Chinese-CLIP
Last updated
Last updated
The Chinese-CLIP model was proposed in by An Yang, Junshu Pan, Junyang Lin, Rui Men, Yichang Zhang, Jingren Zhou, Chang Zhou. Chinese-CLIP is an implementation of CLIP (Radford et al., 2021) on a large-scale dataset of Chinese image-text pairs. It is capable of performing cross-modal retrieval and also playing as a vision backbone for vision tasks like zero-shot image classification, open-domain object detection, etc. The original Chinese-CLIP code is released .
The abstract from the paper is the following:
The tremendous success of CLIP (Radford et al., 2021) has promoted the research and application of contrastive learning for vision-language pretraining. In this work, we construct a large-scale dataset of image-text pairs in Chinese, where most data are retrieved from publicly available datasets, and we pretrain Chinese CLIP models on the new dataset. We develop 5 Chinese CLIP models of multiple sizes, spanning from 77 to 958 million parameters. Furthermore, we propose a two-stage pretraining method, where the model is first trained with the image encoder frozen and then trained with all parameters being optimized, to achieve enhanced model performance. Our comprehensive experiments demonstrate that Chinese CLIP can achieve the state-of-the-art performance on MUGE, Flickr30K-CN, and COCO-CN in the setups of zero-shot learning and finetuning, and it is able to achieve competitive performance in zero-shot image classification based on the evaluation on the ELEVATER benchmark (Li et al., 2022). Our codes, pretrained models, and demos have been released.
The code snippet below shows how to compute image & text features and similarities:
Copied
Currently, we release the following scales of pretrained Chinese-CLIP models at HF Model Hub:
( text_config = Nonevision_config = Noneprojection_dim = 512logit_scale_init_value = 2.6592**kwargs )
Parameters
projection_dim (int
, optional, defaults to 512) — Dimentionality of text and vision projection layers.
logit_scale_init_value (float
, optional, defaults to 2.6592) — The inital value of the logit_scale paramter. Default is used as per the original ChineseCLIP implementation.
kwargs (optional) — Dictionary of keyword arguments.
Example:
Copied
from_text_vision_configs
( text_config: ChineseCLIPTextConfigvision_config: ChineseCLIPVisionConfig**kwargs )
( vocab_size = 30522hidden_size = 768num_hidden_layers = 12num_attention_heads = 12intermediate_size = 3072hidden_act = 'gelu'hidden_dropout_prob = 0.1attention_probs_dropout_prob = 0.1max_position_embeddings = 512type_vocab_size = 2initializer_range = 0.02initializer_factor = 1.0layer_norm_eps = 1e-12pad_token_id = 0position_embedding_type = 'absolute'use_cache = True**kwargs )
Parameters
hidden_size (int
, optional, defaults to 768) — Dimensionality of the encoder layers and the pooler layer.
num_hidden_layers (int
, optional, defaults to 12) — Number of hidden layers in the Transformer encoder.
num_attention_heads (int
, optional, defaults to 12) — Number of attention heads for each attention layer in the Transformer encoder.
intermediate_size (int
, optional, defaults to 3072) — Dimensionality of the “intermediate” (often named feed-forward) layer in the Transformer encoder.
hidden_act (str
or Callable
, optional, defaults to "gelu"
) — The non-linear activation function (function or string) in the encoder and pooler. If string, "gelu"
, "relu"
, "silu"
and "gelu_new"
are supported.
hidden_dropout_prob (float
, optional, defaults to 0.1) — The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_probs_dropout_prob (float
, optional, defaults to 0.1) — The dropout ratio for the attention probabilities.
max_position_embeddings (int
, optional, defaults to 512) — The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048).
initializer_range (float
, optional, defaults to 0.02) — The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (float
, optional, defaults to 1e-12) — The epsilon used by the layer normalization layers.
use_cache (bool
, optional, defaults to True
) — Whether or not the model should return the last key/values attentions (not used by all models). Only relevant if config.is_decoder=True
.
