Transformers
  • 🌍GET STARTED
    • Transformers
    • Quick tour
    • Installation
  • 🌍TUTORIALS
    • Run inference with pipelines
    • Write portable code with AutoClass
    • Preprocess data
    • Fine-tune a pretrained model
    • Train with a script
    • Set up distributed training with BOINC AI Accelerate
    • Load and train adapters with BOINC AI PEFT
    • Share your model
    • Agents
    • Generation with LLMs
  • 🌍TASK GUIDES
    • 🌍NATURAL LANGUAGE PROCESSING
      • Text classification
      • Token classification
      • Question answering
      • Causal language modeling
      • Masked language modeling
      • Translation
      • Summarization
      • Multiple choice
    • 🌍AUDIO
      • Audio classification
      • Automatic speech recognition
    • 🌍COMPUTER VISION
      • Image classification
      • Semantic segmentation
      • Video classification
      • Object detection
      • Zero-shot object detection
      • Zero-shot image classification
      • Depth estimation
    • 🌍MULTIMODAL
      • Image captioning
      • Document Question Answering
      • Visual Question Answering
      • Text to speech
    • 🌍GENERATION
      • Customize the generation strategy
    • 🌍PROMPTING
      • Image tasks with IDEFICS
  • 🌍DEVELOPER GUIDES
    • Use fast tokenizers from BOINC AI Tokenizers
    • Run inference with multilingual models
    • Use model-specific APIs
    • Share a custom model
    • Templates for chat models
    • Run training on Amazon SageMaker
    • Export to ONNX
    • Export to TFLite
    • Export to TorchScript
    • Benchmarks
    • Notebooks with examples
    • Community resources
    • Custom Tools and Prompts
    • Troubleshoot
  • 🌍PERFORMANCE AND SCALABILITY
    • Overview
    • 🌍EFFICIENT TRAINING TECHNIQUES
      • Methods and tools for efficient training on a single GPU
      • Multiple GPUs and parallelism
      • Efficient training on CPU
      • Distributed CPU training
      • Training on TPUs
      • Training on TPU with TensorFlow
      • Training on Specialized Hardware
      • Custom hardware for training
      • Hyperparameter Search using Trainer API
    • 🌍OPTIMIZING INFERENCE
      • Inference on CPU
      • Inference on one GPU
      • Inference on many GPUs
      • Inference on Specialized Hardware
    • Instantiating a big model
    • Troubleshooting
    • XLA Integration for TensorFlow Models
    • Optimize inference using `torch.compile()`
  • 🌍CONTRIBUTE
    • How to contribute to transformers?
    • How to add a model to BOINC AI Transformers?
    • How to convert a BOINC AI Transformers model to TensorFlow?
    • How to add a pipeline to BOINC AI Transformers?
    • Testing
    • Checks on a Pull Request
  • 🌍CONCEPTUAL GUIDES
    • Philosophy
    • Glossary
    • What BOINC AI Transformers can do
    • How BOINC AI Transformers solve tasks
    • The Transformer model family
    • Summary of the tokenizers
    • Attention mechanisms
    • Padding and truncation
    • BERTology
    • Perplexity of fixed-length models
    • Pipelines for webserver inference
    • Model training anatomy
  • 🌍API
    • 🌍MAIN CLASSES
      • Agents and Tools
      • 🌍Auto Classes
        • Extending the Auto Classes
        • AutoConfig
        • AutoTokenizer
        • AutoFeatureExtractor
        • AutoImageProcessor
        • AutoProcessor
        • Generic model classes
          • AutoModel
          • TFAutoModel
          • FlaxAutoModel
        • Generic pretraining classes
          • AutoModelForPreTraining
          • TFAutoModelForPreTraining
          • FlaxAutoModelForPreTraining
        • Natural Language Processing
          • AutoModelForCausalLM
          • TFAutoModelForCausalLM
          • FlaxAutoModelForCausalLM
          • AutoModelForMaskedLM
          • TFAutoModelForMaskedLM
          • FlaxAutoModelForMaskedLM
          • AutoModelForMaskGenerationge
          • TFAutoModelForMaskGeneration
          • AutoModelForSeq2SeqLM
          • TFAutoModelForSeq2SeqLM
          • FlaxAutoModelForSeq2SeqLM
