The data type of the computation. Can be one of jax.numpy.float32
, jax.numpy.float16
(on GPUs) and jax.numpy.bfloat16
(on TPUs).
This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If specified all the computation will be performed with the given dtype
.
Note that this only specifies the dtype of the computation and does not influence the dtype of model parameters.
Bert Model with two heads on top as done during the pretraining: a masked language modeling
head and a next sentence prediction (classification)
head.
Finally, this model supports inherent JAX features such as:
__call__
Parameters
input_ids (numpy.ndarray
of shape (batch_size, sequence_length)
) — Indices of input sequence tokens in the vocabulary.
attention_mask (numpy.ndarray
of shape (batch_size, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]
:
1 for tokens that are not masked,
0 for tokens that are masked.
token_type_ids (numpy.ndarray
of shape (batch_size, sequence_length)
, optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]
:
0 corresponds to a sentence A token,
1 corresponds to a sentence B token.
position_ids (numpy.ndarray
of shape (batch_size, sequence_length)
, optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1]
.
head_mask (numpy.ndarray
of shape (batch_size, sequence_length)
, optional) -- Mask to nullify selected heads of the attention modules. Mask values selected in
[0, 1]`:
1 indicates the head is not masked,
0 indicates the head is masked.
Returns
prediction_logits (jnp.ndarray
of shape (batch_size, sequence_length, config.vocab_size)
) — Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
seq_relationship_logits (jnp.ndarray
of shape (batch_size, 2)
) — Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation before SoftMax).
hidden_states (tuple(jnp.ndarray)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of jnp.ndarray
(one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size)
.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (tuple(jnp.ndarray)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of jnp.ndarray
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
The FlaxBertPreTrainedModel
forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.
Example:
Copied
( config: BertConfiginput_shape: typing.Tuple = (1, 1)seed: int = 0dtype: dtype = <class 'jax.numpy.float32'>_do_init: bool = Truegradient_checkpointing: bool = False**kwargs )
Parameters
dtype (jax.numpy.dtype
, optional, defaults to jax.numpy.float32
) — The data type of the computation. Can be one of jax.numpy.float32
, jax.numpy.float16
(on GPUs) and jax.numpy.bfloat16
(on TPUs).
This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If specified all the computation will be performed with the given dtype
.
Note that this only specifies the dtype of the computation and does not influence the dtype of model parameters.
dtype (jax.numpy.dtype
, optional, defaults to jax.numpy.float32
) — The data type of the computation. Can be one of jax.numpy.float32
, jax.numpy.float16
(on GPUs) and jax.numpy.bfloat16
(on TPUs).
This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If specified all the computation will be performed with the given dtype
.
Note that this only specifies the dtype of the computation and does not influence the dtype of model parameters.
Bert Model with a language modeling head on top (a linear layer on top of the hidden-states output) e.g for autoregressive tasks.
Finally, this model supports inherent JAX features such as:
__call__
Parameters
input_ids (numpy.ndarray
of shape (batch_size, sequence_length)
) — Indices of input sequence tokens in the vocabulary.
attention_mask (numpy.ndarray
of shape (batch_size, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]
:
1 for tokens that are not masked,
0 for tokens that are masked.
token_type_ids (numpy.ndarray
of shape (batch_size, sequence_length)
, optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]
:
0 corresponds to a sentence A token,
1 corresponds to a sentence B token.
position_ids (numpy.ndarray
of shape (batch_size, sequence_length)
, optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1]
.
head_mask (numpy.ndarray
of shape (batch_size, sequence_length)
, optional) -- Mask to nullify selected heads of the attention modules. Mask values selected in
[0, 1]`:
1 indicates the head is not masked,
0 indicates the head is masked.
Returns
logits (jnp.ndarray
of shape (batch_size, sequence_length, config.vocab_size)
) — Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
hidden_states (tuple(jnp.ndarray)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of jnp.ndarray
(one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size)
.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (tuple(jnp.ndarray)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of jnp.ndarray
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
cross_attentions (tuple(jnp.ndarray)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of jnp.ndarray
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Cross attentions weights after the attention softmax, used to compute the weighted average in the cross-attention heads.
past_key_values (tuple(tuple(jnp.ndarray))
, optional, returned when use_cache=True
is passed or when config.use_cache=True
) — Tuple of jnp.ndarray
tuples of length config.n_layers
, with each tuple containing the cached key, value states of the self-attention and the cross-attention layers if model is used in encoder-decoder setting. Only relevant if config.is_decoder = True
.
Contains pre-computed hidden-states (key and values in the attention blocks) that can be used (see past_key_values
input) to speed up sequential decoding.
The FlaxBertPreTrainedModel
forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.
Example:
Copied
( config: BertConfiginput_shape: typing.Tuple = (1, 1)seed: int = 0dtype: dtype = <class 'jax.numpy.float32'>_do_init: bool = Truegradient_checkpointing: bool = False**kwargs )
Parameters
dtype (jax.numpy.dtype
, optional, defaults to jax.numpy.float32
) — The data type of the computation. Can be one of jax.numpy.float32
, jax.numpy.float16
(on GPUs) and jax.numpy.bfloat16
(on TPUs).
This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If specified all the computation will be performed with the given dtype
.
Note that this only specifies the dtype of the computation and does not influence the dtype of model parameters.
dtype (jax.numpy.dtype
, optional, defaults to jax.numpy.float32
) — The data type of the computation. Can be one of jax.numpy.float32
, jax.numpy.float16
(on GPUs) and jax.numpy.bfloat16
(on TPUs).
This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If specified all the computation will be performed with the given dtype
.
Note that this only specifies the dtype of the computation and does not influence the dtype of model parameters.
Bert Model with a language modeling
head on top.
Finally, this model supports inherent JAX features such as:
__call__
Parameters
input_ids (numpy.ndarray
of shape (batch_size, sequence_length)
) — Indices of input sequence tokens in the vocabulary.
attention_mask (numpy.ndarray
of shape (batch_size, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]
:
1 for tokens that are not masked,
0 for tokens that are masked.
token_type_ids (numpy.ndarray
of shape (batch_size, sequence_length)
, optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]
:
0 corresponds to a sentence A token,
1 corresponds to a sentence B token.
position_ids (numpy.ndarray
of shape (batch_size, sequence_length)
, optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1]
.
head_mask (numpy.ndarray
of shape (batch_size, sequence_length)
, optional) -- Mask to nullify selected heads of the attention modules. Mask values selected in
[0, 1]`:
1 indicates the head is not masked,
0 indicates the head is masked.