Example:
Copied
( hidden_size = 768intermediate_size = 3072projection_dim = 512num_hidden_layers = 12num_attention_heads = 12num_channels = 3image_size = 224patch_size = 32hidden_act = 'quick_gelu'layer_norm_eps = 1e-05attention_dropout = 0.0initializer_range = 0.02initializer_factor = 1.0**kwargs )
Parameters
hidden_size (int
, optional, defaults to 768) — Dimensionality of the encoder layers and the pooler layer.
intermediate_size (int
, optional, defaults to 3072) — Dimensionality of the “intermediate” (i.e., feed-forward) layer in the Transformer encoder.
num_hidden_layers (int
, optional, defaults to 12) — Number of hidden layers in the Transformer encoder.
num_attention_heads (int
, optional, defaults to 12) — Number of attention heads for each attention layer in the Transformer encoder.
image_size (int
, optional, defaults to 224) — The size (resolution) of each image.
patch_size (int
, optional, defaults to 32) — The size (resolution) of each patch.
hidden_act (str
or function
, optional, defaults to "quick_gelu"
) — The non-linear activation function (function or string) in the encoder and pooler. If string, "gelu"
, "relu"
, "selu"
and "gelu_new"
`"quick_gelu"
are supported.
layer_norm_eps (float
, optional, defaults to 1e-5) — The epsilon used by the layer normalization layers.
attention_dropout (float
, optional, defaults to 0.0) — The dropout ratio for the attention probabilities.
initializer_range (float
, optional, defaults to 0.02) — The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
initializer_factor (`float“, optional, defaults to 1) — A factor for initializing all weight matrices (should be kept to 1, used internally for initialization testing).
Example:
Copied
( do_resize: bool = Truesize: typing.Dict[str, int] = Noneresample: Resampling = <Resampling.BICUBIC: 3>do_center_crop: bool = Truecrop_size: typing.Dict[str, int] = Nonedo_rescale: bool = Truerescale_factor: typing.Union[int, float] = 0.00392156862745098do_normalize: bool = Trueimage_mean: typing.Union[float, typing.List[float], NoneType] = Noneimage_std: typing.Union[float, typing.List[float], NoneType] = Nonedo_convert_rgb: bool = True**kwargs )
Parameters
do_resize (bool
, optional, defaults to True
) — Whether to resize the image’s (height, width) dimensions to the specified size
. Can be overridden by do_resize
in the preprocess
method.
size (Dict[str, int]
optional, defaults to {"shortest_edge" -- 224}
): Size of the image after resizing. The shortest edge of the image is resized to size[“shortest_edge”], with the longest edge resized to keep the input aspect ratio. Can be overridden by size
in the preprocess
method.
resample (PILImageResampling
, optional, defaults to PILImageResampling.BICUBIC
) — Resampling filter to use if resizing the image. Can be overridden by resample
in the preprocess
method.
do_center_crop (bool
, optional, defaults to True
) — Whether to center crop the image to the specified crop_size
. Can be overridden by do_center_crop
in the preprocess
method.
crop_size (Dict[str, int]
optional, defaults to 224) — Size of the output image after applying center_crop
. Can be overridden by crop_size
in the preprocess
method.
do_rescale (bool
, optional, defaults to True
) — Whether to rescale the image by the specified scale rescale_factor
. Can be overridden by do_rescale
in the preprocess
method.
rescale_factor (int
or float
, optional, defaults to 1/255
) — Scale factor to use if rescaling the image. Can be overridden by rescale_factor
in the preprocess
method. do_normalize — Whether to normalize the image. Can be overridden by do_normalize
in the preprocess
method.
image_mean (float
or List[float]
, optional, defaults to IMAGENET_STANDARD_MEAN
) — Mean to use if normalizing the image. This is a float or list of floats the length of the number of channels in the image. Can be overridden by the image_mean
parameter in the preprocess
method.
image_std (float
or List[float]
, optional, defaults to IMAGENET_STANDARD_STD
) — Standard deviation to use if normalizing the image. This is a float or list of floats the length of the number of channels in the image. Can be overridden by the image_std
parameter in the preprocess
method. Can be overridden by the image_std
parameter in the preprocess
method.
do_convert_rgb (bool
, optional, defaults to True
) — Whether to convert the image to RGB.
