Transformers
  • 🌍GET STARTED
    • Transformers
    • Quick tour
    • Installation
  • 🌍TUTORIALS
    • Run inference with pipelines
    • Write portable code with AutoClass
    • Preprocess data
    • Fine-tune a pretrained model
    • Train with a script
    • Set up distributed training with BOINC AI Accelerate
    • Load and train adapters with BOINC AI PEFT
    • Share your model
    • Agents
    • Generation with LLMs
  • 🌍TASK GUIDES
    • 🌍NATURAL LANGUAGE PROCESSING
      • Text classification
      • Token classification
      • Question answering
      • Causal language modeling
      • Masked language modeling
      • Translation
      • Summarization
      • Multiple choice
    • 🌍AUDIO
      • Audio classification
      • Automatic speech recognition
    • 🌍COMPUTER VISION
      • Image classification
      • Semantic segmentation
      • Video classification
      • Object detection
      • Zero-shot object detection
      • Zero-shot image classification
      • Depth estimation
    • 🌍MULTIMODAL
      • Image captioning
      • Document Question Answering
      • Visual Question Answering
      • Text to speech
    • 🌍GENERATION
      • Customize the generation strategy
    • 🌍PROMPTING
      • Image tasks with IDEFICS
  • 🌍DEVELOPER GUIDES
    • Use fast tokenizers from BOINC AI Tokenizers
    • Run inference with multilingual models
    • Use model-specific APIs
    • Share a custom model
    • Templates for chat models
    • Run training on Amazon SageMaker
    • Export to ONNX
    • Export to TFLite
    • Export to TorchScript
    • Benchmarks
    • Notebooks with examples
    • Community resources
    • Custom Tools and Prompts
    • Troubleshoot
  • 🌍PERFORMANCE AND SCALABILITY
    • Overview
    • 🌍EFFICIENT TRAINING TECHNIQUES
      • Methods and tools for efficient training on a single GPU
      • Multiple GPUs and parallelism
      • Efficient training on CPU
      • Distributed CPU training
      • Training on TPUs
      • Training on TPU with TensorFlow
      • Training on Specialized Hardware
      • Custom hardware for training
      • Hyperparameter Search using Trainer API
    • 🌍OPTIMIZING INFERENCE
      • Inference on CPU
      • Inference on one GPU
      • Inference on many GPUs
      • Inference on Specialized Hardware
    • Instantiating a big model
    • Troubleshooting
    • XLA Integration for TensorFlow Models
    • Optimize inference using `torch.compile()`
  • 🌍CONTRIBUTE
    • How to contribute to transformers?
    • How to add a model to BOINC AI Transformers?
    • How to convert a BOINC AI Transformers model to TensorFlow?
    • How to add a pipeline to BOINC AI Transformers?
    • Testing
    • Checks on a Pull Request
  • 🌍CONCEPTUAL GUIDES
    • Philosophy
    • Glossary
    • What BOINC AI Transformers can do
    • How BOINC AI Transformers solve tasks
    • The Transformer model family
    • Summary of the tokenizers
    • Attention mechanisms
    • Padding and truncation
    • BERTology
    • Perplexity of fixed-length models
    • Pipelines for webserver inference
    • Model training anatomy
  • 🌍API
    • 🌍MAIN CLASSES
      • Agents and Tools
      • 🌍Auto Classes
        • Extending the Auto Classes
        • AutoConfig
        • AutoTokenizer
        • AutoFeatureExtractor
        • AutoImageProcessor
        • AutoProcessor
        • Generic model classes
          • AutoModel
          • TFAutoModel
          • FlaxAutoModel
        • Generic pretraining classes
          • AutoModelForPreTraining
          • TFAutoModelForPreTraining
          • FlaxAutoModelForPreTraining
        • Natural Language Processing
          • AutoModelForCausalLM
          • TFAutoModelForCausalLM
          • FlaxAutoModelForCausalLM
          • AutoModelForMaskedLM
          • TFAutoModelForMaskedLM
          • FlaxAutoModelForMaskedLM
          • AutoModelForMaskGenerationge
          • TFAutoModelForMaskGeneration
          • AutoModelForSeq2SeqLM
          • TFAutoModelForSeq2SeqLM
          • FlaxAutoModelForSeq2SeqLM
          • AutoModelForSequenceClassification
          • TFAutoModelForSequenceClassification
          • FlaxAutoModelForSequenceClassification
          • AutoModelForMultipleChoice
          • TFAutoModelForMultipleChoice
          • FlaxAutoModelForMultipleChoice
          • AutoModelForNextSentencePrediction
          • TFAutoModelForNextSentencePrediction
          • FlaxAutoModelForNextSentencePrediction
          • AutoModelForTokenClassification
          • TFAutoModelForTokenClassification
          • FlaxAutoModelForTokenClassification
          • AutoModelForQuestionAnswering
          • TFAutoModelForQuestionAnswering
          • FlaxAutoModelForQuestionAnswering
          • AutoModelForTextEncoding
          • TFAutoModelForTextEncoding
        • Computer vision
          • AutoModelForDepthEstimation
          • AutoModelForImageClassification
          • TFAutoModelForImageClassification
          • FlaxAutoModelForImageClassification
          • AutoModelForVideoClassification
          • AutoModelForMaskedImageModeling
          • TFAutoModelForMaskedImageModeling
          • AutoModelForObjectDetection
          • AutoModelForImageSegmentation
          • AutoModelForImageToImage
          • AutoModelForSemanticSegmentation
          • TFAutoModelForSemanticSegmentation
          • AutoModelForInstanceSegmentation
          • AutoModelForUniversalSegmentation
          • AutoModelForZeroShotImageClassification
          • TFAutoModelForZeroShotImageClassification
          • AutoModelForZeroShotObjectDetection
        • Audio
          • AutoModelForAudioClassification
          • AutoModelForAudioFrameClassification
          • TFAutoModelForAudioFrameClassification
          • AutoModelForCTC
          • AutoModelForSpeechSeq2Seq
          • TFAutoModelForSpeechSeq2Seq
          • FlaxAutoModelForSpeechSeq2Seq
          • AutoModelForAudioXVector
          • AutoModelForTextToSpectrogram
          • AutoModelForTextToWaveform
        • Multimodal
          • AutoModelForTableQuestionAnswering
          • TFAutoModelForTableQuestionAnswering
          • AutoModelForDocumentQuestionAnswering
          • TFAutoModelForDocumentQuestionAnswering
          • AutoModelForVisualQuestionAnswering
          • AutoModelForVision2Seq
          • TFAutoModelForVision2Seq
          • FlaxAutoModelForVision2Seq
      • Callbacks
      • Configuration
      • Data Collator
      • Keras callbacks
      • Logging
      • Models
      • Text Generation
      • ONNX
      • Optimization
      • Model outputs
      • Pipelines
      • Processors
      • Quantization
      • Tokenizer
      • Trainer
      • DeepSpeed Integration
      • Feature Extractor
      • Image Processor
    • 🌍MODELS
      • 🌍TEXT MODELS
        • ALBERT
        • BART
        • BARThez
        • BARTpho
        • BERT
        • BertGeneration
        • BertJapanese
        • Bertweet
        • BigBird
        • BigBirdPegasus
        • BioGpt
        • Blenderbot
        • Blenderbot Small
        • BLOOM
        • BORT
        • ByT5
        • CamemBERT
        • CANINE
        • CodeGen
        • CodeLlama
        • ConvBERT
        • CPM
        • CPMANT
        • CTRL
        • DeBERTa
        • DeBERTa-v2
        • DialoGPT
        • DistilBERT
        • DPR
        • ELECTRA
        • Encoder Decoder Models
        • ERNIE
        • ErnieM
        • ESM
        • Falcon
        • FLAN-T5
        • FLAN-UL2
        • FlauBERT
        • FNet
        • FSMT
        • Funnel Transformer
        • GPT
        • GPT Neo
        • GPT NeoX
        • GPT NeoX Japanese
        • GPT-J
        • GPT2
        • GPTBigCode
        • GPTSAN Japanese
        • GPTSw3
        • HerBERT
        • I-BERT
        • Jukebox
        • LED
        • LLaMA
        • LLama2
        • Longformer
        • LongT5
        • LUKE
        • M2M100
        • MarianMT
        • MarkupLM
        • MBart and MBart-50
        • MEGA
        • MegatronBERT
        • MegatronGPT2
        • Mistral
        • mLUKE
        • MobileBERT
        • MPNet
        • MPT
        • MRA
        • MT5
        • MVP
        • NEZHA
        • NLLB
        • NLLB-MoE
        • Nyströmformer
        • Open-Llama
        • OPT
        • Pegasus
        • PEGASUS-X
        • Persimmon
        • PhoBERT
        • PLBart
        • ProphetNet
        • QDQBert
        • RAG
        • REALM
        • Reformer
        • RemBERT
        • RetriBERT
        • RoBERTa
        • RoBERTa-PreLayerNorm
        • RoCBert
        • RoFormer
        • RWKV
        • Splinter
        • SqueezeBERT
        • SwitchTransformers
        • T5
        • T5v1.1
        • TAPEX
        • Transformer XL
        • UL2
        • UMT5
        • X-MOD
        • XGLM
        • XLM
        • XLM-ProphetNet
        • XLM-RoBERTa
        • XLM-RoBERTa-XL
        • XLM-V
        • XLNet
        • YOSO
      • 🌍VISION MODELS
        • BEiT
        • BiT
        • Conditional DETR
        • ConvNeXT
        • ConvNeXTV2
        • CvT
        • Deformable DETR
        • DeiT
        • DETA
        • DETR
        • DiNAT
        • DINO V2
        • DiT
        • DPT
        • EfficientFormer
        • EfficientNet
        • FocalNet
        • GLPN
        • ImageGPT
        • LeViT
        • Mask2Former
        • MaskFormer
        • MobileNetV1
        • MobileNetV2
        • MobileViT
        • MobileViTV2
        • NAT
        • PoolFormer
        • Pyramid Vision Transformer (PVT)
        • RegNet
        • ResNet
        • SegFormer
        • SwiftFormer
        • Swin Transformer
        • Swin Transformer V2
        • Swin2SR
        • Table Transformer
        • TimeSformer
        • UperNet
        • VAN
        • VideoMAE
        • Vision Transformer (ViT)
        • ViT Hybrid
        • ViTDet
        • ViTMAE
        • ViTMatte
        • ViTMSN
        • ViViT
        • YOLOS
      • 🌍AUDIO MODELS
        • Audio Spectrogram Transformer
        • Bark
        • CLAP
        • EnCodec
        • Hubert
        • MCTCT
        • MMS
        • MusicGen
        • Pop2Piano
        • SEW
        • SEW-D
        • Speech2Text
        • Speech2Text2
        • SpeechT5
        • UniSpeech
        • UniSpeech-SAT
        • VITS
        • Wav2Vec2
        • Wav2Vec2-Conformer
        • Wav2Vec2Phoneme
        • WavLM
        • Whisper
        • XLS-R
        • XLSR-Wav2Vec2
      • 🌍MULTIMODAL MODELS
        • ALIGN
        • AltCLIP
        • BLIP
        • BLIP-2
        • BridgeTower
        • BROS
        • Chinese-CLIP
        • CLIP
        • CLIPSeg
        • Data2Vec
        • DePlot
        • Donut
        • FLAVA
        • GIT
        • GroupViT
        • IDEFICS
        • InstructBLIP
        • LayoutLM
        • LayoutLMV2
        • LayoutLMV3
        • LayoutXLM
        • LiLT
        • LXMERT
        • MatCha
        • MGP-STR
        • Nougat
        • OneFormer
        • OWL-ViT
        • Perceiver
        • Pix2Struct
        • Segment Anything
        • Speech Encoder Decoder Models
        • TAPAS
        • TrOCR
        • TVLT
        • ViLT
        • Vision Encoder Decoder Models
        • Vision Text Dual Encoder
        • VisualBERT
        • X-CLIP
      • 🌍REINFORCEMENT LEARNING MODELS
        • Decision Transformer
        • Trajectory Transformer
      • 🌍TIME SERIES MODELS
        • Autoformer
        • Informer
        • Time Series Transformer
      • 🌍GRAPH MODELS
        • Graphormer
  • 🌍INTERNAL HELPERS
    • Custom Layers and Utilities
    • Utilities for pipelines
    • Utilities for Tokenizers
    • Utilities for Trainer
    • Utilities for Generation
    • Utilities for Image Processors
    • Utilities for Audio processing
    • General Utilities
    • Utilities for Time Series
Powered by GitBook
On this page
  • GPT-J
  • Overview
  • Resources
  • GPTJConfig
  • GPTJModel
  • GPTJForCausalLM
  • GPTJForSequenceClassification
  • GPTJForQuestionAnswering
  • TFGPTJModel
  • TFGPTJForCausalLM
  • TFGPTJForSequenceClassification
  • TFGPTJForQuestionAnswering
  • FlaxGPTJModel
  • FlaxGPTJForCausalLM
  1. API
  2. MODELS
  3. TEXT MODELS