Returns
logits (jnp.ndarray
of shape (batch_size, sequence_length, config.vocab_size)
) — Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
hidden_states (tuple(jnp.ndarray)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of jnp.ndarray
(one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size)
.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (tuple(jnp.ndarray)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of jnp.ndarray
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
The FlaxBertPreTrainedModel
forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.
Example:
Copied
( config: BertConfiginput_shape: typing.Tuple = (1, 1)seed: int = 0dtype: dtype = <class 'jax.numpy.float32'>_do_init: bool = Truegradient_checkpointing: bool = False**kwargs )
Parameters
dtype (jax.numpy.dtype
, optional, defaults to jax.numpy.float32
) — The data type of the computation. Can be one of jax.numpy.float32
, jax.numpy.float16
(on GPUs) and jax.numpy.bfloat16
(on TPUs).
This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If specified all the computation will be performed with the given dtype
.
Note that this only specifies the dtype of the computation and does not influence the dtype of model parameters.
dtype (jax.numpy.dtype
, optional, defaults to jax.numpy.float32
) — The data type of the computation. Can be one of jax.numpy.float32
, jax.numpy.float16
(on GPUs) and jax.numpy.bfloat16
(on TPUs).
This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If specified all the computation will be performed with the given dtype
.
Note that this only specifies the dtype of the computation and does not influence the dtype of model parameters.
Bert Model with a next sentence prediction (classification)
head on top.
Finally, this model supports inherent JAX features such as:
__call__
Parameters
input_ids (numpy.ndarray
of shape (batch_size, sequence_length)
) — Indices of input sequence tokens in the vocabulary.
attention_mask (numpy.ndarray
of shape (batch_size, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]
:
1 for tokens that are not masked,
0 for tokens that are masked.
token_type_ids (numpy.ndarray
of shape (batch_size, sequence_length)
, optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]
:
0 corresponds to a sentence A token,
1 corresponds to a sentence B token.
position_ids (numpy.ndarray
of shape (batch_size, sequence_length)
, optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1]
.
head_mask (numpy.ndarray
of shape (batch_size, sequence_length)
, optional) -- Mask to nullify selected heads of the attention modules. Mask values selected in
[0, 1]`:
1 indicates the head is not masked,
0 indicates the head is masked.
Returns
logits (jnp.ndarray
of shape (batch_size, 2)
) — Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation before SoftMax).
hidden_states (tuple(jnp.ndarray)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of jnp.ndarray
(one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size)
.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (tuple(jnp.ndarray)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of jnp.ndarray
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
The FlaxBertPreTrainedModel
forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.
Example:
Copied
( config: BertConfiginput_shape: typing.Tuple = (1, 1)seed: int = 0dtype: dtype = <class 'jax.numpy.float32'>_do_init: bool = Truegradient_checkpointing: bool = False**kwargs )
Parameters
dtype (jax.numpy.dtype
, optional, defaults to jax.numpy.float32
) — The data type of the computation. Can be one of jax.numpy.float32
, jax.numpy.float16
(on GPUs) and jax.numpy.bfloat16
(on TPUs).
This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If specified all the computation will be performed with the given dtype
.
Note that this only specifies the dtype of the computation and does not influence the dtype of model parameters.
dtype (jax.numpy.dtype
, optional, defaults to jax.numpy.float32
) — The data type of the computation. Can be one of jax.numpy.float32
, jax.numpy.float16
(on GPUs) and jax.numpy.bfloat16
(on TPUs).
This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If specified all the computation will be performed with the given dtype
.
Note that this only specifies the dtype of the computation and does not influence the dtype of model parameters.
Bert Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks.
Finally, this model supports inherent JAX features such as:
__call__
Parameters
input_ids (numpy.ndarray
of shape (batch_size, sequence_length)
) — Indices of input sequence tokens in the vocabulary.
attention_mask (numpy.ndarray
of shape (batch_size, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]
:
1 for tokens that are not masked,
0 for tokens that are masked.
token_type_ids (numpy.ndarray
of shape (batch_size, sequence_length)
, optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]
:
0 corresponds to a sentence A token,
1 corresponds to a sentence B token.
position_ids (numpy.ndarray
of shape (batch_size, sequence_length)
, optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1]
.
head_mask (numpy.ndarray
of shape (batch_size, sequence_length)
, optional) -- Mask to nullify selected heads of the attention modules. Mask values selected in
[0, 1]`:
1 indicates the head is not masked,
0 indicates the head is masked.
Returns
logits (jnp.ndarray
of shape (batch_size, config.num_labels)
) — Classification (or regression if config.num_labels==1) scores (before SoftMax).
hidden_states (tuple(jnp.ndarray)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of jnp.ndarray
(one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size)
.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (tuple(jnp.ndarray)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of jnp.ndarray
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
The FlaxBertPreTrainedModel
forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.
Example:
Copied
( config: BertConfiginput_shape: typing.Tuple = (1, 1)seed: int = 0dtype: dtype = <class 'jax.numpy.float32'>_do_init: bool = Truegradient_checkpointing: bool = False**kwargs )
Parameters
dtype (jax.numpy.dtype
, optional, defaults to jax.numpy.float32
) — The data type of the computation. Can be one of jax.numpy.float32
, jax.numpy.float16
(on GPUs) and jax.numpy.bfloat16
(on TPUs).
This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If specified all the computation will be performed with the given dtype
.
Note that this only specifies the dtype of the computation and does not influence the dtype of model parameters.
dtype (jax.numpy.dtype
, optional, defaults to jax.numpy.float32
) — The data type of the computation. Can be one of jax.numpy.float32
, jax.numpy.float16
(on GPUs) and jax.numpy.bfloat16
(on TPUs).
This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If specified all the computation will be performed with the given dtype
.
Note that this only specifies the dtype of the computation and does not influence the dtype of model parameters.
Bert Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a softmax) e.g. for RocStories/SWAG tasks.
