BertJapanese
BertJapanese
Overview
The BERT models trained on Japanese text.
There are models with two different tokenization methods:
Tokenize into characters.
To use MecabTokenizer, you should pip install transformers["ja"]
(or pip install -e .["ja"]
if you install from source) to install dependencies.
See details on cl-tohoku repository.
Example of using a model with MeCab and WordPiece tokenization:
Copied
Example of using a model with Character tokenization:
Copied
Tips:
This implementation is the same as BERT, except for tokenization method. Refer to the documentation of BERT for more usage examples.
This model was contributed by cl-tohoku.
BertJapaneseTokenizer
class transformers.BertJapaneseTokenizer
( vocab_filespm_file = Nonedo_lower_case = Falsedo_word_tokenize = Truedo_subword_tokenize = Trueword_tokenizer_type = 'basic'subword_tokenizer_type = 'wordpiece'never_split = Noneunk_token = '[UNK]'sep_token = '[SEP]'pad_token = '[PAD]'cls_token = '[CLS]'mask_token = '[MASK]'mecab_kwargs = Nonesudachi_kwargs = Nonejumanpp_kwargs = None**kwargs )
Parameters
vocab_file (
str
) β Path to a one-wordpiece-per-line vocabulary file.spm_file (
str
, optional) β Path to SentencePiece file (generally has a .spm or .model extension) that contains the vocabulary.do_lower_case (
bool
, optional, defaults toTrue
) β Whether to lower case the input. Only has an effect when do_basic_tokenize=True.do_word_tokenize (
bool
, optional, defaults toTrue
) β Whether to do word tokenization.do_subword_tokenize (
bool
, optional, defaults toTrue
) β Whether to do subword tokenization.word_tokenizer_type (
str
, optional, defaults to"basic"
) β Type of word tokenizer. Choose from [βbasicβ, βmecabβ, βsudachiβ, βjumanppβ].subword_tokenizer_type (
str
, optional, defaults to"wordpiece"
) β Type of subword tokenizer. Choose from [βwordpieceβ, βcharacterβ, βsentencepieceβ,].mecab_kwargs (
dict
, optional) β Dictionary passed to theMecabTokenizer
constructor.sudachi_kwargs (
dict
, optional) β Dictionary passed to theSudachiTokenizer
constructor.jumanpp_kwargs (
dict
, optional) β Dictionary passed to theJumanppTokenizer
constructor.
Construct a BERT tokenizer for Japanese text.
This tokenizer inherits from PreTrainedTokenizer which contains most of the main methods. Users should refer to: this superclass for more information regarding those methods.
build_inputs_with_special_tokens
( token_ids_0: typing.List[int]token_ids_1: typing.Optional[typing.List[int]] = None ) β List[int]
Parameters
token_ids_0 (
List[int]
) β List of IDs to which the special tokens will be added.token_ids_1 (
List[int]
, optional) β Optional second list of IDs for sequence pairs.
Returns
List[int]
List of input IDs with the appropriate special tokens.
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. A BERT sequence has the following format:
single sequence:
[CLS] X [SEP]
pair of sequences:
[CLS] A [SEP] B [SEP]
convert_tokens_to_string
( tokens )
Converts a sequence of tokens (string) in a single string.
create_token_type_ids_from_sequences
( token_ids_0: typing.List[int]token_ids_1: typing.Optional[typing.List[int]] = None ) β List[int]
Parameters
token_ids_0 (
List[int]
) β List of IDs.token_ids_1 (
List[int]
, optional) β Optional second list of IDs for sequence pairs.
Returns
List[int]
List of token type IDs according to the given sequence(s).
Create a mask from the two sequences passed to be used in a sequence-pair classification task. A BERT sequence
pair mask has the following format:
Copied
If token_ids_1
is None
, this method only returns the first portion of the mask (0s).
get_special_tokens_mask
( token_ids_0: typing.List[int]token_ids_1: typing.Optional[typing.List[int]] = Nonealready_has_special_tokens: bool = False ) β List[int]
Parameters
token_ids_0 (
List[int]
) β List of IDs.token_ids_1 (
List[int]
, optional) β Optional second list of IDs for sequence pairs.already_has_special_tokens (
bool
, optional, defaults toFalse
) β Whether or not the token list is already formatted with special tokens for the model.
Returns
List[int]
A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer prepare_for_model
method.
Last updated