          • AutoModelForSequenceClassification
          • TFAutoModelForSequenceClassification
          • FlaxAutoModelForSequenceClassification
          • AutoModelForMultipleChoice
          • TFAutoModelForMultipleChoice
          • FlaxAutoModelForMultipleChoice
          • AutoModelForNextSentencePrediction
          • TFAutoModelForNextSentencePrediction
          • FlaxAutoModelForNextSentencePrediction
          • AutoModelForTokenClassification
          • TFAutoModelForTokenClassification
          • FlaxAutoModelForTokenClassification
          • AutoModelForQuestionAnswering
          • TFAutoModelForQuestionAnswering
          • FlaxAutoModelForQuestionAnswering
          • AutoModelForTextEncoding
          • TFAutoModelForTextEncoding
        • Computer vision
          • AutoModelForDepthEstimation
          • AutoModelForImageClassification
          • TFAutoModelForImageClassification
          • FlaxAutoModelForImageClassification
          • AutoModelForVideoClassification
          • AutoModelForMaskedImageModeling
          • TFAutoModelForMaskedImageModeling
          • AutoModelForObjectDetection
          • AutoModelForImageSegmentation
          • AutoModelForImageToImage
          • AutoModelForSemanticSegmentation
          • TFAutoModelForSemanticSegmentation
          • AutoModelForInstanceSegmentation
          • AutoModelForUniversalSegmentation
          • AutoModelForZeroShotImageClassification
          • TFAutoModelForZeroShotImageClassification
          • AutoModelForZeroShotObjectDetection
        • Audio
          • AutoModelForAudioClassification
          • AutoModelForAudioFrameClassification
          • TFAutoModelForAudioFrameClassification
          • AutoModelForCTC
          • AutoModelForSpeechSeq2Seq
          • TFAutoModelForSpeechSeq2Seq
          • FlaxAutoModelForSpeechSeq2Seq
          • AutoModelForAudioXVector
          • AutoModelForTextToSpectrogram
          • AutoModelForTextToWaveform
        • Multimodal
          • AutoModelForTableQuestionAnswering
          • TFAutoModelForTableQuestionAnswering
          • AutoModelForDocumentQuestionAnswering
          • TFAutoModelForDocumentQuestionAnswering
          • AutoModelForVisualQuestionAnswering
          • AutoModelForVision2Seq
          • TFAutoModelForVision2Seq
          • FlaxAutoModelForVision2Seq
      • Callbacks
      • Configuration
      • Data Collator
      • Keras callbacks
      • Logging
      • Models
      • Text Generation
      • ONNX
      • Optimization
      • Model outputs
      • Pipelines
      • Processors
      • Quantization
      • Tokenizer
      • Trainer
      • DeepSpeed Integration
      • Feature Extractor
      • Image Processor
    • 🌍MODELS
      • 🌍TEXT MODELS
        • ALBERT
        • BART
        • BARThez
        • BARTpho
        • BERT
        • BertGeneration
        • BertJapanese
        • Bertweet
        • BigBird
        • BigBirdPegasus
        • BioGpt
        • Blenderbot
        • Blenderbot Small
        • BLOOM
        • BORT
        • ByT5
        • CamemBERT
        • CANINE
        • CodeGen
        • CodeLlama
        • ConvBERT
        • CPM
        • CPMANT
        • CTRL
        • DeBERTa
        • DeBERTa-v2
        • DialoGPT
        • DistilBERT
        • DPR
        • ELECTRA
        • Encoder Decoder Models
        • ERNIE
        • ErnieM
        • ESM
        • Falcon
        • FLAN-T5
        • FLAN-UL2
        • FlauBERT
        • FNet
        • FSMT
        • Funnel Transformer
        • GPT
        • GPT Neo
        • GPT NeoX
        • GPT NeoX Japanese
        • GPT-J
        • GPT2
        • GPTBigCode
        • GPTSAN Japanese
        • GPTSw3
        • HerBERT
        • I-BERT
        • Jukebox
        • LED
        • LLaMA
        • LLama2
        • Longformer
        • LongT5
        • LUKE
        • M2M100
        • MarianMT
        • MarkupLM
        • MBart and MBart-50
        • MEGA
        • MegatronBERT
        • MegatronGPT2
        • Mistral
        • mLUKE