Constructs a Chinese-CLIP image processor.
preprocess
( images: typing.Union[ForwardRef('PIL.Image.Image'), numpy.ndarray, ForwardRef('torch.Tensor'), typing.List[ForwardRef('PIL.Image.Image')], typing.List[numpy.ndarray], typing.List[ForwardRef('torch.Tensor')]]do_resize: bool = Nonesize: typing.Dict[str, int] = Noneresample: Resampling = Nonedo_center_crop: bool = Nonecrop_size: int = Nonedo_rescale: bool = Nonerescale_factor: float = Nonedo_normalize: bool = Noneimage_mean: typing.Union[float, typing.List[float], NoneType] = Noneimage_std: typing.Union[float, typing.List[float], NoneType] = Nonedo_convert_rgb: bool = Nonereturn_tensors: typing.Union[str, transformers.utils.generic.TensorType, NoneType] = Nonedata_format: typing.Optional[transformers.image_utils.ChannelDimension] = <ChannelDimension.FIRST: 'channels_first'>input_data_format: typing.Union[str, transformers.image_utils.ChannelDimension, NoneType] = None**kwargs )
Parameters
images (ImageInput
) — Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If passing in images with pixel values between 0 and 1, set do_rescale=False
.
do_resize (bool
, optional, defaults to self.do_resize
) — Whether to resize the image.
size (Dict[str, int]
, optional, defaults to self.size
) — Size of the image after resizing. Shortest edge of the image is resized to size[“shortest_edge”], with the longest edge resized to keep the input aspect ratio.
resample (int
, optional, defaults to self.resample
) — Resampling filter to use if resizing the image. This can be one of the enum PILImageResampling
. Only has an effect if do_resize
is set to True
.
do_center_crop (bool
, optional, defaults to self.do_center_crop
) — Whether to center crop the image.
crop_size (Dict[str, int]
, optional, defaults to self.crop_size
) — Size of the center crop. Only has an effect if do_center_crop
is set to True
.
do_rescale (bool
, optional, defaults to self.do_rescale
) — Whether to rescale the image.
rescale_factor (float
, optional, defaults to self.rescale_factor
) — Rescale factor to rescale the image by if do_rescale
is set to True
.
do_normalize (bool
, optional, defaults to self.do_normalize
) — Whether to normalize the image.
image_mean (float
or List[float]
, optional, defaults to self.image_mean
) — Image mean to use for normalization. Only has an effect if do_normalize
is set to True
.
image_std (float
or List[float]
, optional, defaults to self.image_std
) — Image standard deviation to use for normalization. Only has an effect if do_normalize
is set to True
.
do_convert_rgb (bool
, optional, defaults to self.do_convert_rgb
) — Whether to convert the image to RGB.
return_tensors (str
or TensorType
, optional) — The type of tensors to return. Can be one of:
Unset: Return a list of np.ndarray
.
TensorType.TENSORFLOW
or 'tf'
: Return a batch of type tf.Tensor
.
TensorType.PYTORCH
or 'pt'
: Return a batch of type torch.Tensor
.
TensorType.NUMPY
or 'np'
: Return a batch of type np.ndarray
.
TensorType.JAX
or 'jax'
: Return a batch of type jax.numpy.ndarray
.
data_format (ChannelDimension
or str
, optional, defaults to ChannelDimension.FIRST
) — The channel dimension format for the output image. Can be one of:
"channels_first"
or ChannelDimension.FIRST
: image in (num_channels, height, width) format.
"channels_last"
or ChannelDimension.LAST
: image in (height, width, num_channels) format.
Unset: Use the channel dimension format of the input image.
input_data_format (ChannelDimension
or str
, optional) — The channel dimension format for the input image. If unset, the channel dimension format is inferred from the input image. Can be one of:
"channels_first"
or ChannelDimension.FIRST
: image in (num_channels, height, width) format.
"channels_last"
or ChannelDimension.LAST
: image in (height, width, num_channels) format.
"none"
or ChannelDimension.NONE
: image in (height, width) format.
Preprocess an image or batch of images.