GPT-J

PreviousGPT NeoX JapaneseNextGPT2

Last updated 1 year ago

GPT-J

Overview

The GPT-J model was released in the repository by Ben Wang and Aran Komatsuzaki. It is a GPT-2-like causal language model trained on dataset.

This model was contributed by .

Tips:

  • To load in float32 one would need at least 2x model size RAM: 1x for initial weights and another 1x to load the checkpoint. So for GPT-J it would take at least 48GB RAM to just load the model. To reduce the RAM usage there are a few options. The torch_dtype argument can be used to initialize the model in half-precision on a CUDA device only. There is also a fp16 branch which stores the fp16 weights, which could be used to further minimize the RAM usage:

Copied

>>> from transformers import GPTJForCausalLM
>>> import torch

>>> device = "cuda"
>>> model = GPTJForCausalLM.from_pretrained(
...     "EleutherAI/gpt-j-6B",
...     revision="float16",
...     torch_dtype=torch.float16,
... ).to(device)
  • The model should fit on 16GB GPU for inference. For training/fine-tuning it would take much more GPU RAM. Adam optimizer for example makes four copies of the model: model, gradients, average and squared average of the gradients. So it would need at least 4x model size GPU memory, even with mixed precision as gradient updates are in fp32. This is not including the activations and data batches, which would again require some more GPU RAM. So one should explore solutions such as DeepSpeed, to train/fine-tune the model. Another option is to use the original codebase to train/fine-tune the model on TPU and then convert the model to Transformers format for inference. Instructions for that could be found

  • Although the embedding matrix has a size of 50400, only 50257 entries are used by the GPT-2 tokenizer. These extra tokens are added for the sake of efficiency on TPUs. To avoid the mismatch between embedding matrix size and vocab size, the tokenizer for contains 143 extra tokens <|extratoken_1|>... <|extratoken_143|>, so the vocab_size of tokenizer also becomes 50400.

Generation

Copied

>>> from transformers import AutoModelForCausalLM, AutoTokenizer

>>> model = AutoModelForCausalLM.from_pretrained("EleutherAI/gpt-j-6B")
>>> tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-j-6B")

>>> prompt = (
...     "In a shocking finding, scientists discovered a herd of unicorns living in a remote, "
...     "previously unexplored valley, in the Andes Mountains. Even more surprising to the "
...     "researchers was the fact that the unicorns spoke perfect English."
... )

>>> input_ids = tokenizer(prompt, return_tensors="pt").input_ids

>>> gen_tokens = model.generate(
...     input_ids,
...     do_sample=True,
...     temperature=0.9,
...     max_length=100,
... )
>>> gen_text = tokenizer.batch_decode(gen_tokens)[0]

…or in float16 precision:

Copied

>>> from transformers import GPTJForCausalLM, AutoTokenizer
>>> import torch

>>> device = "cuda"
>>> model = GPTJForCausalLM.from_pretrained("EleutherAI/gpt-j-6B", torch_dtype=torch.float16).to(device)
>>> tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-j-6B")

>>> prompt = (
...     "In a shocking finding, scientists discovered a herd of unicorns living in a remote, "
...     "previously unexplored valley, in the Andes Mountains. Even more surprising to the "
...     "researchers was the fact that the unicorns spoke perfect English."
... )

>>> input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(device)

>>> gen_tokens = model.generate(
...     input_ids,
...     do_sample=True,
...     temperature=0.9,
...     max_length=100,
... )
>>> gen_text = tokenizer.batch_decode(gen_tokens)[0]

Resources

A list of official BOINC AI and community (indicated by 🌎) resources to help you get started with GPT-J. If you’re interested in submitting a resource to be included here, please feel free to open a Pull Request and we’ll review it! The resource should ideally demonstrate something new instead of duplicating an existing resource.

Text Generation

Documentation resources

GPTJConfig

class transformers.GPTJConfig

( vocab_size = 50400n_positions = 2048n_embd = 4096n_layer = 28n_head = 16rotary_dim = 64n_inner = Noneactivation_function = 'gelu_new'resid_pdrop = 0.0embd_pdrop = 0.0attn_pdrop = 0.0layer_norm_epsilon = 1e-05initializer_range = 0.02use_cache = Truebos_token_id = 50256eos_token_id = 50256tie_word_embeddings = False**kwargs )

Parameters

  • n_positions (int, optional, defaults to 2048) — The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048).

  • n_embd (int, optional, defaults to 4096) — Dimensionality of the embeddings and hidden states.

  • n_layer (int, optional, defaults to 28) — Number of hidden layers in the Transformer encoder.

  • n_head (int, optional, defaults to 16) — Number of attention heads for each attention layer in the Transformer encoder.

  • rotary_dim (int, optional, defaults to 64) — Number of dimensions in the embedding that Rotary Position Embedding is applied to.

  • n_inner (int, optional, defaults to None) — Dimensionality of the inner feed-forward layers. None will set it to 4 times n_embd

  • activation_function (str, optional, defaults to "gelu_new") — Activation function, to be selected in the list ["relu", "silu", "gelu", "tanh", "gelu_new"].

  • resid_pdrop (float, optional, defaults to 0.1) — The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.

  • embd_pdrop (int, optional, defaults to 0.1) — The dropout ratio for the embeddings.

  • attn_pdrop (float, optional, defaults to 0.1) — The dropout ratio for the attention.

  • layer_norm_epsilon (float, optional, defaults to 1e-5) — The epsilon to use in the layer normalization layers.

  • initializer_range (float, optional, defaults to 0.02) — The standard deviation of the truncated_normal_initializer for initializing all weight matrices.

  • use_cache (bool, optional, defaults to True) — Whether or not the model should return the last key/values attentions (not used by all models).

Example:

Copied

>>> from transformers import GPTJModel, GPTJConfig

>>> # Initializing a GPT-J 6B configuration
>>> configuration = GPTJConfig()

>>> # Initializing a model from the configuration
>>> model = GPTJModel(configuration)

>>> # Accessing the model configuration
>>> configuration = model.config

GPTJModel

class transformers.GPTJModel

( config )

Parameters

forward

Parameters

  • input_ids (torch.LongTensor of shape (batch_size, sequence_length)) — Indices of input sequence tokens in the vocabulary.