Finally, this model supports inherent JAX features such as:
__call__
Parameters
input_ids (numpy.ndarray
of shape (batch_size, num_choices, sequence_length)
) — Indices of input sequence tokens in the vocabulary.
attention_mask (numpy.ndarray
of shape (batch_size, num_choices, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]
:
1 for tokens that are not masked,
0 for tokens that are masked.
token_type_ids (numpy.ndarray
of shape (batch_size, num_choices, sequence_length)
, optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]
:
0 corresponds to a sentence A token,
1 corresponds to a sentence B token.
position_ids (numpy.ndarray
of shape (batch_size, num_choices, sequence_length)
, optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1]
.
head_mask (numpy.ndarray
of shape (batch_size, num_choices, sequence_length)
, optional) -- Mask to nullify selected heads of the attention modules. Mask values selected in
[0, 1]`:
1 indicates the head is not masked,
0 indicates the head is masked.
Returns
logits (jnp.ndarray
of shape (batch_size, num_choices)
) — num_choices is the second dimension of the input tensors. (see input_ids above).
Classification scores (before SoftMax).
hidden_states (tuple(jnp.ndarray)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of jnp.ndarray
(one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size)
.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (tuple(jnp.ndarray)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of jnp.ndarray
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
The FlaxBertPreTrainedModel
forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.
Example:
Copied
( config: BertConfiginput_shape: typing.Tuple = (1, 1)seed: int = 0dtype: dtype = <class 'jax.numpy.float32'>_do_init: bool = Truegradient_checkpointing: bool = False**kwargs )
Parameters
dtype (jax.numpy.dtype
, optional, defaults to jax.numpy.float32
) — The data type of the computation. Can be one of jax.numpy.float32
, jax.numpy.float16
(on GPUs) and jax.numpy.bfloat16
(on TPUs).
This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If specified all the computation will be performed with the given dtype
.
Note that this only specifies the dtype of the computation and does not influence the dtype of model parameters.
dtype (jax.numpy.dtype
, optional, defaults to jax.numpy.float32
) — The data type of the computation. Can be one of jax.numpy.float32
, jax.numpy.float16
(on GPUs) and jax.numpy.bfloat16
(on TPUs).
This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If specified all the computation will be performed with the given dtype
.
Note that this only specifies the dtype of the computation and does not influence the dtype of model parameters.
Bert Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks.
Finally, this model supports inherent JAX features such as:
__call__
Parameters
input_ids (numpy.ndarray
of shape (batch_size, sequence_length)
) — Indices of input sequence tokens in the vocabulary.
attention_mask (numpy.ndarray
of shape (batch_size, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]
:
1 for tokens that are not masked,
0 for tokens that are masked.
token_type_ids (numpy.ndarray
of shape (batch_size, sequence_length)
, optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]
:
0 corresponds to a sentence A token,
1 corresponds to a sentence B token.
position_ids (numpy.ndarray
of shape (batch_size, sequence_length)
, optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1]
.
head_mask (numpy.ndarray
of shape (batch_size, sequence_length)
, optional) -- Mask to nullify selected heads of the attention modules. Mask values selected in
[0, 1]`:
1 indicates the head is not masked,
0 indicates the head is masked.
Returns
logits (jnp.ndarray
of shape (batch_size, sequence_length, config.num_labels)
) — Classification scores (before SoftMax).
hidden_states (tuple(jnp.ndarray)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of jnp.ndarray
(one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size)
.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (tuple(jnp.ndarray)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of jnp.ndarray
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
The FlaxBertPreTrainedModel
forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.
Example:
Copied
( config: BertConfiginput_shape: typing.Tuple = (1, 1)seed: int = 0dtype: dtype = <class 'jax.numpy.float32'>_do_init: bool = Truegradient_checkpointing: bool = False**kwargs )
Parameters
dtype (jax.numpy.dtype
, optional, defaults to jax.numpy.float32
) — The data type of the computation. Can be one of jax.numpy.float32
, jax.numpy.float16
(on GPUs) and jax.numpy.bfloat16
(on TPUs).
This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If specified all the computation will be performed with the given dtype
.
Note that this only specifies the dtype of the computation and does not influence the dtype of model parameters.
dtype (jax.numpy.dtype
, optional, defaults to jax.numpy.float32
) — The data type of the computation. Can be one of jax.numpy.float32
, jax.numpy.float16
(on GPUs) and jax.numpy.bfloat16
(on TPUs).
This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If specified all the computation will be performed with the given dtype
.
Note that this only specifies the dtype of the computation and does not influence the dtype of model parameters.
Bert Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of the hidden-states output to compute span start logits
and span end logits
).
Finally, this model supports inherent JAX features such as:
__call__
Parameters
input_ids (numpy.ndarray
of shape (batch_size, sequence_length)
) — Indices of input sequence tokens in the vocabulary.
attention_mask (numpy.ndarray
of shape (batch_size, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]
:
1 for tokens that are not masked,
0 for tokens that are masked.
token_type_ids (numpy.ndarray
of shape (batch_size, sequence_length)
, optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]
:
0 corresponds to a sentence A token,
1 corresponds to a sentence B token.
position_ids (numpy.ndarray
of shape (batch_size, sequence_length)
, optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1]
.
head_mask (numpy.ndarray
of shape (batch_size, sequence_length)
, optional) -- Mask to nullify selected heads of the attention modules. Mask values selected in
[0, 1]`:
1 indicates the head is not masked,
0 indicates the head is masked.
Returns
start_logits (jnp.ndarray
of shape (batch_size, sequence_length)
) — Span-start scores (before SoftMax).
end_logits (jnp.ndarray
of shape (batch_size, sequence_length)
) — Span-end scores (before SoftMax).
hidden_states (tuple(jnp.ndarray)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of jnp.ndarray
(one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size)
.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (tuple(jnp.ndarray)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of jnp.ndarray
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
The FlaxBertPreTrainedModel
forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.
Example:
Copied
A blog post on .
A notebook for .
A notebook on how to . 🌎
A notebook on how to .
is supported by this and .
is supported by this and .
is supported by this and .
A blog post on how to use .
A notebook for using only the first wordpiece of each word in the word label during tokenization. To propagate the label of the word to all wordpieces, see this of the notebook instead.
is supported by this and .
is supported by this and .
is supported by this .
chapter of the 🌎 BOINC AI Course.
is supported by this and .
is supported by this and .
is supported by this and .
chapter of the 🌎 BOINC AI Course.
is supported by this and .
is supported by this and .
is supported by this .
chapter of the 🌎 BOINC AI Course.
is supported by this and .
is supported by this and .
A blog post on how to .
A blog post on how to .
A blog post on .
A blog post on how to .
A blog post on how to .
A blog post on .
A blog post on .
A blog post on .