        • MobileBERT
        • MPNet
        • MPT
        • MRA
        • MT5
        • MVP
        • NEZHA
        • NLLB
        • NLLB-MoE
        • Nyströmformer
        • Open-Llama
        • OPT
        • Pegasus
        • PEGASUS-X
        • Persimmon
        • PhoBERT
        • PLBart
        • ProphetNet
        • QDQBert
        • RAG
        • REALM
        • Reformer
        • RemBERT
        • RetriBERT
        • RoBERTa
        • RoBERTa-PreLayerNorm
        • RoCBert
        • RoFormer
        • RWKV
        • Splinter
        • SqueezeBERT
        • SwitchTransformers
        • T5
        • T5v1.1
        • TAPEX
        • Transformer XL
        • UL2
        • UMT5
        • X-MOD
        • XGLM
        • XLM
        • XLM-ProphetNet
        • XLM-RoBERTa
        • XLM-RoBERTa-XL
        • XLM-V
        • XLNet
        • YOSO
      • 🌍VISION MODELS
        • BEiT
        • BiT
        • Conditional DETR
        • ConvNeXT
        • ConvNeXTV2
        • CvT
        • Deformable DETR
        • DeiT
        • DETA
        • DETR
        • DiNAT
        • DINO V2
        • DiT
        • DPT
        • EfficientFormer
        • EfficientNet
        • FocalNet
        • GLPN
        • ImageGPT
        • LeViT
        • Mask2Former
        • MaskFormer
        • MobileNetV1
        • MobileNetV2
        • MobileViT
        • MobileViTV2
        • NAT
        • PoolFormer
        • Pyramid Vision Transformer (PVT)
        • RegNet
        • ResNet
        • SegFormer
        • SwiftFormer
        • Swin Transformer
        • Swin Transformer V2
        • Swin2SR
        • Table Transformer
        • TimeSformer
        • UperNet
        • VAN
        • VideoMAE
        • Vision Transformer (ViT)
        • ViT Hybrid
        • ViTDet
        • ViTMAE
        • ViTMatte
        • ViTMSN
        • ViViT
        • YOLOS
      • 🌍AUDIO MODELS
        • Audio Spectrogram Transformer
        • Bark
        • CLAP
        • EnCodec
        • Hubert
        • MCTCT
        • MMS
        • MusicGen
        • Pop2Piano
        • SEW
        • SEW-D
        • Speech2Text
        • Speech2Text2
        • SpeechT5
        • UniSpeech
        • UniSpeech-SAT
        • VITS
        • Wav2Vec2
        • Wav2Vec2-Conformer
        • Wav2Vec2Phoneme
        • WavLM
        • Whisper
        • XLS-R
        • XLSR-Wav2Vec2
      • 🌍MULTIMODAL MODELS
        • ALIGN
        • AltCLIP
        • BLIP
        • BLIP-2
        • BridgeTower
        • BROS
        • Chinese-CLIP
        • CLIP
        • CLIPSeg
        • Data2Vec
        • DePlot
        • Donut
        • FLAVA
        • GIT
        • GroupViT
        • IDEFICS
        • InstructBLIP
        • LayoutLM
        • LayoutLMV2
        • LayoutLMV3
        • LayoutXLM
        • LiLT
        • LXMERT
        • MatCha
        • MGP-STR
        • Nougat
        • OneFormer
        • OWL-ViT
        • Perceiver
        • Pix2Struct
        • Segment Anything
        • Speech Encoder Decoder Models
        • TAPAS
        • TrOCR
        • TVLT
        • ViLT
        • Vision Encoder Decoder Models
        • Vision Text Dual Encoder
        • VisualBERT
        • X-CLIP
      • 🌍REINFORCEMENT LEARNING MODELS
        • Decision Transformer
        • Trajectory Transformer
      • 🌍TIME SERIES MODELS
        • Autoformer
        • Informer
        • Time Series Transformer
      • 🌍GRAPH MODELS
        • Graphormer
  • 🌍INTERNAL HELPERS
    • Custom Layers and Utilities
    • Utilities for pipelines
    • Utilities for Tokenizers
    • Utilities for Trainer
    • Utilities for Generation
    • Utilities for Image Processors
    • Utilities for Audio processing
    • General Utilities
    • Utilities for Time Series
Powered by GitBook
On this page
  • Conditional DETR
  • Overview
  • Documentation resources
  • ConditionalDetrConfig
  • ConditionalDetrImageProcessor
  • ConditionalDetrFeatureExtractor
  • ConditionalDetrModel
  • ConditionalDetrForObjectDetection
  • ConditionalDetrForSegmentation
  1. API
  2. MODELS
  3. VISION MODELS