  • attention_mask (torch.FloatTensor of shape (batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:

    • 1 for tokens that are not masked,

    • 0 for tokens that are masked.

  • token_type_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]:

    • 0 corresponds to a sentence A token,

    • 1 corresponds to a sentence B token.

  • position_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.n_positions - 1].

  • head_mask (torch.FloatTensor of shape (num_attention_heads,) or (n_layer, num_attention_heads), optional) — Mask to nullify selected heads of the self-attention modules. Mask values selected in [0, 1]:

    • 1 indicates the head is not masked,

    • 0 indicates the head is masked.

  • inputs_embeds (torch.FloatTensor of shape (batch_size, sequence_length, hidden_dim), optional) — Optionally, instead of passing input_ids you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids indices into associated vectors than the model’s internal embedding lookup matrix.

  • output_attentions (bool, optional) — Whether or not to return the attentions tensors of all attention layers. See attentions under returned tensors for more detail.

  • output_hidden_states (bool, optional) — Whether or not to return the hidden states of all layers. See hidden_states under returned tensors for more detail.

Returns

  • last_hidden_state (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size)) — Sequence of hidden-states at the output of the last layer of the model.

    If past_key_values is used only the last hidden-state of the sequences of shape (batch_size, 1, hidden_size) is output.

  • past_key_values (tuple(tuple(torch.FloatTensor)), optional, returned when use_cache=True is passed or when config.use_cache=True) — Tuple of tuple(torch.FloatTensor) of length config.n_layers, with each tuple having 2 tensors of shape (batch_size, num_heads, sequence_length, embed_size_per_head)) and optionally if config.is_encoder_decoder=True 2 additional tensors of shape (batch_size, num_heads, encoder_sequence_length, embed_size_per_head).

    Contains pre-computed hidden-states (key and values in the self-attention blocks and optionally if config.is_encoder_decoder=True in the cross-attention blocks) that can be used (see past_key_values input) to speed up sequential decoding.

  • hidden_states (tuple(torch.FloatTensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) — Tuple of torch.FloatTensor (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.

  • attentions (tuple(torch.FloatTensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) — Tuple of torch.FloatTensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

This example uses a random model as the real ones are all very big. To get proper results, you should use EleutherAI/gpt-j-6B instead of hf-internal-testing/tiny-random-gptj. If you get out-of-memory when loading that checkpoint, you can try adding device_map="auto" in the from_pretrained call.

Example:

Copied

>>> from transformers import AutoTokenizer, GPTJModel
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gptj")
>>> model = GPTJModel.from_pretrained("hf-internal-testing/tiny-random-gptj")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)

>>> last_hidden_states = outputs.last_hidden_state

GPTJForCausalLM

class transformers.GPTJForCausalLM

( config )

Parameters

The GPT-J Model transformer with a language modeling head on top.

forward

Parameters

  • input_ids (torch.LongTensor of shape (batch_size, sequence_length)) — Indices of input sequence tokens in the vocabulary.

  • attention_mask (torch.FloatTensor of shape (batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:

    • 1 for tokens that are not masked,

    • 0 for tokens that are masked.

  • token_type_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]:

    • 0 corresponds to a sentence A token,

    • 1 corresponds to a sentence B token.

  • position_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.n_positions - 1].

  • head_mask (torch.FloatTensor of shape (num_attention_heads,) or (n_layer, num_attention_heads), optional) — Mask to nullify selected heads of the self-attention modules. Mask values selected in [0, 1]:

    • 1 indicates the head is not masked,

    • 0 indicates the head is masked.

  • inputs_embeds (torch.FloatTensor of shape (batch_size, sequence_length, hidden_dim), optional) — Optionally, instead of passing input_ids you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids indices into associated vectors than the model’s internal embedding lookup matrix.

  • output_attentions (bool, optional) — Whether or not to return the attentions tensors of all attention layers. See attentions under returned tensors for more detail.

  • output_hidden_states (bool, optional) — Whether or not to return the hidden states of all layers. See hidden_states under returned tensors for more detail.

  • labels (torch.LongTensor of shape (batch_size, sequence_length), optional) — Labels for language modeling. Note that the labels are shifted inside the model, i.e. you can set labels = input_ids Indices are selected in [-100, 0, ..., config.vocab_size] All labels set to -100 are ignored (masked), the loss is only computed for labels in [0, ..., config.vocab_size]

Returns

  • loss (torch.FloatTensor of shape (1,), optional, returned when labels is provided) — Language modeling loss (for next-token prediction).

  • logits (torch.FloatTensor of shape (batch_size, sequence_length, config.vocab_size)) — Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).

  • past_key_values (tuple(tuple(torch.FloatTensor)), optional, returned when use_cache=True is passed or when config.use_cache=True) — Tuple of tuple(torch.FloatTensor) of length config.n_layers, with each tuple having 2 tensors of shape (batch_size, num_heads, sequence_length, embed_size_per_head))

    Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see past_key_values input) to speed up sequential decoding.

  • hidden_states (tuple(torch.FloatTensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) — Tuple of torch.FloatTensor (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.

  • attentions (tuple(torch.FloatTensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) — Tuple of torch.FloatTensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

This example uses a random model as the real ones are all very big. To get proper results, you should use EleutherAI/gpt-j-6B instead of hf-internal-testing/tiny-random-gptj. If you get out-of-memory when loading that checkpoint, you can try adding device_map="auto" in the from_pretrained call.

Example:

Copied

>>> import torch
>>> from transformers import AutoTokenizer, GPTJForCausalLM

>>> tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gptj")
>>> model = GPTJForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gptj")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs, labels=inputs["input_ids"])
>>> loss = outputs.loss
>>> logits = outputs.logits

GPTJForSequenceClassification

class transformers.GPTJForSequenceClassification

( config )

Parameters

The GPT-J Model transformer with a sequence classification head on top (linear layer).

Since it does classification on the last token, it requires to know the position of the last token. If a pad_token_id is defined in the configuration, it finds the last token that is not a padding token in each row. If no pad_token_id is defined, it simply takes the last value in each row of the batch. Since it cannot guess the padding tokens when inputs_embeds are passed instead of input_ids, it does the same (take the last value in each row of the batch).

forward

( input_ids: typing.Optional[torch.LongTensor] = Nonepast_key_values: typing.Optional[typing.Tuple[typing.Tuple[torch.Tensor]]] = Noneattention_mask: typing.Optional[torch.FloatTensor] = Nonetoken_type_ids: typing.Optional[torch.LongTensor] = Noneposition_ids: typing.Optional[torch.LongTensor] = Nonehead_mask: typing.Optional[torch.FloatTensor] = Noneinputs_embeds: typing.Optional[torch.FloatTensor] = Nonelabels: typing.Optional[torch.LongTensor] = Noneuse_cache: typing.Optional[bool] = Noneoutput_attentions: typing.Optional[bool] = Noneoutput_hidden_states: typing.Optional[bool] = Nonereturn_dict: typing.Optional[bool] = None ) → transformers.modeling_outputs.SequenceClassifierOutputWithPast or tuple(torch.FloatTensor)

Parameters

  • input_ids (torch.LongTensor of shape (batch_size, sequence_length)) — Indices of input sequence tokens in the vocabulary.

  • attention_mask (torch.FloatTensor of shape (batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:

    • 1 for tokens that are not masked,

    • 0 for tokens that are masked.

  • token_type_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]:

    • 0 corresponds to a sentence A token,

    • 1 corresponds to a sentence B token.

  • position_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.n_positions - 1].

  • head_mask (torch.FloatTensor of shape (num_attention_heads,) or (n_layer, num_attention_heads), optional) — Mask to nullify selected heads of the self-attention modules. Mask values selected in [0, 1]:

    • 1 indicates the head is not masked,

    • 0 indicates the head is masked.

  • inputs_embeds (torch.FloatTensor of shape (batch_size, sequence_length, hidden_dim), optional) — Optionally, instead of passing input_ids you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids indices into associated vectors than the model’s internal embedding lookup matrix.

  • output_attentions (bool, optional) — Whether or not to return the attentions tensors of all attention layers. See attentions under returned tensors for more detail.

  • output_hidden_states (bool, optional) — Whether or not to return the hidden states of all layers. See hidden_states under returned tensors for more detail.

  • labels (torch.LongTensor of shape (batch_size,), optional) — Labels for computing the sequence classification/regression loss. Indices should be in [0, ..., config.num_labels - 1]. If config.num_labels == 1 a regression loss is computed (Mean-Square loss), If config.num_labels > 1 a classification loss is computed (Cross-Entropy).

Returns

transformers.modeling_outputs.SequenceClassifierOutputWithPast or tuple(torch.FloatTensor)

  • loss (torch.FloatTensor of shape (1,), optional, returned when labels is provided) — Classification (or regression if config.num_labels==1) loss.

  • logits (torch.FloatTensor of shape (batch_size, config.num_labels)) — Classification (or regression if config.num_labels==1) scores (before SoftMax).

  • past_key_values (tuple(tuple(torch.FloatTensor)), optional, returned when use_cache=True is passed or when config.use_cache=True) — Tuple of tuple(torch.FloatTensor) of length config.n_layers, with each tuple having 2 tensors of shape (batch_size, num_heads, sequence_length, embed_size_per_head))

    Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see past_key_values input) to speed up sequential decoding.