A blog post on .
vocab_size (int
, optional, defaults to 30522) — Vocabulary size of the BERT model. Defines the number of different tokens that can be represented by the inputs_ids
passed when calling or .
type_vocab_size (int
, optional, defaults to 2) — The vocabulary size of the token_type_ids
passed when calling or .
position_embedding_type (str
, optional, defaults to "absolute"
) — Type of position embedding. Choose one of "absolute"
, "relative_key"
, "relative_key_query"
. For positional embeddings use "absolute"
. For more information on "relative_key"
, please refer to . For more information on "relative_key_query"
, please refer to Method 4 in .
This is the configuration class to store the configuration of a or a . It is used to instantiate a BERT model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the BERT architecture.
Configuration objects inherit from and can be used to control the model outputs. Read the documentation from for more information.
This should likely be deactivated for Japanese (see this ).
This tokenizer inherits from which contains most of the main methods. Users should refer to this superclass for more information regarding those methods.
List of with the appropriate special tokens.
List of according to the given sequence(s).
tokenize_chinese_chars (bool
, optional, defaults to True
) — Whether or not to tokenize Chinese characters. This should likely be deactivated for Japanese (see ).
This tokenizer inherits from which contains most of the main methods. Users should refer to this superclass for more information regarding those methods.
List of with the appropriate special tokens.
List of according to the given sequence(s).
Output type of .
Output type of .
Output type of .
config () — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the method to load the model weights.
This model inherits from . Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)
This model is also a PyTorch subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of cross-attention is added between the self-attention layers, following the architecture described in by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin.
( input_ids: typing.Optional[torch.Tensor] = Noneattention_mask: typing.Optional[torch.Tensor] = Nonetoken_type_ids: typing.Optional[torch.Tensor] = Noneposition_ids: typing.Optional[torch.Tensor] = Nonehead_mask: typing.Optional[torch.Tensor] = Noneinputs_embeds: typing.Optional[torch.Tensor] = Noneencoder_hidden_states: typing.Optional[torch.Tensor] = Noneencoder_attention_mask: typing.Optional[torch.Tensor] = Nonepast_key_values: typing.Optional[typing.List[torch.FloatTensor]] = Noneuse_cache: typing.Optional[bool] = Noneoutput_attentions: typing.Optional[bool] = Noneoutput_hidden_states: typing.Optional[bool] = Nonereturn_dict: typing.Optional[bool] = None ) → or tuple(torch.FloatTensor)
Indices can be obtained using . See and for details.
return_dict (bool
, optional) — Whether or not to return a instead of a plain tuple.
or tuple(torch.FloatTensor)
A or a tuple of torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various elements depending on the configuration () and inputs.
The forward method, overrides the __call__
special method.
config () — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the method to load the model weights.
This model inherits from . Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)
This model is also a PyTorch subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
( input_ids: typing.Optional[torch.Tensor] = Noneattention_mask: typing.Optional[torch.Tensor] = Nonetoken_type_ids: typing.Optional[torch.Tensor] = Noneposition_ids: typing.Optional[torch.Tensor] = Nonehead_mask: typing.Optional[torch.Tensor] = Noneinputs_embeds: typing.Optional[torch.Tensor] = Nonelabels: typing.Optional[torch.Tensor] = Nonenext_sentence_label: typing.Optional[torch.Tensor] = Noneoutput_attentions: typing.Optional[bool] = Noneoutput_hidden_states: typing.Optional[bool] = Nonereturn_dict: typing.Optional[bool] = None ) → or tuple(torch.FloatTensor)
Indices can be obtained using . See and for details.
return_dict (bool
, optional) — Whether or not to return a instead of a plain tuple.
or tuple(torch.FloatTensor)
A or a tuple of torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various elements depending on the configuration () and inputs.
The forward method, overrides the __call__
special method.
config () — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the method to load the model weights.
This model inherits from . Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)
This model is also a PyTorch subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
( input_ids: typing.Optional[torch.Tensor] = Noneattention_mask: typing.Optional[torch.Tensor] = Nonetoken_type_ids: typing.Optional[torch.Tensor] = Noneposition_ids: typing.Optional[torch.Tensor] = Nonehead_mask: typing.Optional[torch.Tensor] = Noneinputs_embeds: typing.Optional[torch.Tensor] = Noneencoder_hidden_states: typing.Optional[torch.Tensor] = Noneencoder_attention_mask: typing.Optional[torch.Tensor] = Nonelabels: typing.Optional[torch.Tensor] = Nonepast_key_values: typing.Optional[typing.List[torch.Tensor]] = Noneuse_cache: typing.Optional[bool] = Noneoutput_attentions: typing.Optional[bool] = Noneoutput_hidden_states: typing.Optional[bool] = Nonereturn_dict: typing.Optional[bool] = None ) → or tuple(torch.FloatTensor)
Indices can be obtained using . See and for details.
return_dict (bool
, optional) — Whether or not to return a instead of a plain tuple.
or tuple(torch.FloatTensor)
A or a tuple of torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various elements depending on the configuration () and inputs.
The forward method, overrides the __call__
special method.
config () — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the method to load the model weights.
This model inherits from . Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)
This model is also a PyTorch subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
( input_ids: typing.Optional[torch.Tensor] = Noneattention_mask: typing.Optional[torch.Tensor] = Nonetoken_type_ids: typing.Optional[torch.Tensor] = Noneposition_ids: typing.Optional[torch.Tensor] = Nonehead_mask: typing.Optional[torch.Tensor] = Noneinputs_embeds: typing.Optional[torch.Tensor] = Noneencoder_hidden_states: typing.Optional[torch.Tensor] = Noneencoder_attention_mask: typing.Optional[torch.Tensor] = Nonelabels: typing.Optional[torch.Tensor] = Noneoutput_attentions: typing.Optional[bool] = Noneoutput_hidden_states: typing.Optional[bool] = Nonereturn_dict: typing.Optional[bool] = None ) → or tuple(torch.FloatTensor)
Indices can be obtained using . See and for details.
return_dict (bool
, optional) — Whether or not to return a instead of a plain tuple.
or tuple(torch.FloatTensor)
A or a tuple of torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various elements depending on the configuration () and inputs.
The forward method, overrides the __call__
special method.
config () — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the method to load the model weights.