( *args**kwargs )
( image_processor = Nonetokenizer = None**kwargs )
Parameters
Constructs a Chinese-CLIP processor which wraps a Chinese-CLIP image processor and a Chinese-CLIP tokenizer into a single processor.
batch_decode
( *args**kwargs )
decode
( *args**kwargs )
( config: ChineseCLIPConfig )
Parameters
forward
( input_ids: typing.Optional[torch.LongTensor] = Nonepixel_values: typing.Optional[torch.FloatTensor] = Noneattention_mask: typing.Optional[torch.Tensor] = Nonetoken_type_ids: typing.Optional[torch.Tensor] = Noneposition_ids: typing.Optional[torch.LongTensor] = Nonereturn_loss: typing.Optional[bool] = Noneoutput_attentions: typing.Optional[bool] = Noneoutput_hidden_states: typing.Optional[bool] = Nonereturn_dict: typing.Optional[bool] = None ) → transformers.models.chinese_clip.modeling_chinese_clip.ChineseCLIPOutput
or tuple(torch.FloatTensor)
Parameters
input_ids (torch.LongTensor
of shape (batch_size, sequence_length)
) — Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it.
attention_mask (torch.Tensor
of shape (batch_size, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]
:
1 for tokens that are not masked,
0 for tokens that are masked.
token_type_ids (torch.LongTensor
of shape (batch_size, sequence_length)
, optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]
:
0 corresponds to a sentence A token,
1 corresponds to a sentence B token.
position_ids (torch.LongTensor
of shape (batch_size, sequence_length)
, optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1]
.
return_loss (bool
, optional) — Whether or not to return the contrastive loss.
output_attentions (bool
, optional) — Whether or not to return the attentions tensors of all attention layers. See attentions
under returned tensors for more detail.
output_hidden_states (bool
, optional) — Whether or not to return the hidden states of all layers. See hidden_states
under returned tensors for more detail.
Returns
transformers.models.chinese_clip.modeling_chinese_clip.ChineseCLIPOutput
or tuple(torch.FloatTensor)
A transformers.models.chinese_clip.modeling_chinese_clip.ChineseCLIPOutput
or a tuple of torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various elements depending on the configuration (<class 'transformers.models.chinese_clip.configuration_chinese_clip.ChineseCLIPConfig'>
) and inputs.
loss (torch.FloatTensor
of shape (1,)
, optional, returned when return_loss
is True
) — Contrastive loss for image-text similarity.
logits_per_image:(torch.FloatTensor
of shape (image_batch_size, text_batch_size)
) — The scaled dot product scores between image_embeds
and text_embeds
. This represents the image-text similarity scores.
logits_per_text:(torch.FloatTensor
of shape (text_batch_size, image_batch_size)
) — The scaled dot product scores between text_embeds
and image_embeds
. This represents the text-image similarity scores.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.
Examples:
Copied
get_text_features
( input_ids: typing.Optional[torch.Tensor] = Noneattention_mask: typing.Optional[torch.Tensor] = Nonetoken_type_ids: typing.Optional[torch.Tensor] = Noneposition_ids: typing.Optional[torch.Tensor] = Noneoutput_attentions: typing.Optional[bool] = Noneoutput_hidden_states: typing.Optional[bool] = Nonereturn_dict: typing.Optional[bool] = None ) → text_features (torch.FloatTensor
of shape (batch_size, output_dim
)
Parameters
input_ids (torch.LongTensor
of shape (batch_size, sequence_length)
) — Indices of input sequence tokens in the vocabulary.
attention_mask (torch.FloatTensor
of shape (batch_size, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]
:
1 for tokens that are not masked,
0 for tokens that are masked.
token_type_ids (torch.LongTensor
of shape (batch_size, sequence_length)
, optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]
:
0 corresponds to a sentence A token,
1 corresponds to a sentence B token.
position_ids (torch.LongTensor
of shape (batch_size, sequence_length)
, optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1]
.
head_mask (torch.FloatTensor
of shape (num_heads,)
or (num_layers, num_heads)
, optional) — Mask to nullify selected heads of the self-attention modules. Mask values selected in [0, 1]
:
1 indicates the head is not masked,
0 indicates the head is masked.
inputs_embeds (torch.FloatTensor
of shape (batch_size, sequence_length, hidden_size)
, optional) — Optionally, instead of passing input_ids
you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids
indices into associated vectors than the model’s internal embedding lookup matrix.
output_attentions (bool
, optional) — Whether or not to return the attentions tensors of all attention layers. See attentions
under returned tensors for more detail.
output_hidden_states (bool
, optional) — Whether or not to return the hidden states of all layers. See hidden_states
under returned tensors for more detail.