  • hidden_states (tuple(torch.FloatTensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) — Tuple of torch.FloatTensor (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.

  • attentions (tuple(torch.FloatTensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) — Tuple of torch.FloatTensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

This example uses a random model as the real ones are all very big. To get proper results, you should use EleutherAI/gpt-j-6B instead of ydshieh/tiny-random-gptj-for-sequence-classification. If you get out-of-memory when loading that checkpoint, you can try adding device_map="auto" in the from_pretrained call.

Example of single-label classification:

Copied

>>> import torch
>>> from transformers import AutoTokenizer, GPTJForSequenceClassification

>>> tokenizer = AutoTokenizer.from_pretrained("ydshieh/tiny-random-gptj-for-sequence-classification")
>>> model = GPTJForSequenceClassification.from_pretrained("ydshieh/tiny-random-gptj-for-sequence-classification")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")

>>> with torch.no_grad():
...     logits = model(**inputs).logits

>>> predicted_class_id = logits.argmax().item()

>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = GPTJForSequenceClassification.from_pretrained("ydshieh/tiny-random-gptj-for-sequence-classification", num_labels=num_labels)

>>> labels = torch.tensor([1])
>>> loss = model(**inputs, labels=labels).loss

Example of multi-label classification:

Copied

>>> import torch
>>> from transformers import AutoTokenizer, GPTJForSequenceClassification

>>> tokenizer = AutoTokenizer.from_pretrained("ydshieh/tiny-random-gptj-for-sequence-classification")
>>> model = GPTJForSequenceClassification.from_pretrained("ydshieh/tiny-random-gptj-for-sequence-classification", problem_type="multi_label_classification")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")

>>> with torch.no_grad():
...     logits = model(**inputs).logits

>>> predicted_class_ids = torch.arange(0, logits.shape[-1])[torch.sigmoid(logits).squeeze(dim=0) > 0.5]

>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = GPTJForSequenceClassification.from_pretrained(
...     "ydshieh/tiny-random-gptj-for-sequence-classification", num_labels=num_labels, problem_type="multi_label_classification"
... )

>>> labels = torch.sum(
...     torch.nn.functional.one_hot(predicted_class_ids[None, :].clone(), num_classes=num_labels), dim=1
... ).to(torch.float)
>>> loss = model(**inputs, labels=labels).loss

GPTJForQuestionAnswering

class transformers.GPTJForQuestionAnswering

( config )

Parameters

The GPT-J Model transformer with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of the hidden-states output to compute span start logits and span end logits).

forward

Parameters

  • input_ids (torch.LongTensor of shape (batch_size, sequence_length)) — Indices of input sequence tokens in the vocabulary.

  • attention_mask (torch.FloatTensor of shape (batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:

    • 1 for tokens that are not masked,

    • 0 for tokens that are masked.

  • token_type_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]:

    • 0 corresponds to a sentence A token,

    • 1 corresponds to a sentence B token.

  • position_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.n_positions - 1].

  • head_mask (torch.FloatTensor of shape (num_attention_heads,) or (n_layer, num_attention_heads), optional) — Mask to nullify selected heads of the self-attention modules. Mask values selected in [0, 1]:

    • 1 indicates the head is not masked,

    • 0 indicates the head is masked.

  • inputs_embeds (torch.FloatTensor of shape (batch_size, sequence_length, hidden_dim), optional) — Optionally, instead of passing input_ids you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids indices into associated vectors than the model’s internal embedding lookup matrix.

  • output_attentions (bool, optional) — Whether or not to return the attentions tensors of all attention layers. See attentions under returned tensors for more detail.

  • output_hidden_states (bool, optional) — Whether or not to return the hidden states of all layers. See hidden_states under returned tensors for more detail.

  • start_positions (torch.LongTensor of shape (batch_size,), optional) — Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (sequence_length). Position outside of the sequence are not taken into account for computing the loss.

  • end_positions (torch.LongTensor of shape (batch_size,), optional) — Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (sequence_length). Position outside of the sequence are not taken into account for computing the loss.

Returns

  • loss (torch.FloatTensor of shape (1,), optional, returned when labels is provided) — Total span extraction loss is the sum of a Cross-Entropy for the start and end positions.

  • start_logits (torch.FloatTensor of shape (batch_size, sequence_length)) — Span-start scores (before SoftMax).

  • end_logits (torch.FloatTensor of shape (batch_size, sequence_length)) — Span-end scores (before SoftMax).

  • hidden_states (tuple(torch.FloatTensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) — Tuple of torch.FloatTensor (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.

  • attentions (tuple(torch.FloatTensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) — Tuple of torch.FloatTensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

This example uses a random model as the real ones are all very big. To get proper results, you should use EleutherAI/gpt-j-6B instead of hf-internal-testing/tiny-random-gptj. If you get out-of-memory when loading that checkpoint, you can try adding device_map="auto" in the from_pretrained call.

Example:

Copied

>>> from transformers import AutoTokenizer, GPTJForQuestionAnswering
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gptj")
>>> model = GPTJForQuestionAnswering.from_pretrained("hf-internal-testing/tiny-random-gptj")

>>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"

>>> inputs = tokenizer(question, text, return_tensors="pt")
>>> with torch.no_grad():
...     outputs = model(**inputs)

>>> answer_start_index = outputs.start_logits.argmax()
>>> answer_end_index = outputs.end_logits.argmax()

>>> predict_answer_tokens = inputs.input_ids[0, answer_start_index : answer_end_index + 1]

>>> # target is "nice puppet"
>>> target_start_index = torch.tensor([14])
>>> target_end_index = torch.tensor([15])

>>> outputs = model(**inputs, start_positions=target_start_index, end_positions=target_end_index)
>>> loss = outputs.loss

TFGPTJModel

class transformers.TFGPTJModel

( *args**kwargs )

Parameters

The bare GPT-J Model transformer outputting raw hidden-states without any specific head on top.

TensorFlow models and layers in transformers accept two formats as input:

  • having all inputs as keyword arguments (like PyTorch models), or

  • having all inputs as a list, tuple or dict in the first positional argument.

The reason the second format is supported is that Keras methods prefer this format when passing inputs to models and layers. Because of this support, when using methods like model.fit() things should “just work” for you - just pass your inputs and labels in any format that model.fit() supports! If, however, you want to use the second format outside of Keras methods like fit() and predict(), such as when creating your own layers or models with the Keras Functional API, there are three possibilities you can use to gather all the input Tensors in the first positional argument:

  • a single Tensor with input_ids only and nothing else: model(input_ids)

  • a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: model([input_ids, attention_mask]) or model([input_ids, attention_mask, token_type_ids])

  • a dictionary with one or several input Tensors associated to the input names given in the docstring: model({"input_ids": input_ids, "token_type_ids": token_type_ids})

call

Parameters

  • input_ids (Numpy array or tf.Tensor of shape (batch_size, input_ids_length)) — input_ids_length = sequence_length if past is None else past[0].shape[-2] (sequence_length of input past key value states). Indices of input sequence tokens in the vocabulary.

    If past is used, only input IDs that do not have their past calculated should be passed as input_ids.

  • past_key_values (List[tf.Tensor] of length config.n_layers) — Contains pre-computed hidden-states (key and values in the attention blocks) as computed by the model (see past output below). Can be used to speed up sequential decoding. The token ids which have their past given to this model should not be passed as input ids as they have already been computed.

  • attention_mask (tf.Tensor or Numpy array of shape (batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:

    • 1 for tokens that are not masked,

    • 0 for tokens that are masked.

  • token_type_ids (tf.Tensor or Numpy array of shape (batch_size, sequence_length), optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]:

    • 0 corresponds to a sentence A token,

    • 1 corresponds to a sentence B token.

  • position_ids (tf.Tensor or Numpy array of shape (batch_size, sequence_length), optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1].

  • head_mask (Numpy array or tf.Tensor of shape (num_heads,) or (num_layers, num_heads), optional) — Mask to nullify selected heads of the self-attention modules. Mask values selected in [0, 1]:

    • 1 indicates the head is not masked,

    • 0 indicates the head is masked.

  • inputs_embeds (tf.Tensor of shape (batch_size, sequence_length, hidden_size), optional) — Optionally, instead of passing input_ids you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids indices into associated vectors than the model’s internal embedding lookup matrix.

  • output_attentions (bool, optional) — Whether or not to return the attentions tensors of all attention layers. See attentions under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead.

  • output_hidden_states (bool, optional) — Whether or not to return the hidden states of all layers. See hidden_states under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead.

  • training (bool, optional, defaults to False) — Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation).

  • use_cache (bool, optional, defaults to True) — If set to True, past_key_values key value states are returned and can be used to speed up decoding (see past). Set to False during training, True during generation

Returns

  • last_hidden_state (tf.Tensor of shape (batch_size, sequence_length, hidden_size)) — Sequence of hidden-states at the output of the last layer of the model.

    If past_key_values is used only the last hidden-state of the sequences of shape (batch_size, 1, hidden_size) is output.

  • past_key_values (List[tf.Tensor], optional, returned when use_cache=True is passed or when config.use_cache=True) — List of tf.Tensor of length config.n_layers, with each tensor of shape (2, batch_size, num_heads, sequence_length, embed_size_per_head)).

    Contains pre-computed hidden-states (key and values in the attention blocks) that can be used (see past_key_values input) to speed up sequential decoding.

  • hidden_states (tuple(tf.Tensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) — Tuple of tf.Tensor (one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the model at the output of each layer plus the initial embedding outputs.