This model inherits from . Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)
This model is also a PyTorch subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
( input_ids: typing.Optional[torch.Tensor] = Noneattention_mask: typing.Optional[torch.Tensor] = Nonetoken_type_ids: typing.Optional[torch.Tensor] = Noneposition_ids: typing.Optional[torch.Tensor] = Nonehead_mask: typing.Optional[torch.Tensor] = Noneinputs_embeds: typing.Optional[torch.Tensor] = Nonelabels: typing.Optional[torch.Tensor] = Noneoutput_attentions: typing.Optional[bool] = Noneoutput_hidden_states: typing.Optional[bool] = Nonereturn_dict: typing.Optional[bool] = None**kwargs ) → or tuple(torch.FloatTensor)
Indices can be obtained using . See and for details.
return_dict (bool
, optional) — Whether or not to return a instead of a plain tuple.
or tuple(torch.FloatTensor)
A or a tuple of torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various elements depending on the configuration () and inputs.
The forward method, overrides the __call__
special method.
config () — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the method to load the model weights.
This model inherits from . Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)
This model is also a PyTorch subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
( input_ids: typing.Optional[torch.Tensor] = Noneattention_mask: typing.Optional[torch.Tensor] = Nonetoken_type_ids: typing.Optional[torch.Tensor] = Noneposition_ids: typing.Optional[torch.Tensor] = Nonehead_mask: typing.Optional[torch.Tensor] = Noneinputs_embeds: typing.Optional[torch.Tensor] = Nonelabels: typing.Optional[torch.Tensor] = Noneoutput_attentions: typing.Optional[bool] = Noneoutput_hidden_states: typing.Optional[bool] = Nonereturn_dict: typing.Optional[bool] = None ) → or tuple(torch.FloatTensor)
Indices can be obtained using . See and for details.
return_dict (bool
, optional) — Whether or not to return a instead of a plain tuple.
or tuple(torch.FloatTensor)
A or a tuple of torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various elements depending on the configuration () and inputs.
The forward method, overrides the __call__
special method.
config () — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the method to load the model weights.
This model inherits from . Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)
This model is also a PyTorch subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
( input_ids: typing.Optional[torch.Tensor] = Noneattention_mask: typing.Optional[torch.Tensor] = Nonetoken_type_ids: typing.Optional[torch.Tensor] = Noneposition_ids: typing.Optional[torch.Tensor] = Nonehead_mask: typing.Optional[torch.Tensor] = Noneinputs_embeds: typing.Optional[torch.Tensor] = Nonelabels: typing.Optional[torch.Tensor] = Noneoutput_attentions: typing.Optional[bool] = Noneoutput_hidden_states: typing.Optional[bool] = Nonereturn_dict: typing.Optional[bool] = None ) → or tuple(torch.FloatTensor)
Indices can be obtained using . See and for details.
return_dict (bool
, optional) — Whether or not to return a instead of a plain tuple.
or tuple(torch.FloatTensor)
A or a tuple of torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various elements depending on the configuration () and inputs.
The forward method, overrides the __call__
special method.
config () — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the method to load the model weights.
This model inherits from . Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)
This model is also a PyTorch subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
( input_ids: typing.Optional[torch.Tensor] = Noneattention_mask: typing.Optional[torch.Tensor] = Nonetoken_type_ids: typing.Optional[torch.Tensor] = Noneposition_ids: typing.Optional[torch.Tensor] = Nonehead_mask: typing.Optional[torch.Tensor] = Noneinputs_embeds: typing.Optional[torch.Tensor] = Nonelabels: typing.Optional[torch.Tensor] = Noneoutput_attentions: typing.Optional[bool] = Noneoutput_hidden_states: typing.Optional[bool] = Nonereturn_dict: typing.Optional[bool] = None ) → or tuple(torch.FloatTensor)
Indices can be obtained using . See and for details.
return_dict (bool
, optional) — Whether or not to return a instead of a plain tuple.
or tuple(torch.FloatTensor)
A or a tuple of torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various elements depending on the configuration () and inputs.
The forward method, overrides the __call__
special method.
config () — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the method to load the model weights.
This model inherits from . Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)
This model is also a PyTorch subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
( input_ids: typing.Optional[torch.Tensor] = Noneattention_mask: typing.Optional[torch.Tensor] = Nonetoken_type_ids: typing.Optional[torch.Tensor] = Noneposition_ids: typing.Optional[torch.Tensor] = Nonehead_mask: typing.Optional[torch.Tensor] = Noneinputs_embeds: typing.Optional[torch.Tensor] = Nonestart_positions: typing.Optional[torch.Tensor] = Noneend_positions: typing.Optional[torch.Tensor] = Noneoutput_attentions: typing.Optional[bool] = Noneoutput_hidden_states: typing.Optional[bool] = Nonereturn_dict: typing.Optional[bool] = None ) → or tuple(torch.FloatTensor)
Indices can be obtained using . See and for details.
return_dict (bool
, optional) — Whether or not to return a instead of a plain tuple.
or tuple(torch.FloatTensor)
A or a tuple of torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various elements depending on the configuration () and inputs.
The forward method, overrides the __call__
special method.
config () — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the method to load the model weights.
This model inherits from . Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)
This model is also a subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior.
Note that when creating models and layers with then you don’t need to worry about any of this, as you can just pass inputs like you would to any other Python function!
( input_ids: TFModelInputType | None = Noneattention_mask: np.ndarray | tf.Tensor | None = Nonetoken_type_ids: np.ndarray | tf.Tensor | None = Noneposition_ids: np.ndarray | tf.Tensor | None = Nonehead_mask: np.ndarray | tf.Tensor | None = Noneinputs_embeds: np.ndarray | tf.Tensor | None = Noneencoder_hidden_states: np.ndarray | tf.Tensor | None = Noneencoder_attention_mask: np.ndarray | tf.Tensor | None = Nonepast_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = Noneuse_cache: Optional[bool] = Noneoutput_attentions: Optional[bool] = Noneoutput_hidden_states: Optional[bool] = Nonereturn_dict: Optional[bool] = Nonetraining: Optional[bool] = False ) → or tuple(tf.Tensor)
Indices can be obtained using . See and for details.
return_dict (bool
, optional) — Whether or not to return a instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True.
or tuple(tf.Tensor)
A or a tuple of tf.Tensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various elements depending on the configuration () and inputs.
The forward method, overrides the __call__
special method.
config () — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the method to load the model weights.
This model inherits from . Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)
This model is also a subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior.