Conditional DETR

PreviousBiTNextConvNeXT

Last updated 1 year ago

Conditional DETR

Overview

The Conditional DETR model was proposed in by Depu Meng, Xiaokang Chen, Zejia Fan, Gang Zeng, Houqiang Li, Yuhui Yuan, Lei Sun, Jingdong Wang. Conditional DETR presents a conditional cross-attention mechanism for fast DETR training. Conditional DETR converges 6.7× to 10× faster than DETR.

The abstract from the paper is the following:

The recently-developed DETR approach applies the transformer encoder and decoder architecture to object detection and achieves promising performance. In this paper, we handle the critical issue, slow training convergence, and present a conditional cross-attention mechanism for fast DETR training. Our approach is motivated by that the cross-attention in DETR relies highly on the content embeddings for localizing the four extremities and predicting the box, which increases the need for high-quality content embeddings and thus the training difficulty. Our approach, named conditional DETR, learns a conditional spatial query from the decoder embedding for decoder multi-head cross-attention. The benefit is that through the conditional spatial query, each cross-attention head is able to attend to a band containing a distinct region, e.g., one object extremity or a region inside the object box. This narrows down the spatial range for localizing the distinct regions for object classification and box regression, thus relaxing the dependence on the content embeddings and easing the training. Empirical results show that conditional DETR converges 6.7× faster for the backbones R50 and R101 and 10× faster for stronger backbones DC5-R50 and DC5-R101. Code is available at .

Conditional DETR shows much faster convergence compared to the original DETR. Taken from the .

This model was contributed by . The original code can be found .

Documentation resources

ConditionalDetrConfig

class transformers.ConditionalDetrConfig

( use_timm_backbone = Truebackbone_config = Nonenum_channels = 3num_queries = 300encoder_layers = 6encoder_ffn_dim = 2048encoder_attention_heads = 8decoder_layers = 6decoder_ffn_dim = 2048decoder_attention_heads = 8encoder_layerdrop = 0.0decoder_layerdrop = 0.0is_encoder_decoder = Trueactivation_function = 'relu'd_model = 256dropout = 0.1attention_dropout = 0.0activation_dropout = 0.0init_std = 0.02init_xavier_std = 1.0auxiliary_loss = Falseposition_embedding_type = 'sine'backbone = 'resnet50'use_pretrained_backbone = Truedilation = Falseclass_cost = 2bbox_cost = 5giou_cost = 2mask_loss_coefficient = 1dice_loss_coefficient = 1cls_loss_coefficient = 2bbox_loss_coefficient = 5giou_loss_coefficient = 2focal_alpha = 0.25**kwargs )

Parameters

  • use_timm_backbone (bool, optional, defaults to True) — Whether or not to use the timm library for the backbone. If set to False, will use the AutoBackbone API.

  • backbone_config (PretrainedConfig or dict, optional) — The configuration of the backbone model. Only used in case use_timm_backbone is set to False in which case it will default to ResNetConfig().

  • num_channels (int, optional, defaults to 3) — The number of input channels.

  • d_model (int, optional, defaults to 256) — Dimension of the layers.

  • encoder_layers (int, optional, defaults to 6) — Number of encoder layers.

  • decoder_layers (int, optional, defaults to 6) — Number of decoder layers.

  • encoder_attention_heads (int, optional, defaults to 8) — Number of attention heads for each attention layer in the Transformer encoder.

  • decoder_attention_heads (int, optional, defaults to 8) — Number of attention heads for each attention layer in the Transformer decoder.

  • decoder_ffn_dim (int, optional, defaults to 2048) — Dimension of the “intermediate” (often named feed-forward) layer in decoder.