  • attentions (tuple(tf.Tensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) — Tuple of tf.Tensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Example:

Copied

>>> from transformers import AutoTokenizer, TFGPTJModel
>>> import tensorflow as tf

>>> tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-j-6B")
>>> model = TFGPTJModel.from_pretrained("EleutherAI/gpt-j-6B")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf")
>>> outputs = model(inputs)

>>> last_hidden_states = outputs.last_hidden_state

TFGPTJForCausalLM

class transformers.TFGPTJForCausalLM

( *args**kwargs )

Parameters

The GPT-J Model transformer with a language modeling head on top.

TensorFlow models and layers in transformers accept two formats as input:

  • having all inputs as keyword arguments (like PyTorch models), or

  • having all inputs as a list, tuple or dict in the first positional argument.

The reason the second format is supported is that Keras methods prefer this format when passing inputs to models and layers. Because of this support, when using methods like model.fit() things should “just work” for you - just pass your inputs and labels in any format that model.fit() supports! If, however, you want to use the second format outside of Keras methods like fit() and predict(), such as when creating your own layers or models with the Keras Functional API, there are three possibilities you can use to gather all the input Tensors in the first positional argument:

  • a single Tensor with input_ids only and nothing else: model(input_ids)

  • a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: model([input_ids, attention_mask]) or model([input_ids, attention_mask, token_type_ids])

  • a dictionary with one or several input Tensors associated to the input names given in the docstring: model({"input_ids": input_ids, "token_type_ids": token_type_ids})

call

Parameters

  • input_ids (Numpy array or tf.Tensor of shape (batch_size, input_ids_length)) — input_ids_length = sequence_length if past is None else past[0].shape[-2] (sequence_length of input past key value states). Indices of input sequence tokens in the vocabulary.

    If past is used, only input IDs that do not have their past calculated should be passed as input_ids.

  • past_key_values (List[tf.Tensor] of length config.n_layers) — Contains pre-computed hidden-states (key and values in the attention blocks) as computed by the model (see past output below). Can be used to speed up sequential decoding. The token ids which have their past given to this model should not be passed as input ids as they have already been computed.

  • attention_mask (tf.Tensor or Numpy array of shape (batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:

    • 1 for tokens that are not masked,

    • 0 for tokens that are masked.

  • token_type_ids (tf.Tensor or Numpy array of shape (batch_size, sequence_length), optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]:

    • 0 corresponds to a sentence A token,

    • 1 corresponds to a sentence B token.

  • position_ids (tf.Tensor or Numpy array of shape (batch_size, sequence_length), optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1].

  • head_mask (Numpy array or tf.Tensor of shape (num_heads,) or (num_layers, num_heads), optional) — Mask to nullify selected heads of the self-attention modules. Mask values selected in [0, 1]:

    • 1 indicates the head is not masked,

    • 0 indicates the head is masked.

  • inputs_embeds (tf.Tensor of shape (batch_size, sequence_length, hidden_size), optional) — Optionally, instead of passing input_ids you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids indices into associated vectors than the model’s internal embedding lookup matrix.

  • output_attentions (bool, optional) — Whether or not to return the attentions tensors of all attention layers. See attentions under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead.

  • output_hidden_states (bool, optional) — Whether or not to return the hidden states of all layers. See hidden_states under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead.

  • training (bool, optional, defaults to False) — Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation).

  • labels (np.ndarray or tf.Tensor of shape (batch_size, sequence_length), optional) — Labels for language modeling. Note that the labels are shifted inside the model, i.e. you can set labels = input_ids Indices are selected in [-100, 0, ..., config.vocab_size] All labels set to -100 are ignored (masked), the loss is only computed for labels in [0, ..., config.vocab_size]

Returns

  • loss (tf.Tensor of shape (n,), optional, where n is the number of non-masked labels, returned when labels is provided) — Language modeling loss (for next-token prediction).

  • logits (tf.Tensor of shape (batch_size, sequence_length, config.vocab_size)) — Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).

  • past_key_values (List[tf.Tensor], optional, returned when use_cache=True is passed or when config.use_cache=True) — List of tf.Tensor of length config.n_layers, with each tensor of shape (2, batch_size, num_heads, sequence_length, embed_size_per_head)).

    Contains pre-computed hidden-states (key and values in the attention blocks) that can be used (see past_key_values input) to speed up sequential decoding.

  • hidden_states (tuple(tf.Tensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) — Tuple of tf.Tensor (one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the model at the output of each layer plus the initial embedding outputs.

  • attentions (tuple(tf.Tensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) — Tuple of tf.Tensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Example:

Copied

>>> from transformers import AutoTokenizer, TFGPTJForCausalLM
>>> import tensorflow as tf

>>> tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-j-6B")
>>> model = TFGPTJForCausalLM.from_pretrained("EleutherAI/gpt-j-6B")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf")
>>> outputs = model(inputs)
>>> logits = outputs.logits

TFGPTJForSequenceClassification

class transformers.TFGPTJForSequenceClassification

( *args**kwargs )

Parameters

The GPT-J Model transformer with a sequence classification head on top (linear layer).

Since it does classification on the last token, it requires to know the position of the last token. If a pad_token_id is defined in the configuration, it finds the last token that is not a padding token in each row. If no pad_token_id is defined, it simply takes the last value in each row of the batch. Since it cannot guess the padding tokens when inputs_embeds are passed instead of input_ids, it does the same (take the last value in each row of the batch).

TensorFlow models and layers in transformers accept two formats as input:

  • having all inputs as keyword arguments (like PyTorch models), or

  • having all inputs as a list, tuple or dict in the first positional argument.

The reason the second format is supported is that Keras methods prefer this format when passing inputs to models and layers. Because of this support, when using methods like model.fit() things should “just work” for you - just pass your inputs and labels in any format that model.fit() supports! If, however, you want to use the second format outside of Keras methods like fit() and predict(), such as when creating your own layers or models with the Keras Functional API, there are three possibilities you can use to gather all the input Tensors in the first positional argument:

  • a single Tensor with input_ids only and nothing else: model(input_ids)

  • a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: model([input_ids, attention_mask]) or model([input_ids, attention_mask, token_type_ids])

  • a dictionary with one or several input Tensors associated to the input names given in the docstring: model({"input_ids": input_ids, "token_type_ids": token_type_ids})

call

Parameters

  • input_ids (Numpy array or tf.Tensor of shape (batch_size, input_ids_length)) — input_ids_length = sequence_length if past is None else past[0].shape[-2] (sequence_length of input past key value states). Indices of input sequence tokens in the vocabulary.

    If past is used, only input IDs that do not have their past calculated should be passed as input_ids.

  • past_key_values (List[tf.Tensor] of length config.n_layers) — Contains pre-computed hidden-states (key and values in the attention blocks) as computed by the model (see past output below). Can be used to speed up sequential decoding. The token ids which have their past given to this model should not be passed as input ids as they have already been computed.

  • attention_mask (tf.Tensor or Numpy array of shape (batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:

    • 1 for tokens that are not masked,

    • 0 for tokens that are masked.

  • token_type_ids (tf.Tensor or Numpy array of shape (batch_size, sequence_length), optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]:

    • 0 corresponds to a sentence A token,

    • 1 corresponds to a sentence B token.

  • position_ids (tf.Tensor or Numpy array of shape (batch_size, sequence_length), optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1].

  • head_mask (Numpy array or tf.Tensor of shape (num_heads,) or (num_layers, num_heads), optional) — Mask to nullify selected heads of the self-attention modules. Mask values selected in [0, 1]:

    • 1 indicates the head is not masked,

    • 0 indicates the head is masked.

  • inputs_embeds (tf.Tensor of shape (batch_size, sequence_length, hidden_size), optional) — Optionally, instead of passing input_ids you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids indices into associated vectors than the model’s internal embedding lookup matrix.

  • output_attentions (bool, optional) — Whether or not to return the attentions tensors of all attention layers. See attentions under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead.

  • output_hidden_states (bool, optional) — Whether or not to return the hidden states of all layers. See hidden_states under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead.

  • training (bool, optional, defaults to False) — Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation).

  • labels (np.ndarray or tf.Tensor of shape (batch_size,), optional) — Labels for computing the sequence classification/regression loss. Indices should be in [0, ..., config.num_labels - 1]. If config.num_labels == 1 a regression loss is computed (Mean-Square loss), If config.num_labels > 1 a classification loss is computed (Cross-Entropy).

Returns

  • loss (tf.Tensor of shape (batch_size, ), optional, returned when labels is provided) — Classification (or regression if config.num_labels==1) loss.

  • logits (tf.Tensor of shape (batch_size, config.num_labels)) — Classification (or regression if config.num_labels==1) scores (before SoftMax).

  • past_key_values (List[tf.Tensor], optional, returned when use_cache=True is passed or when config.use_cache=True) — List of tf.Tensor of length config.n_layers, with each tensor of shape (2, batch_size, num_heads, sequence_length, embed_size_per_head)).

    Contains pre-computed hidden-states (key and values in the attention blocks) that can be used (see past_key_values input) to speed up sequential decoding.

  • hidden_states (tuple(tf.Tensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) — Tuple of tf.Tensor (one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the model at the output of each layer plus the initial embedding outputs.