Note that when creating models and layers with then you don’t need to worry about any of this, as you can just pass inputs like you would to any other Python function!
( input_ids: TFModelInputType | None = Noneattention_mask: np.ndarray | tf.Tensor | None = Nonetoken_type_ids: np.ndarray | tf.Tensor | None = Noneposition_ids: np.ndarray | tf.Tensor | None = Nonehead_mask: np.ndarray | tf.Tensor | None = Noneinputs_embeds: np.ndarray | tf.Tensor | None = Noneoutput_attentions: Optional[bool] = Noneoutput_hidden_states: Optional[bool] = Nonereturn_dict: Optional[bool] = Nonelabels: np.ndarray | tf.Tensor | None = Nonenext_sentence_label: np.ndarray | tf.Tensor | None = Nonetraining: Optional[bool] = False ) → or tuple(tf.Tensor)
Indices can be obtained using . See and for details.
return_dict (bool
, optional) — Whether or not to return a instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True.
or tuple(tf.Tensor)
A or a tuple of tf.Tensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various elements depending on the configuration () and inputs.
The forward method, overrides the __call__
special method.
( input_ids: TFModelInputType | None = Noneattention_mask: np.ndarray | tf.Tensor | None = Nonetoken_type_ids: np.ndarray | tf.Tensor | None = Noneposition_ids: np.ndarray | tf.Tensor | None = Nonehead_mask: np.ndarray | tf.Tensor | None = Noneinputs_embeds: np.ndarray | tf.Tensor | None = Noneencoder_hidden_states: np.ndarray | tf.Tensor | None = Noneencoder_attention_mask: np.ndarray | tf.Tensor | None = Nonepast_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = Noneuse_cache: Optional[bool] = Noneoutput_attentions: Optional[bool] = Noneoutput_hidden_states: Optional[bool] = Nonereturn_dict: Optional[bool] = Nonelabels: np.ndarray | tf.Tensor | None = Nonetraining: Optional[bool] = False**kwargs ) → or tuple(tf.Tensor)
or tuple(tf.Tensor)
A or a tuple of tf.Tensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various elements depending on the configuration () and inputs.
config () — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the method to load the model weights.
This model inherits from . Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)
This model is also a subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior.
Note that when creating models and layers with then you don’t need to worry about any of this, as you can just pass inputs like you would to any other Python function!
( input_ids: TFModelInputType | None = Noneattention_mask: np.ndarray | tf.Tensor | None = Nonetoken_type_ids: np.ndarray | tf.Tensor | None = Noneposition_ids: np.ndarray | tf.Tensor | None = Nonehead_mask: np.ndarray | tf.Tensor | None = Noneinputs_embeds: np.ndarray | tf.Tensor | None = Noneoutput_attentions: Optional[bool] = Noneoutput_hidden_states: Optional[bool] = Nonereturn_dict: Optional[bool] = Nonelabels: np.ndarray | tf.Tensor | None = Nonetraining: Optional[bool] = False ) → or tuple(tf.Tensor)
Indices can be obtained using . See and for details.
return_dict (bool
, optional) — Whether or not to return a instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True.
or tuple(tf.Tensor)
A or a tuple of tf.Tensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various elements depending on the configuration () and inputs.
The forward method, overrides the __call__
special method.
config () — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the method to load the model weights.
This model inherits from . Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)
This model is also a subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior.
Note that when creating models and layers with then you don’t need to worry about any of this, as you can just pass inputs like you would to any other Python function!
( input_ids: TFModelInputType | None = Noneattention_mask: np.ndarray | tf.Tensor | None = Nonetoken_type_ids: np.ndarray | tf.Tensor | None = Noneposition_ids: np.ndarray | tf.Tensor | None = Nonehead_mask: np.ndarray | tf.Tensor | None = Noneinputs_embeds: np.ndarray | tf.Tensor | None = Noneoutput_attentions: Optional[bool] = Noneoutput_hidden_states: Optional[bool] = Nonereturn_dict: Optional[bool] = Nonenext_sentence_label: np.ndarray | tf.Tensor | None = Nonetraining: Optional[bool] = False ) → or tuple(tf.Tensor)
Indices can be obtained using . See and for details.
return_dict (bool
, optional) — Whether or not to return a instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True.
or tuple(tf.Tensor)
A or a tuple of tf.Tensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various elements depending on the configuration () and inputs.
The forward method, overrides the __call__
special method.
config () — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the method to load the model weights.
This model inherits from . Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)
This model is also a subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior.
Note that when creating models and layers with then you don’t need to worry about any of this, as you can just pass inputs like you would to any other Python function!
( input_ids: TFModelInputType | None = Noneattention_mask: np.ndarray | tf.Tensor | None = Nonetoken_type_ids: np.ndarray | tf.Tensor | None = Noneposition_ids: np.ndarray | tf.Tensor | None = Nonehead_mask: np.ndarray | tf.Tensor | None = Noneinputs_embeds: np.ndarray | tf.Tensor | None = Noneoutput_attentions: Optional[bool] = Noneoutput_hidden_states: Optional[bool] = Nonereturn_dict: Optional[bool] = Nonelabels: np.ndarray | tf.Tensor | None = Nonetraining: Optional[bool] = False ) → or tuple(tf.Tensor)
Indices can be obtained using . See and for details.
return_dict (bool
, optional) — Whether or not to return a instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True.
or tuple(tf.Tensor)
A or a tuple of tf.Tensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various elements depending on the configuration () and inputs.
The forward method, overrides the __call__
special method.
config () — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the method to load the model weights.
This model inherits from . Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)
This model is also a subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior.
Note that when creating models and layers with then you don’t need to worry about any of this, as you can just pass inputs like you would to any other Python function!
( input_ids: TFModelInputType | None = Noneattention_mask: np.ndarray | tf.Tensor | None = Nonetoken_type_ids: np.ndarray | tf.Tensor | None = Noneposition_ids: np.ndarray | tf.Tensor | None = Nonehead_mask: np.ndarray | tf.Tensor | None = Noneinputs_embeds: np.ndarray | tf.Tensor | None = Noneoutput_attentions: Optional[bool] = Noneoutput_hidden_states: Optional[bool] = Nonereturn_dict: Optional[bool] = Nonelabels: np.ndarray | tf.Tensor | None = Nonetraining: Optional[bool] = False ) → or tuple(tf.Tensor)
Indices can be obtained using . See and for details.
return_dict (bool
, optional) — Whether or not to return a instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True.
or tuple(tf.Tensor)
A or a tuple of tf.Tensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various elements depending on the configuration () and inputs.