  • encoder_ffn_dim (int, optional, defaults to 2048) — Dimension of the “intermediate” (often named feed-forward) layer in decoder.

  • activation_function (str or function, optional, defaults to "relu") — The non-linear activation function (function or string) in the encoder and pooler. If string, "gelu", "relu", "silu" and "gelu_new" are supported.

  • dropout (float, optional, defaults to 0.1) — The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.

  • attention_dropout (float, optional, defaults to 0.0) — The dropout ratio for the attention probabilities.

  • activation_dropout (float, optional, defaults to 0.0) — The dropout ratio for activations inside the fully connected layer.

  • init_std (float, optional, defaults to 0.02) — The standard deviation of the truncated_normal_initializer for initializing all weight matrices.

  • init_xavier_std (float, optional, defaults to 1) — The scaling factor used for the Xavier initialization gain in the HM Attention map module.

  • auxiliary_loss (bool, optional, defaults to False) — Whether auxiliary decoding losses (loss at each decoder layer) are to be used.

  • position_embedding_type (str, optional, defaults to "sine") — Type of position embeddings to be used on top of the image features. One of "sine" or "learned".

  • use_pretrained_backbone (bool, optional, defaults to True) — Whether to use pretrained weights for the backbone. Only supported when use_timm_backbone = True.

  • dilation (bool, optional, defaults to False) — Whether to replace stride with dilation in the last convolutional block (DC5). Only supported when use_timm_backbone = True.

  • class_cost (float, optional, defaults to 1) — Relative weight of the classification error in the Hungarian matching cost.

  • bbox_cost (float, optional, defaults to 5) — Relative weight of the L1 error of the bounding box coordinates in the Hungarian matching cost.

  • giou_cost (float, optional, defaults to 2) — Relative weight of the generalized IoU loss of the bounding box in the Hungarian matching cost.

  • mask_loss_coefficient (float, optional, defaults to 1) — Relative weight of the Focal loss in the panoptic segmentation loss.

  • dice_loss_coefficient (float, optional, defaults to 1) — Relative weight of the DICE/F-1 loss in the panoptic segmentation loss.

  • bbox_loss_coefficient (float, optional, defaults to 5) — Relative weight of the L1 bounding box loss in the object detection loss.

  • giou_loss_coefficient (float, optional, defaults to 2) — Relative weight of the generalized IoU loss in the object detection loss.

  • eos_coefficient (float, optional, defaults to 0.1) — Relative classification weight of the ‘no-object’ class in the object detection loss.

  • focal_alpha (float, optional, defaults to 0.25) — Alpha parameter in the focal loss.

Examples:

Copied

>>> from transformers import ConditionalDetrConfig, ConditionalDetrModel

>>> # Initializing a Conditional DETR microsoft/conditional-detr-resnet-50 style configuration
>>> configuration = ConditionalDetrConfig()

>>> # Initializing a model (with random weights) from the microsoft/conditional-detr-resnet-50 style configuration
>>> model = ConditionalDetrModel(configuration)

>>> # Accessing the model configuration
>>> configuration = model.config

ConditionalDetrImageProcessor

class transformers.ConditionalDetrImageProcessor

( format: typing.Union[str, transformers.models.conditional_detr.image_processing_conditional_detr.AnnotionFormat] = <AnnotionFormat.COCO_DETECTION: 'coco_detection'>do_resize: bool = Truesize: typing.Dict[str, int] = Noneresample: Resampling = <Resampling.BILINEAR: 2>do_rescale: bool = Truerescale_factor: typing.Union[int, float] = 0.00392156862745098do_normalize: bool = Trueimage_mean: typing.Union[float, typing.List[float]] = Noneimage_std: typing.Union[float, typing.List[float]] = Nonedo_pad: bool = True**kwargs )

Parameters

  • format (str, optional, defaults to "coco_detection") — Data format of the annotations. One of “coco_detection” or “coco_panoptic”.

  • do_resize (bool, optional, defaults to True) — Controls whether to resize the image’s (height, width) dimensions to the specified size. Can be overridden by the do_resize parameter in the preprocess method.