  • attentions (tuple(tf.Tensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) — Tuple of tf.Tensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Example:

Copied

>>> from transformers import AutoTokenizer, TFGPTJForSequenceClassification
>>> import tensorflow as tf

>>> tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-j-6B")
>>> model = TFGPTJForSequenceClassification.from_pretrained("EleutherAI/gpt-j-6B")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf")

>>> logits = model(**inputs).logits

>>> predicted_class_id = int(tf.math.argmax(logits, axis=-1)[0])

Copied

>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = TFGPTJForSequenceClassification.from_pretrained("EleutherAI/gpt-j-6B", num_labels=num_labels)

>>> labels = tf.constant(1)
>>> loss = model(**inputs, labels=labels).loss

TFGPTJForQuestionAnswering

class transformers.TFGPTJForQuestionAnswering

( *args**kwargs )

Parameters

The GPT-J Model transformer with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of the hidden-states output to compute span start logits and span end logits).

TensorFlow models and layers in transformers accept two formats as input:

  • having all inputs as keyword arguments (like PyTorch models), or

  • having all inputs as a list, tuple or dict in the first positional argument.

The reason the second format is supported is that Keras methods prefer this format when passing inputs to models and layers. Because of this support, when using methods like model.fit() things should “just work” for you - just pass your inputs and labels in any format that model.fit() supports! If, however, you want to use the second format outside of Keras methods like fit() and predict(), such as when creating your own layers or models with the Keras Functional API, there are three possibilities you can use to gather all the input Tensors in the first positional argument:

  • a single Tensor with input_ids only and nothing else: model(input_ids)

  • a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: model([input_ids, attention_mask]) or model([input_ids, attention_mask, token_type_ids])

  • a dictionary with one or several input Tensors associated to the input names given in the docstring: model({"input_ids": input_ids, "token_type_ids": token_type_ids})

call

Parameters

  • input_ids (Numpy array or tf.Tensor of shape (batch_size, input_ids_length)) — input_ids_length = sequence_length if past is None else past[0].shape[-2] (sequence_length of input past key value states). Indices of input sequence tokens in the vocabulary.

    If past is used, only input IDs that do not have their past calculated should be passed as input_ids.

  • past_key_values (List[tf.Tensor] of length config.n_layers) — Contains pre-computed hidden-states (key and values in the attention blocks) as computed by the model (see past output below). Can be used to speed up sequential decoding. The token ids which have their past given to this model should not be passed as input ids as they have already been computed.

  • attention_mask (tf.Tensor or Numpy array of shape (batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:

    • 1 for tokens that are not masked,

    • 0 for tokens that are masked.

  • token_type_ids (tf.Tensor or Numpy array of shape (batch_size, sequence_length), optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]:

    • 0 corresponds to a sentence A token,

    • 1 corresponds to a sentence B token.

  • position_ids (tf.Tensor or Numpy array of shape (batch_size, sequence_length), optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1].

  • head_mask (Numpy array or tf.Tensor of shape (num_heads,) or (num_layers, num_heads), optional) — Mask to nullify selected heads of the self-attention modules. Mask values selected in [0, 1]:

    • 1 indicates the head is not masked,

    • 0 indicates the head is masked.

  • inputs_embeds (tf.Tensor of shape (batch_size, sequence_length, hidden_size), optional) — Optionally, instead of passing input_ids you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids indices into associated vectors than the model’s internal embedding lookup matrix.

  • output_attentions (bool, optional) — Whether or not to return the attentions tensors of all attention layers. See attentions under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead.

  • output_hidden_states (bool, optional) — Whether or not to return the hidden states of all layers. See hidden_states under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead.

  • training (bool, optional, defaults to False) — Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation).

  • start_positions (np.ndarray or tf.Tensor of shape (batch_size,), optional) — Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (sequence_length). Position outside of the sequence are not taken into account for computing the loss.

  • end_positions (np.ndarray or tf.Tensor of shape (batch_size,), optional) — Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (sequence_length). Position outside of the sequence are not taken into account for computing the loss.

Returns

  • loss (tf.Tensor of shape (batch_size, ), optional, returned when start_positions and end_positions are provided) — Total span extraction loss is the sum of a Cross-Entropy for the start and end positions.

  • start_logits (tf.Tensor of shape (batch_size, sequence_length)) — Span-start scores (before SoftMax).

  • end_logits (tf.Tensor of shape (batch_size, sequence_length)) — Span-end scores (before SoftMax).

  • hidden_states (tuple(tf.Tensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) — Tuple of tf.Tensor (one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the model at the output of each layer plus the initial embedding outputs.

  • attentions (tuple(tf.Tensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) — Tuple of tf.Tensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Example:

Copied

>>> from transformers import AutoTokenizer, TFGPTJForQuestionAnswering
>>> import tensorflow as tf

>>> tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-j-6B")
>>> model = TFGPTJForQuestionAnswering.from_pretrained("EleutherAI/gpt-j-6B")

>>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"

>>> inputs = tokenizer(question, text, return_tensors="tf")
>>> outputs = model(**inputs)

>>> answer_start_index = int(tf.math.argmax(outputs.start_logits, axis=-1)[0])
>>> answer_end_index = int(tf.math.argmax(outputs.end_logits, axis=-1)[0])

>>> predict_answer_tokens = inputs.input_ids[0, answer_start_index : answer_end_index + 1]

Copied

>>> # target is "nice puppet"
>>> target_start_index = tf.constant([14])
>>> target_end_index = tf.constant([15])

>>> outputs = model(**inputs, start_positions=target_start_index, end_positions=target_end_index)
>>> loss = tf.math.reduce_mean(outputs.loss)

FlaxGPTJModel

class transformers.FlaxGPTJModel

( config: GPTJConfiginput_shape: typing.Tuple = (1, 1)seed: int = 0dtype: dtype = <class 'jax.numpy.float32'>_do_init: bool = True**kwargs )

Parameters

  • dtype (jax.numpy.dtype, optional, defaults to jax.numpy.float32) — The data type of the computation. Can be one of jax.numpy.float32, jax.numpy.float16 (on GPUs) and jax.numpy.bfloat16 (on TPUs).

    This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If specified all the computation will be performed with the given dtype.

    Note that this only specifies the dtype of the computation and does not influence the dtype of model parameters.

The bare GPTJ Model transformer outputting raw hidden-states without any specific head on top.

Finally, this model supports inherent JAX features such as:

__call__

Parameters

  • input_ids (numpy.ndarray of shape (batch_size, input_ids_length)) — input_ids_length = sequence_length. Indices of input sequence tokens in the vocabulary.

  • attention_mask (numpy.ndarray of shape (batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:

    • 1 for tokens that are not masked,

    • 0 for tokens that are masked.

  • position_ids (numpy.ndarray of shape (batch_size, sequence_length), optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1].

  • past_key_values (Dict[str, np.ndarray], optional, returned by init_cache or when passing previous past_key_values) — Dictionary of pre-computed hidden-states (key and values in the attention blocks) that can be used for fast auto-regressive decoding. Pre-computed key and value hidden-states are of shape [batch_size, max_length].

  • output_attentions (bool, optional) — Whether or not to return the attentions tensors of all attention layers. See attentions under returned tensors for more detail.

  • output_hidden_states (bool, optional) — Whether or not to return the hidden states of all layers. See hidden_states under returned tensors for more detail.

Returns

  • logits (jnp.ndarray of shape (batch_size, sequence_length, config.vocab_size)) — Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).

  • hidden_states (tuple(jnp.ndarray), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) — Tuple of jnp.ndarray (one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the model at the output of each layer plus the initial embedding outputs.

  • attentions (tuple(jnp.ndarray), optional, returned when output_attentions=True is passed or when config.output_attentions=True) — Tuple of jnp.ndarray (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

The FlaxGPTJPreTrainedModel forward method, overrides the __call__ special method.

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Example:

Copied

>>> from transformers import AutoTokenizer, FlaxGPTJModel

>>> tokenizer = AutoTokenizer.from_pretrained("gptj")
>>> model = FlaxGPTJModel.from_pretrained("gptj")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="jax")
>>> outputs = model(**inputs)

>>> last_hidden_states = outputs.last_hidden_state

FlaxGPTJForCausalLM

class transformers.FlaxGPTJForCausalLM

( config: GPTJConfiginput_shape: typing.Tuple = (1, 1)seed: int = 0dtype: dtype = <class 'jax.numpy.float32'>_do_init: bool = True**kwargs )

Parameters

  • dtype (jax.numpy.dtype, optional, defaults to jax.numpy.float32) — The data type of the computation. Can be one of jax.numpy.float32, jax.numpy.float16 (on GPUs) and jax.numpy.bfloat16 (on TPUs).

    This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If specified all the computation will be performed with the given dtype.

    Note that this only specifies the dtype of the computation and does not influence the dtype of model parameters.

The GPTJ Model transformer with a language modeling head on top.

Finally, this model supports inherent JAX features such as:

__call__

Parameters

  • input_ids (numpy.ndarray of shape (batch_size, input_ids_length)) — input_ids_length = sequence_length. Indices of input sequence tokens in the vocabulary.

  • attention_mask (numpy.ndarray of shape (batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:

    • 1 for tokens that are not masked,

    • 0 for tokens that are masked.

  • position_ids (numpy.ndarray of shape (batch_size, sequence_length), optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1].

  • past_key_values (Dict[str, np.ndarray], optional, returned by init_cache or when passing previous past_key_values) — Dictionary of pre-computed hidden-states (key and values in the attention blocks) that can be used for fast auto-regressive decoding. Pre-computed key and value hidden-states are of shape [batch_size, max_length].

  • output_attentions (bool, optional) — Whether or not to return the attentions tensors of all attention layers. See attentions under returned tensors for more detail.

  • output_hidden_states (bool, optional) — Whether or not to return the hidden states of all layers. See hidden_states under returned tensors for more detail.