The forward method, overrides the __call__
special method.
config () — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the method to load the model weights.
This model inherits from . Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)
This model is also a subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior.
Note that when creating models and layers with then you don’t need to worry about any of this, as you can just pass inputs like you would to any other Python function!
( input_ids: TFModelInputType | None = Noneattention_mask: np.ndarray | tf.Tensor | None = Nonetoken_type_ids: np.ndarray | tf.Tensor | None = Noneposition_ids: np.ndarray | tf.Tensor | None = Nonehead_mask: np.ndarray | tf.Tensor | None = Noneinputs_embeds: np.ndarray | tf.Tensor | None = Noneoutput_attentions: Optional[bool] = Noneoutput_hidden_states: Optional[bool] = Nonereturn_dict: Optional[bool] = Nonelabels: np.ndarray | tf.Tensor | None = Nonetraining: Optional[bool] = False ) → or tuple(tf.Tensor)
Indices can be obtained using . See and for details.
return_dict (bool
, optional) — Whether or not to return a instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True.
or tuple(tf.Tensor)
A or a tuple of tf.Tensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various elements depending on the configuration () and inputs.
The forward method, overrides the __call__
special method.
config () — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the method to load the model weights.
This model inherits from . Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)
This model is also a subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior.
Note that when creating models and layers with then you don’t need to worry about any of this, as you can just pass inputs like you would to any other Python function!
( input_ids: TFModelInputType | None = Noneattention_mask: np.ndarray | tf.Tensor | None = Nonetoken_type_ids: np.ndarray | tf.Tensor | None = Noneposition_ids: np.ndarray | tf.Tensor | None = Nonehead_mask: np.ndarray | tf.Tensor | None = Noneinputs_embeds: np.ndarray | tf.Tensor | None = Noneoutput_attentions: Optional[bool] = Noneoutput_hidden_states: Optional[bool] = Nonereturn_dict: Optional[bool] = Nonestart_positions: np.ndarray | tf.Tensor | None = Noneend_positions: np.ndarray | tf.Tensor | None = Nonetraining: Optional[bool] = False ) → or tuple(tf.Tensor)
Indices can be obtained using . See and for details.
return_dict (bool
, optional) — Whether or not to return a instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True.
or tuple(tf.Tensor)
A or a tuple of tf.Tensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various elements depending on the configuration () and inputs.
The forward method, overrides the __call__
special method.
config () — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the method to load the model weights.
If you wish to change the dtype of the model parameters, see and .
If you wish to change the dtype of the model parameters, see and .
This model inherits from . Check the superclass documentation for the generic methods the library implements for all its model (such as downloading, saving and converting weights from PyTorch models)
This model is also a Flax Linen subclass. Use it as a regular Flax linen Module and refer to the Flax documentation for all matter related to general usage and behavior.
( input_idsattention_mask = Nonetoken_type_ids = Noneposition_ids = Nonehead_mask = Noneencoder_hidden_states = Noneencoder_attention_mask = Noneparams: dict = Nonedropout_rng: PRNGKey = Nonetrain: bool = Falseoutput_attentions: typing.Optional[bool] = Noneoutput_hidden_states: typing.Optional[bool] = Nonereturn_dict: typing.Optional[bool] = Nonepast_key_values: dict = None ) → or tuple(torch.FloatTensor)
Indices can be obtained using . See and for details.
return_dict (bool
, optional) — Whether or not to return a instead of a plain tuple.
or tuple(torch.FloatTensor)
A or a tuple of torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various elements depending on the configuration () and inputs.
config () — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the method to load the model weights.
If you wish to change the dtype of the model parameters, see and .
If you wish to change the dtype of the model parameters, see and .
This model inherits from . Check the superclass documentation for the generic methods the library implements for all its model (such as downloading, saving and converting weights from PyTorch models)
This model is also a Flax Linen subclass. Use it as a regular Flax linen Module and refer to the Flax documentation for all matter related to general usage and behavior.
( input_idsattention_mask = Nonetoken_type_ids = Noneposition_ids = Nonehead_mask = Noneencoder_hidden_states = Noneencoder_attention_mask = Noneparams: dict = Nonedropout_rng: PRNGKey = Nonetrain: bool = Falseoutput_attentions: typing.Optional[bool] = Noneoutput_hidden_states: typing.Optional[bool] = Nonereturn_dict: typing.Optional[bool] = Nonepast_key_values: dict = None ) → or tuple(torch.FloatTensor)
Indices can be obtained using . See and for details.
return_dict (bool
, optional) — Whether or not to return a instead of a plain tuple.
or tuple(torch.FloatTensor)
A or a tuple of torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various elements depending on the configuration () and inputs.
config () — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the method to load the model weights.
If you wish to change the dtype of the model parameters, see and .
If you wish to change the dtype of the model parameters, see and .
This model inherits from . Check the superclass documentation for the generic methods the library implements for all its model (such as downloading, saving and converting weights from PyTorch models)
This model is also a Flax Linen subclass. Use it as a regular Flax linen Module and refer to the Flax documentation for all matter related to general usage and behavior.
( input_idsattention_mask = Nonetoken_type_ids = Noneposition_ids = Nonehead_mask = Noneencoder_hidden_states = Noneencoder_attention_mask = Noneparams: dict = Nonedropout_rng: PRNGKey = Nonetrain: bool = Falseoutput_attentions: typing.Optional[bool] = Noneoutput_hidden_states: typing.Optional[bool] = Nonereturn_dict: typing.Optional[bool] = Nonepast_key_values: dict = None ) → or tuple(torch.FloatTensor)
Indices can be obtained using . See and for details.
return_dict (bool
, optional) — Whether or not to return a instead of a plain tuple.
or tuple(torch.FloatTensor)
A or a tuple of torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various elements depending on the configuration () and inputs.
config () — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the method to load the model weights.
If you wish to change the dtype of the model parameters, see and .
If you wish to change the dtype of the model parameters, see and .
This model inherits from . Check the superclass documentation for the generic methods the library implements for all its model (such as downloading, saving and converting weights from PyTorch models)
This model is also a Flax Linen subclass. Use it as a regular Flax linen Module and refer to the Flax documentation for all matter related to general usage and behavior.