  • size (Dict[str, int] optional, defaults to {"shortest_edge" -- 800, "longest_edge": 1333}): Size of the image’s (height, width) dimensions after resizing. Can be overridden by the size parameter in the preprocess method.

  • resample (PILImageResampling, optional, defaults to PILImageResampling.BILINEAR) — Resampling filter to use if resizing the image.

  • do_rescale (bool, optional, defaults to True) — Controls whether to rescale the image by the specified scale rescale_factor. Can be overridden by the do_rescale parameter in the preprocess method.

  • rescale_factor (int or float, optional, defaults to 1/255) — Scale factor to use if rescaling the image. Can be overridden by the rescale_factor parameter in the preprocess method. do_normalize — Controls whether to normalize the image. Can be overridden by the do_normalize parameter in the preprocess method.

  • image_mean (float or List[float], optional, defaults to IMAGENET_DEFAULT_MEAN) — Mean values to use when normalizing the image. Can be a single value or a list of values, one for each channel. Can be overridden by the image_mean parameter in the preprocess method.

  • image_std (float or List[float], optional, defaults to IMAGENET_DEFAULT_STD) — Standard deviation values to use when normalizing the image. Can be a single value or a list of values, one for each channel. Can be overridden by the image_std parameter in the preprocess method.

  • do_pad (bool, optional, defaults to True) — Controls whether to pad the image to the largest image in a batch and create a pixel mask. Can be overridden by the do_pad parameter in the preprocess method.

Constructs a Conditional Detr image processor.

preprocess

( images: typing.Union[ForwardRef('PIL.Image.Image'), numpy.ndarray, ForwardRef('torch.Tensor'), typing.List[ForwardRef('PIL.Image.Image')], typing.List[numpy.ndarray], typing.List[ForwardRef('torch.Tensor')]]annotations: typing.Union[typing.Dict[str, typing.Union[int, str, typing.List[typing.Dict]]], typing.List[typing.Dict[str, typing.Union[int, str, typing.List[typing.Dict]]]], NoneType] = Nonereturn_segmentation_masks: bool = Nonemasks_path: typing.Union[str, pathlib.Path, NoneType] = Nonedo_resize: typing.Optional[bool] = Nonesize: typing.Union[typing.Dict[str, int], NoneType] = Noneresample = Nonedo_rescale: typing.Optional[bool] = Nonerescale_factor: typing.Union[int, float, NoneType] = Nonedo_normalize: typing.Optional[bool] = Noneimage_mean: typing.Union[float, typing.List[float], NoneType] = Noneimage_std: typing.Union[float, typing.List[float], NoneType] = Nonedo_pad: typing.Optional[bool] = Noneformat: typing.Union[str, transformers.models.conditional_detr.image_processing_conditional_detr.AnnotionFormat, NoneType] = Nonereturn_tensors: typing.Union[str, transformers.utils.generic.TensorType, NoneType] = Nonedata_format: typing.Union[str, transformers.image_utils.ChannelDimension] = <ChannelDimension.FIRST: 'channels_first'>input_data_format: typing.Union[str, transformers.image_utils.ChannelDimension, NoneType] = None**kwargs )

Parameters

  • images (ImageInput) — Image or batch of images to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If passing in images with pixel values between 0 and 1, set do_rescale=False.

  • annotations (AnnotationType or List[AnnotationType], optional) — List of annotations associated with the image or batch of images. If annotation is for object detection, the annotations should be a dictionary with the following keys:

    • “image_id” (int): The image id.

    • “annotations” (List[Dict]): List of annotations for an image. Each annotation should be a dictionary. An image can have no annotations, in which case the list should be empty. If annotation is for segmentation, the annotations should be a dictionary with the following keys:

    • “image_id” (int): The image id.

    • “segments_info” (List[Dict]): List of segments for an image. Each segment should be a dictionary. An image can have no segments, in which case the list should be empty.

    • “file_name” (str): The file name of the image.

  • return_segmentation_masks (bool, optional, defaults to self.return_segmentation_masks) — Whether to return segmentation masks.

  • masks_path (str or pathlib.Path, optional) — Path to the directory containing the segmentation masks.

  • do_resize (bool, optional, defaults to self.do_resize) — Whether to resize the image.

  • size (Dict[str, int], optional, defaults to self.size) — Size of the image after resizing.