Returns
text_features (torch.FloatTensor
of shape (batch_size, output_dim
)
The text embeddings obtained by applying the projection layer to the final [CLS] hidden state of Text-Transformer.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.
Examples:
Copied
get_image_features
( pixel_values: typing.Optional[torch.FloatTensor] = Noneoutput_attentions: typing.Optional[bool] = Noneoutput_hidden_states: typing.Optional[bool] = Nonereturn_dict: typing.Optional[bool] = None ) → image_features (torch.FloatTensor
of shape (batch_size, output_dim
)
Parameters
output_attentions (bool
, optional) — Whether or not to return the attentions tensors of all attention layers. See attentions
under returned tensors for more detail.
output_hidden_states (bool
, optional) — Whether or not to return the hidden states of all layers. See hidden_states
under returned tensors for more detail.
Returns
image_features (torch.FloatTensor
of shape (batch_size, output_dim
)
The image embeddings obtained by applying the projection layer to the final [CLS] hidden state of Vision-Transformer.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.
Examples:
Copied
( configadd_pooling_layer = True )
Parameters
To behave as an decoder the model needs to be initialized with the is_decoder
argument of the configuration set to True
. To be used in a Seq2Seq model, the model needs to initialized with both is_decoder
argument and add_cross_attention
set to True
; an encoder_hidden_states
is then expected as an input to the forward pass.
forward
Parameters
input_ids (torch.LongTensor
of shape (batch_size, sequence_length)
) — Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it.
attention_mask (torch.Tensor
of shape (batch_size, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]
:
1 for tokens that are not masked,
0 for tokens that are masked.
token_type_ids (torch.LongTensor
of shape (batch_size, sequence_length)
, optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]
:
0 corresponds to a sentence A token,
1 corresponds to a sentence B token.
position_ids (torch.LongTensor
of shape (batch_size, sequence_length)
, optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1]
.
return_loss (bool
, optional) — Whether or not to return the contrastive loss.
output_attentions (bool
, optional) — Whether or not to return the attentions tensors of all attention layers. See attentions
under returned tensors for more detail.
output_hidden_states (bool
, optional) — Whether or not to return the hidden states of all layers. See hidden_states
under returned tensors for more detail.
encoder_hidden_states (torch.FloatTensor
of shape (batch_size, sequence_length, hidden_size)
, optional) — Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder.
encoder_attention_mask (torch.FloatTensor
of shape (batch_size, sequence_length)
, optional) — Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in [0, 1]
:
1 for tokens that are not masked,
0 for tokens that are masked.
past_key_values (tuple(tuple(torch.FloatTensor))
of length config.n_layers
with each tuple having 4 tensors of shape (batch_size, num_heads, sequence_length - 1, embed_size_per_head)
) — Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
If past_key_values
are used, the user can optionally input only the last decoder_input_ids
(those that don’t have their past key value states given to this model) of shape (batch_size, 1)
instead of all decoder_input_ids
of shape (batch_size, sequence_length)
.
use_cache (bool
, optional) — If set to True
, past_key_values
key value states are returned and can be used to speed up decoding (see past_key_values
).