( input_idsattention_mask = Nonetoken_type_ids = Noneposition_ids = Nonehead_mask = Noneencoder_hidden_states = Noneencoder_attention_mask = Noneparams: dict = Nonedropout_rng: PRNGKey = Nonetrain: bool = Falseoutput_attentions: typing.Optional[bool] = Noneoutput_hidden_states: typing.Optional[bool] = Nonereturn_dict: typing.Optional[bool] = Nonepast_key_values: dict = None ) → or tuple(torch.FloatTensor)
Indices can be obtained using . See and for details.
return_dict (bool
, optional) — Whether or not to return a instead of a plain tuple.
or tuple(torch.FloatTensor)
A or a tuple of torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various elements depending on the configuration () and inputs.
config () — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the method to load the model weights.
If you wish to change the dtype of the model parameters, see and .
If you wish to change the dtype of the model parameters, see and .
This model inherits from . Check the superclass documentation for the generic methods the library implements for all its model (such as downloading, saving and converting weights from PyTorch models)
This model is also a Flax Linen subclass. Use it as a regular Flax linen Module and refer to the Flax documentation for all matter related to general usage and behavior.
( input_idsattention_mask = Nonetoken_type_ids = Noneposition_ids = Nonehead_mask = Noneencoder_hidden_states = Noneencoder_attention_mask = Noneparams: dict = Nonedropout_rng: PRNGKey = Nonetrain: bool = Falseoutput_attentions: typing.Optional[bool] = Noneoutput_hidden_states: typing.Optional[bool] = Nonereturn_dict: typing.Optional[bool] = Nonepast_key_values: dict = None ) → or tuple(torch.FloatTensor)
Indices can be obtained using . See and for details.
return_dict (bool
, optional) — Whether or not to return a instead of a plain tuple.
or tuple(torch.FloatTensor)
A or a tuple of torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various elements depending on the configuration () and inputs.
config () — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the method to load the model weights.
If you wish to change the dtype of the model parameters, see and .
If you wish to change the dtype of the model parameters, see and .
This model inherits from . Check the superclass documentation for the generic methods the library implements for all its model (such as downloading, saving and converting weights from PyTorch models)
This model is also a Flax Linen subclass. Use it as a regular Flax linen Module and refer to the Flax documentation for all matter related to general usage and behavior.
( input_idsattention_mask = Nonetoken_type_ids = Noneposition_ids = Nonehead_mask = Noneencoder_hidden_states = Noneencoder_attention_mask = Noneparams: dict = Nonedropout_rng: PRNGKey = Nonetrain: bool = Falseoutput_attentions: typing.Optional[bool] = Noneoutput_hidden_states: typing.Optional[bool] = Nonereturn_dict: typing.Optional[bool] = Nonepast_key_values: dict = None ) → or tuple(torch.FloatTensor)
Indices can be obtained using . See and for details.
return_dict (bool
, optional) — Whether or not to return a instead of a plain tuple.
or tuple(torch.FloatTensor)
A or a tuple of torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various elements depending on the configuration () and inputs.
config () — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the method to load the model weights.
If you wish to change the dtype of the model parameters, see and .
If you wish to change the dtype of the model parameters, see and .
This model inherits from . Check the superclass documentation for the generic methods the library implements for all its model (such as downloading, saving and converting weights from PyTorch models)
This model is also a Flax Linen subclass. Use it as a regular Flax linen Module and refer to the Flax documentation for all matter related to general usage and behavior.
( input_idsattention_mask = Nonetoken_type_ids = Noneposition_ids = Nonehead_mask = Noneencoder_hidden_states = Noneencoder_attention_mask = Noneparams: dict = Nonedropout_rng: PRNGKey = Nonetrain: bool = Falseoutput_attentions: typing.Optional[bool] = Noneoutput_hidden_states: typing.Optional[bool] = Nonereturn_dict: typing.Optional[bool] = Nonepast_key_values: dict = None ) → or tuple(torch.FloatTensor)
Indices can be obtained using . See and for details.
return_dict (bool
, optional) — Whether or not to return a instead of a plain tuple.
or tuple(torch.FloatTensor)
A or a tuple of torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various elements depending on the configuration () and inputs.
config () — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the method to load the model weights.
If you wish to change the dtype of the model parameters, see and .
If you wish to change the dtype of the model parameters, see and .
This model inherits from . Check the superclass documentation for the generic methods the library implements for all its model (such as downloading, saving and converting weights from PyTorch models)
This model is also a Flax Linen subclass. Use it as a regular Flax linen Module and refer to the Flax documentation for all matter related to general usage and behavior.
( input_idsattention_mask = Nonetoken_type_ids = Noneposition_ids = Nonehead_mask = Noneencoder_hidden_states = Noneencoder_attention_mask = Noneparams: dict = Nonedropout_rng: PRNGKey = Nonetrain: bool = Falseoutput_attentions: typing.Optional[bool] = Noneoutput_hidden_states: typing.Optional[bool] = Nonereturn_dict: typing.Optional[bool] = Nonepast_key_values: dict = None ) → or tuple(torch.FloatTensor)
Indices can be obtained using . See and for details.
return_dict (bool
, optional) — Whether or not to return a instead of a plain tuple.
or tuple(torch.FloatTensor)
A or a tuple of torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various elements depending on the configuration () and inputs.
config () — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the method to load the model weights.
If you wish to change the dtype of the model parameters, see and .
If you wish to change the dtype of the model parameters, see and .
This model inherits from . Check the superclass documentation for the generic methods the library implements for all its model (such as downloading, saving and converting weights from PyTorch models)
This model is also a Flax Linen subclass. Use it as a regular Flax linen Module and refer to the Flax documentation for all matter related to general usage and behavior.
( input_idsattention_mask = Nonetoken_type_ids = Noneposition_ids = Nonehead_mask = Noneencoder_hidden_states = Noneencoder_attention_mask = Noneparams: dict = Nonedropout_rng: PRNGKey = Nonetrain: bool = Falseoutput_attentions: typing.Optional[bool] = Noneoutput_hidden_states: typing.Optional[bool] = Nonereturn_dict: typing.Optional[bool] = Nonepast_key_values: dict = None ) → or tuple(torch.FloatTensor)
Indices can be obtained using . See and for details.
return_dict (bool
, optional) — Whether or not to return a instead of a plain tuple.
or tuple(torch.FloatTensor)
A or a tuple of torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various elements depending on the configuration () and inputs.