Returns

  • logits (jnp.ndarray of shape (batch_size, sequence_length, config.vocab_size)) — Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).

  • hidden_states (tuple(jnp.ndarray), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) — Tuple of jnp.ndarray (one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the model at the output of each layer plus the initial embedding outputs.

  • attentions (tuple(jnp.ndarray), optional, returned when output_attentions=True is passed or when config.output_attentions=True) — Tuple of jnp.ndarray (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

The FlaxGPTJPreTrainedModel forward method, overrides the __call__ special method.

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Example:

Copied

>>> from transformers import AutoTokenizer, FlaxGPTJForCausalLM

>>> tokenizer = AutoTokenizer.from_pretrained("gptj")
>>> model = FlaxGPTJForCausalLM.from_pretrained("gptj")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="np")
>>> outputs = model(**inputs)

>>> # retrieve logts for next token
>>> next_token_logits = outputs.logits[:, -1]

The method can be used to generate text using GPT-J model.

Description of .

A blog on how to .

A blog on how to .

A blog post introducing . 🌎

A notebook for . 🌎

Another notebook demonstrating .

chapter of the 🌎 BOINC AI Course.

is supported by this , , and .

is supported by this and .

is supported by this and .

vocab_size (int, optional, defaults to 50400) — Vocabulary size of the GPT-J model. Defines the number of different tokens that can be represented by the inputs_ids passed when calling .

This is the configuration class to store the configuration of a . It is used to instantiate a GPT-J model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the GPT-J architecture. Configuration objects inherit from and can be used to control the model outputs. Read the documentation from for more information.

config () — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the method to load the model weights.

The bare GPT-J Model transformer outputting raw hidden-states without any specific head on top. This model is a PyTorch sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.

( input_ids: typing.Optional[torch.LongTensor] = Nonepast_key_values: typing.Optional[typing.Tuple[typing.Tuple[torch.Tensor]]] = Noneattention_mask: typing.Optional[torch.FloatTensor] = Nonetoken_type_ids: typing.Optional[torch.LongTensor] = Noneposition_ids: typing.Optional[torch.LongTensor] = Nonehead_mask: typing.Optional[torch.FloatTensor] = Noneinputs_embeds: typing.Optional[torch.FloatTensor] = Noneuse_cache: typing.Optional[bool] = Noneoutput_attentions: typing.Optional[bool] = Noneoutput_hidden_states: typing.Optional[bool] = Nonereturn_dict: typing.Optional[bool] = None ) → or tuple(torch.FloatTensor)

Indices can be obtained using . See and for details.

return_dict (bool, optional) — Whether or not to return a instead of a plain tuple.

or tuple(torch.FloatTensor)

A or a tuple of torch.FloatTensor (if return_dict=False is passed or when config.return_dict=False) comprising various elements depending on the configuration () and inputs.

The forward method, overrides the __call__ special method.

config () — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the method to load the model weights.

This model is a PyTorch sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.

( input_ids: typing.Optional[torch.LongTensor] = Nonepast_key_values: typing.Optional[typing.Tuple[typing.Tuple[torch.Tensor]]] = Noneattention_mask: typing.Optional[torch.FloatTensor] = Nonetoken_type_ids: typing.Optional[torch.LongTensor] = Noneposition_ids: typing.Optional[torch.LongTensor] = Nonehead_mask: typing.Optional[torch.FloatTensor] = Noneinputs_embeds: typing.Optional[torch.FloatTensor] = Nonelabels: typing.Optional[torch.LongTensor] = Noneuse_cache: typing.Optional[bool] = Noneoutput_attentions: typing.Optional[bool] = Noneoutput_hidden_states: typing.Optional[bool] = Nonereturn_dict: typing.Optional[bool] = None ) → or tuple(torch.FloatTensor)

Indices can be obtained using . See and for details.

return_dict (bool, optional) — Whether or not to return a instead of a plain tuple.

or tuple(torch.FloatTensor)

A or a tuple of torch.FloatTensor (if return_dict=False is passed or when config.return_dict=False) comprising various elements depending on the configuration () and inputs.

The forward method, overrides the __call__ special method.

config () — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the method to load the model weights.

uses the last token in order to do the classification, as other causal models (e.g. GPT, GPT-2, GPT-Neo) do.

This model is a PyTorch sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.

Indices can be obtained using . See and for details.

return_dict (bool, optional) — Whether or not to return a instead of a plain tuple.

A transformers.modeling_outputs.SequenceClassifierOutputWithPast or a tuple of torch.FloatTensor (if return_dict=False is passed or when config.return_dict=False) comprising various elements depending on the configuration () and inputs.

The forward method, overrides the __call__ special method.

config () — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the method to load the model weights.

This model is a PyTorch sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.

( input_ids: typing.Optional[torch.LongTensor] = Noneattention_mask: typing.Optional[torch.FloatTensor] = Nonetoken_type_ids: typing.Optional[torch.LongTensor] = Noneposition_ids: typing.Optional[torch.LongTensor] = Nonehead_mask: typing.Optional[torch.FloatTensor] = Noneinputs_embeds: typing.Optional[torch.FloatTensor] = Nonestart_positions: typing.Optional[torch.LongTensor] = Noneend_positions: typing.Optional[torch.LongTensor] = Noneoutput_attentions: typing.Optional[bool] = Noneoutput_hidden_states: typing.Optional[bool] = Nonereturn_dict: typing.Optional[bool] = None ) → or tuple(torch.FloatTensor)

Indices can be obtained using . See and for details.

return_dict (bool, optional) — Whether or not to return a instead of a plain tuple.

or tuple(torch.FloatTensor)

A or a tuple of torch.FloatTensor (if return_dict=False is passed or when config.return_dict=False) comprising various elements depending on the configuration () and inputs.

The forward method, overrides the __call__ special method.

config () — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the method to load the model weights.

This model inherits from . Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)

This model is also a subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior.

Note that when creating models and layers with then you don’t need to worry about any of this, as you can just pass inputs like you would to any other Python function!

( input_ids: TFModelInputType | None = Nonepast_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = Noneattention_mask: np.ndarray | tf.Tensor | None = Nonetoken_type_ids: np.ndarray | tf.Tensor | None = Noneposition_ids: np.ndarray | tf.Tensor | None = Nonehead_mask: np.ndarray | tf.Tensor | None = Noneinputs_embeds: np.ndarray | tf.Tensor | None = Noneuse_cache: Optional[bool] = Noneoutput_attentions: Optional[bool] = Noneoutput_hidden_states: Optional[bool] = Nonereturn_dict: Optional[bool] = Nonetraining: Optional[bool] = False ) → or tuple(tf.Tensor)

Indices can be obtained using . See and for details.

return_dict (bool, optional) — Whether or not to return a instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True.

or tuple(tf.Tensor)

A or a tuple of tf.Tensor (if return_dict=False is passed or when config.return_dict=False) comprising various elements depending on the configuration () and inputs.

The forward method, overrides the __call__ special method.

config () — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the method to load the model weights.

This model inherits from . Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)

This model is also a subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior.

Note that when creating models and layers with then you don’t need to worry about any of this, as you can just pass inputs like you would to any other Python function!

( input_ids: TFModelInputType | None = Nonepast_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = Noneattention_mask: np.ndarray | tf.Tensor | None = Nonetoken_type_ids: np.ndarray | tf.Tensor | None = Noneposition_ids: np.ndarray | tf.Tensor | None = Nonehead_mask: np.ndarray | tf.Tensor | None = Noneinputs_embeds: np.ndarray | tf.Tensor | None = Nonelabels: np.ndarray | tf.Tensor | None = Noneuse_cache: Optional[bool] = Noneoutput_attentions: Optional[bool] = Noneoutput_hidden_states: Optional[bool] = Nonereturn_dict: Optional[bool] = Nonetraining: Optional[bool] = False ) → or tuple(tf.Tensor)

Indices can be obtained using . See and for details.

return_dict (bool, optional) — Whether or not to return a instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True.

or tuple(tf.Tensor)

A or a tuple of tf.Tensor (if return_dict=False is passed or when config.return_dict=False) comprising various elements depending on the configuration () and inputs.

The forward method, overrides the __call__ special method.

config () — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the method to load the model weights.

uses the last token in order to do the classification, as other causal models (e.g. GPT, GPT-2, GPT-Neo) do.

This model inherits from . Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)

This model is also a subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior.

Note that when creating models and layers with then you don’t need to worry about any of this, as you can just pass inputs like you would to any other Python function!

( input_ids: TFModelInputType | None = Nonepast_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = Noneattention_mask: np.ndarray | tf.Tensor | None = Nonetoken_type_ids: np.ndarray | tf.Tensor | None = Noneposition_ids: np.ndarray | tf.Tensor | None = Nonehead_mask: np.ndarray | tf.Tensor | None = Noneinputs_embeds: np.ndarray | tf.Tensor | None = Nonelabels: np.ndarray | tf.Tensor | None = Noneuse_cache: Optional[bool] = Noneoutput_attentions: Optional[bool] = Noneoutput_hidden_states: Optional[bool] = Nonereturn_dict: Optional[bool] = Nonetraining: Optional[bool] = False ) → or tuple(tf.Tensor)

Indices can be obtained using . See and for details.

return_dict (bool, optional) — Whether or not to return a instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True.

or tuple(tf.Tensor)

A or a tuple of tf.Tensor (if return_dict=False is passed or when config.return_dict=False) comprising various elements depending on the configuration () and inputs.

The forward method, overrides the __call__ special method.

config () — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the method to load the model weights.

This model inherits from . Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)

This model is also a subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior.