Returns
last_hidden_state (torch.FloatTensor
of shape (batch_size, sequence_length, hidden_size)
) — Sequence of hidden-states at the output of the last layer of the model.
pooler_output (torch.FloatTensor
of shape (batch_size, hidden_size)
) — Last layer hidden-state of the first token of the sequence (classification token) after further processing through the layers used for the auxiliary pretraining task. E.g. for BERT-family of models, this returns the classification token after processing through a linear layer and a tanh activation function. The linear layer weights are trained from the next sentence prediction (classification) objective during pretraining.
hidden_states (tuple(torch.FloatTensor)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of torch.FloatTensor
(one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size)
.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (tuple(torch.FloatTensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of torch.FloatTensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
cross_attentions (tuple(torch.FloatTensor)
, optional, returned when output_attentions=True
and config.add_cross_attention=True
is passed or when config.output_attentions=True
) — Tuple of torch.FloatTensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the decoder’s cross-attention layer, after the attention softmax, used to compute the weighted average in the cross-attention heads.
past_key_values (tuple(tuple(torch.FloatTensor))
, optional, returned when use_cache=True
is passed or when config.use_cache=True
) — Tuple of tuple(torch.FloatTensor)
of length config.n_layers
, with each tuple having 2 tensors of shape (batch_size, num_heads, sequence_length, embed_size_per_head)
) and optionally if config.is_encoder_decoder=True
2 additional tensors of shape (batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
.
Contains pre-computed hidden-states (key and values in the self-attention blocks and optionally if config.is_encoder_decoder=True
in the cross-attention blocks) that can be used (see past_key_values
input) to speed up sequential decoding.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.
Example:
Copied
( config: ChineseCLIPVisionConfig )
Parameters
forward
Parameters
output_attentions (bool
, optional) — Whether or not to return the attentions tensors of all attention layers. See attentions
under returned tensors for more detail.
output_hidden_states (bool
, optional) — Whether or not to return the hidden states of all layers. See hidden_states
under returned tensors for more detail.
Returns
last_hidden_state (torch.FloatTensor
of shape (batch_size, sequence_length, hidden_size)
) — Sequence of hidden-states at the output of the last layer of the model.
pooler_output (torch.FloatTensor
of shape (batch_size, hidden_size)
) — Last layer hidden-state of the first token of the sequence (classification token) after further processing through the layers used for the auxiliary pretraining task. E.g. for BERT-family of models, this returns the classification token after processing through a linear layer and a tanh activation function. The linear layer weights are trained from the next sentence prediction (classification) objective during pretraining.
hidden_states (tuple(torch.FloatTensor)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of torch.FloatTensor
(one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size)
.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (tuple(torch.FloatTensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of torch.FloatTensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.
Examples:
Copied
The Chinese-CLIP model was contributed by .
text_config (dict
, optional) — Dictionary of configuration options used to initialize .
vision_config (dict
, optional) — Dictionary of configuration options used to initialize .
is the configuration class to store the configuration of a . It is used to instantiate Chinese-CLIP model according to the specified arguments, defining the text model and vision model configs. Instantiating a configuration with the defaults will yield a similar configuration to that of the Chinese-CLIP architecture.
Configuration objects inherit from and can be used to control the model outputs. Read the documentation from for more information.
Instantiate a (or a derived class) from Chinese-CLIP text model configuration and Chinese-CLIP vision model configuration. Returns: : An instance of a configuration object
vocab_size (int
, optional, defaults to 30522) — Vocabulary size of the CHINESE_CLIP model. Defines the number of different tokens that can be represented by the inputs_ids
passed when calling .
type_vocab_size (int
, optional, defaults to 2) — The vocabulary size of the token_type_ids
passed when calling .
position_embedding_type (str
, optional, defaults to "absolute"
) — Type of position embedding. Choose one of "absolute"
, "relative_key"
, "relative_key_query"
. For positional embeddings use "absolute"
. For more information on "relative_key"
, please refer to . For more information on "relative_key_query"
, please refer to Method 4 in .
This is the configuration class to store the configuration of a . It is used to instantiate a Chinese CLIP model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the Chinese CLIP [OFA-Sys/chinese-clip-vit-base-patch16](https: //boincai.com/OFA-Sys/chinese-clip-vit-base-patch16) architecture.
Configuration objects inherit from and can be used to control the model outputs. Read the documentation from for more information.
This is the configuration class to store the configuration of a . It is used to instantiate an ChineseCLIP model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the ChineseCLIP [OFA-Sys/chinese-clip-vit-base-patch16](https: //boincai.com/OFA-Sys/chinese-clip-vit-base-patch16) architecture.
Configuration objects inherit from and can be used to control the model outputs. Read the documentation from for more information.
image_processor () — The image processor is a required input.
tokenizer () — The tokenizer is a required input.
offers all the functionalities of and . See the __call__()
and for more information.
This method forwards all its arguments to BertTokenizerFast’s . Please refer to the docstring of this method for more information.
This method forwards all its arguments to BertTokenizerFast’s . Please refer to the docstring of this method for more information.
config () — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the method to load the model weights.
This model is a PyTorch subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
Indices can be obtained using . See and for details.
pixel_values (torch.FloatTensor
of shape (batch_size, num_channels, height, width)
) — Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using . See for details.
return_dict (bool
, optional) — Whether or not to return a instead of a plain tuple.
text_embeds(torch.FloatTensor
of shape (batch_size, output_dim
) — The text embeddings obtained by applying the projection layer to the pooled output of .
image_embeds(torch.FloatTensor
of shape (batch_size, output_dim
) — The image embeddings obtained by applying the projection layer to the pooled output of .
text_model_output(BaseModelOutputWithPoolingAndCrossAttentions
): The output of the .
vision_model_output(BaseModelOutputWithPoolingAndCrossAttentions
): The output of the .
The forward method, overrides the __call__
special method.
Indices can be obtained using . See and for details.
return_dict (bool
, optional) — Whether or not to return a instead of a plain tuple.
The forward method, overrides the __call__
special method.
pixel_values (torch.FloatTensor
of shape (batch_size, num_channels, height, width)
) — Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using . See for details.
return_dict (bool
, optional) — Whether or not to return a instead of a plain tuple.
The forward method, overrides the __call__
special method.
config () — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the method to load the model weights.
The text model from CHINESE_CLIP without any head or projection on top. This model is a PyTorch subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of cross-attention is added between the self-attention layers, following the architecture described in by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin.
( input_ids: typing.Optional[torch.Tensor] = Noneattention_mask: typing.Optional[torch.Tensor] = Nonetoken_type_ids: typing.Optional[torch.Tensor] = Noneposition_ids: typing.Optional[torch.Tensor] = Nonehead_mask: typing.Optional[torch.Tensor] = Noneinputs_embeds: typing.Optional[torch.Tensor] = Noneencoder_hidden_states: typing.Optional[torch.Tensor] = Noneencoder_attention_mask: typing.Optional[torch.Tensor] = Nonepast_key_values: typing.Optional[typing.List[torch.FloatTensor]] = Noneuse_cache: typing.Optional[bool] = Noneoutput_attentions: typing.Optional[bool] = Noneoutput_hidden_states: typing.Optional[bool] = Nonereturn_dict: typing.Optional[bool] = None ) → or tuple(torch.FloatTensor)
Indices can be obtained using . See and for details.
pixel_values (torch.FloatTensor
of shape (batch_size, num_channels, height, width)
) — Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using . See for details.
return_dict (bool
, optional) — Whether or not to return a instead of a plain tuple.
or tuple(torch.FloatTensor)
A or a tuple of torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various elements depending on the configuration () and inputs.
The forward method, overrides the __call__
special method.
config () — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the method to load the model weights.
The vision model from CHINESE_CLIP without any head or projection on top. This model is a PyTorch subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
( pixel_values: typing.Optional[torch.FloatTensor] = Noneoutput_attentions: typing.Optional[bool] = Noneoutput_hidden_states: typing.Optional[bool] = Nonereturn_dict: typing.Optional[bool] = None ) → or tuple(torch.FloatTensor)
pixel_values (torch.FloatTensor
of shape (batch_size, num_channels, height, width)
) — Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using . See for details.
return_dict (bool
, optional) — Whether or not to return a instead of a plain tuple.
or tuple(torch.FloatTensor)
A or a tuple of torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various elements depending on the configuration (<class 'transformers.models.chinese_clip.configuration_chinese_clip.ChineseCLIPVisionConfig'>
) and inputs.
The forward method, overrides the __call__
special method.