Note that when creating models and layers with then you don’t need to worry about any of this, as you can just pass inputs like you would to any other Python function!

( input_ids: TFModelInputType | None = Nonepast_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = Noneattention_mask: np.ndarray | tf.Tensor | None = Nonetoken_type_ids: np.ndarray | tf.Tensor | None = Noneposition_ids: np.ndarray | tf.Tensor | None = Nonehead_mask: np.ndarray | tf.Tensor | None = Noneinputs_embeds: np.ndarray | tf.Tensor | None = Nonestart_positions: np.ndarray | tf.Tensor | None = Noneend_positions: np.ndarray | tf.Tensor | None = Noneoutput_attentions: Optional[bool] = Noneoutput_hidden_states: Optional[bool] = Nonereturn_dict: Optional[bool] = Nonetraining: Optional[bool] = False ) → or tuple(tf.Tensor)

Indices can be obtained using . See and for details.

return_dict (bool, optional) — Whether or not to return a instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True.

or tuple(tf.Tensor)

A or a tuple of tf.Tensor (if return_dict=False is passed or when config.return_dict=False) comprising various elements depending on the configuration () and inputs.

The forward method, overrides the __call__ special method.

config () — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the method to load the model weights.

If you wish to change the dtype of the model parameters, see and .

This model inherits from . Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)

This model is also a Flax Linen subclass. Use it as a regular Flax Module and refer to the Flax documentation for all matter related to general usage and behavior.

( input_idsattention_mask = Noneposition_ids = Noneparams: dict = Nonepast_key_values: dict = Nonedropout_rng: PRNGKey = Nonetrain: bool = Falseoutput_attentions: typing.Optional[bool] = Noneoutput_hidden_states: typing.Optional[bool] = Nonereturn_dict: typing.Optional[bool] = None ) → or tuple(torch.FloatTensor)

Indices can be obtained using . See and for details.

return_dict (bool, optional) — Whether or not to return a instead of a plain tuple.

or tuple(torch.FloatTensor)

A or a tuple of torch.FloatTensor (if return_dict=False is passed or when config.return_dict=False) comprising various elements depending on the configuration () and inputs.

config () — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the method to load the model weights.

If you wish to change the dtype of the model parameters, see and .

This model inherits from . Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)

This model is also a Flax Linen subclass. Use it as a regular Flax Module and refer to the Flax documentation for all matter related to general usage and behavior.

( input_idsattention_mask = Noneposition_ids = Noneparams: dict = Nonepast_key_values: dict = Nonedropout_rng: PRNGKey = Nonetrain: bool = Falseoutput_attentions: typing.Optional[bool] = Noneoutput_hidden_states: typing.Optional[bool] = Nonereturn_dict: typing.Optional[bool] = None ) → or tuple(torch.FloatTensor)

Indices can be obtained using . See and for details.

return_dict (bool, optional) — Whether or not to return a instead of a plain tuple.

or tuple(torch.FloatTensor)

A or a tuple of torch.FloatTensor (if return_dict=False is passed or when config.return_dict=False) comprising various elements depending on the configuration () and inputs.

🌍
🌍
🌍
kingoflolz/mesh-transformer-jax
the Pile
Stella Biderman
GPT-J
here
GPT-J
generate()
GPT-J
Deploy GPT-J 6B for inference using BOINC AI Transformers and Amazon SageMaker
Accelerate GPT-J inference with DeepSpeed-Inference on GPUs
GPT-J-6B: 6B JAX-Based Transformer
GPT-J-6B Inference Demo
Inference with GPT-J-6B
Causal language modeling
GPTJForCausalLM
causal language modeling example script
text generation example script
notebook
TFGPTJForCausalLM
causal language modeling example script
notebook
FlaxGPTJForCausalLM
causal language modeling example script
notebook
Text classification task guide
Question answering task guide
Causal language modeling task guide
<source>
GPTJModel
GPTJModel
EleutherAI/gpt-j-6B
PretrainedConfig
PretrainedConfig
<source>
GPTJConfig
from_pretrained()
torch.nn.Module
<source>
transformers.modeling_outputs.BaseModelOutputWithPast
AutoTokenizer
PreTrainedTokenizer.encode()
PreTrainedTokenizer.call()
What are input IDs?
What are attention masks?
What are token type IDs?
What are position IDs?
ModelOutput
transformers.modeling_outputs.BaseModelOutputWithPast
transformers.modeling_outputs.BaseModelOutputWithPast
GPTJConfig
GPTJModel
<source>
GPTJConfig
from_pretrained()
torch.nn.Module
<source>
transformers.modeling_outputs.CausalLMOutputWithPast
AutoTokenizer
PreTrainedTokenizer.encode()
PreTrainedTokenizer.call()
What are input IDs?
What are attention masks?
What are token type IDs?
What are position IDs?
ModelOutput
transformers.modeling_outputs.CausalLMOutputWithPast
transformers.modeling_outputs.CausalLMOutputWithPast
GPTJConfig
GPTJForCausalLM
<source>
GPTJConfig
from_pretrained()
GPTJForSequenceClassification
torch.nn.Module
<source>
AutoTokenizer
PreTrainedTokenizer.encode()
PreTrainedTokenizer.call()
What are input IDs?
What are attention masks?
What are token type IDs?
What are position IDs?
ModelOutput
GPTJConfig
GPTJForSequenceClassification
<source>
GPTJConfig
from_pretrained()
torch.nn.Module
<source>
transformers.modeling_outputs.QuestionAnsweringModelOutput
AutoTokenizer
PreTrainedTokenizer.encode()
PreTrainedTokenizer.call()
What are input IDs?
What are attention masks?
What are token type IDs?
What are position IDs?
ModelOutput
transformers.modeling_outputs.QuestionAnsweringModelOutput
transformers.modeling_outputs.QuestionAnsweringModelOutput
GPTJConfig
GPTJForQuestionAnswering
<source>
GPTJConfig
from_pretrained()
TFPreTrainedModel
tf.keras.Model
subclassing
<source>
transformers.modeling_tf_outputs.TFBaseModelOutputWithPast
AutoTokenizer
PreTrainedTokenizer.call()
PreTrainedTokenizer.encode()
What are input IDs?
What are attention masks?
What are token type IDs?
What are position IDs?
ModelOutput
transformers.modeling_tf_outputs.TFBaseModelOutputWithPast
transformers.modeling_tf_outputs.TFBaseModelOutputWithPast
GPTJConfig
TFGPTJModel
<source>
GPTJConfig
from_pretrained()
TFPreTrainedModel
tf.keras.Model
subclassing
<source>
transformers.modeling_tf_outputs.TFCausalLMOutputWithPast
AutoTokenizer
PreTrainedTokenizer.call()
PreTrainedTokenizer.encode()
What are input IDs?
What are attention masks?
What are token type IDs?
What are position IDs?
ModelOutput
transformers.modeling_tf_outputs.TFCausalLMOutputWithPast
transformers.modeling_tf_outputs.TFCausalLMOutputWithPast
GPTJConfig
TFGPTJForCausalLM
<source>
GPTJConfig
from_pretrained()
GPTJForSequenceClassification
TFPreTrainedModel
tf.keras.Model
subclassing
<source>
transformers.modeling_tf_outputs.TFSequenceClassifierOutputWithPast
AutoTokenizer
PreTrainedTokenizer.call()
PreTrainedTokenizer.encode()
What are input IDs?
What are attention masks?
What are token type IDs?
What are position IDs?
ModelOutput
transformers.modeling_tf_outputs.TFSequenceClassifierOutputWithPast
transformers.modeling_tf_outputs.TFSequenceClassifierOutputWithPast
GPTJConfig
TFGPTJForSequenceClassification
<source>
GPTJConfig
from_pretrained()
TFPreTrainedModel
tf.keras.Model
subclassing
<source>
transformers.modeling_tf_outputs.TFQuestionAnsweringModelOutput
AutoTokenizer
PreTrainedTokenizer.call()
PreTrainedTokenizer.encode()
What are input IDs?
What are attention masks?
What are token type IDs?
What are position IDs?
ModelOutput
transformers.modeling_tf_outputs.TFQuestionAnsweringModelOutput
transformers.modeling_tf_outputs.TFQuestionAnsweringModelOutput
GPTJConfig
TFGPTJForQuestionAnswering
<source>
GPTJConfig
from_pretrained()
to_fp16()
to_bf16()
FlaxPreTrainedModel
flax.nn.Module
Just-In-Time (JIT) compilation
Automatic Differentiation
Vectorization
Parallelization
<source>
transformers.modeling_flax_outputs.FlaxMaskedLMOutput
AutoTokenizer
PreTrainedTokenizer.encode()
PreTrainedTokenizer.call()
What are input IDs?
What are attention masks?
ModelOutput
transformers.modeling_flax_outputs.FlaxMaskedLMOutput
transformers.modeling_flax_outputs.FlaxMaskedLMOutput
GPTJConfig
<source>
GPTJConfig
from_pretrained()
to_fp16()
to_bf16()
FlaxPreTrainedModel
flax.nn.Module
Just-In-Time (JIT) compilation
Automatic Differentiation
Vectorization
Parallelization
<source>
transformers.modeling_flax_outputs.FlaxMaskedLMOutput
AutoTokenizer
PreTrainedTokenizer.encode()
PreTrainedTokenizer.call()
What are input IDs?
What are attention masks?
ModelOutput
transformers.modeling_flax_outputs.FlaxMaskedLMOutput
transformers.modeling_flax_outputs.FlaxMaskedLMOutput
GPTJConfig