  • resample (PILImageResampling, optional, defaults to self.resample) — Resampling filter to use when resizing the image.

  • do_rescale (bool, optional, defaults to self.do_rescale) — Whether to rescale the image.

  • rescale_factor (float, optional, defaults to self.rescale_factor) — Rescale factor to use when rescaling the image.

  • do_normalize (bool, optional, defaults to self.do_normalize) — Whether to normalize the image.

  • image_mean (float or List[float], optional, defaults to self.image_mean) — Mean to use when normalizing the image.

  • image_std (float or List[float], optional, defaults to self.image_std) — Standard deviation to use when normalizing the image.

  • do_pad (bool, optional, defaults to self.do_pad) — Whether to pad the image.

  • format (str or AnnotionFormat, optional, defaults to self.format) — Format of the annotations.

  • return_tensors (str or TensorType, optional, defaults to self.return_tensors) — Type of tensors to return. If None, will return the list of images.

  • data_format (ChannelDimension or str, optional, defaults to ChannelDimension.FIRST) — The channel dimension format for the output image. Can be one of:

    • "channels_first" or ChannelDimension.FIRST: image in (num_channels, height, width) format.

    • "channels_last" or ChannelDimension.LAST: image in (height, width, num_channels) format.

    • Unset: Use the channel dimension format of the input image.

  • input_data_format (ChannelDimension or str, optional) — The channel dimension format for the input image. If unset, the channel dimension format is inferred from the input image. Can be one of:

    • "channels_first" or ChannelDimension.FIRST: image in (num_channels, height, width) format.

    • "channels_last" or ChannelDimension.LAST: image in (height, width, num_channels) format.

    • "none" or ChannelDimension.NONE: image in (height, width) format.

Preprocess an image or a batch of images so that it can be used by the model.

post_process_object_detection

( outputsthreshold: float = 0.5target_sizes: typing.Union[transformers.utils.generic.TensorType, typing.List[typing.Tuple]] = Nonetop_k: int = 100 ) → List[Dict]

Parameters

  • outputs (DetrObjectDetectionOutput) — Raw outputs of the model.

  • threshold (float, optional) — Score threshold to keep object detection predictions.

  • target_sizes (torch.Tensor or List[Tuple[int, int]], optional) — Tensor of shape (batch_size, 2) or list of tuples (Tuple[int, int]) containing the target size (height, width) of each image in the batch. If left to None, predictions will not be resized.

  • top_k (int, optional, defaults to 100) — Keep only top k bounding boxes before filtering by thresholding.

Returns

List[Dict]

A list of dictionaries, each dictionary containing the scores, labels and boxes for an image in the batch as predicted by the model.

post_process_instance_segmentation

( outputsthreshold: float = 0.5mask_threshold: float = 0.5overlap_mask_area_threshold: float = 0.8target_sizes: typing.Union[typing.List[typing.Tuple[int, int]], NoneType] = Nonereturn_coco_annotation: typing.Optional[bool] = False ) → List[Dict]

Parameters

  • threshold (float, optional, defaults to 0.5) — The probability score threshold to keep predicted instance masks.

  • mask_threshold (float, optional, defaults to 0.5) — Threshold to use when turning the predicted masks into binary values.

  • overlap_mask_area_threshold (float, optional, defaults to 0.8) — The overlap mask area threshold to merge or discard small disconnected parts within each binary instance mask.

  • target_sizes (List[Tuple], optional) — List of length (batch_size), where each list item (Tuple[int, int]]) corresponds to the requested final size (height, width) of each prediction. If unset, predictions will not be resized.

  • return_coco_annotation (bool, optional) — Defaults to False. If set to True, segmentation maps are returned in COCO run-length encoding (RLE) format.

Returns

List[Dict]

A list of dictionaries, one per image, each dictionary containing two keys:

  • segmentation — A tensor of shape (height, width) where each pixel represents a segment_id or List[List] run-length encoding (RLE) of the segmentation map if return_coco_annotation is set to True. Set to None if no mask if found above threshold.

  • segments_info — A dictionary that contains additional information on each segment.

    • id — An integer representing the segment_id.

    • label_id — An integer representing the label / semantic class id corresponding to segment_id.

    • score — Prediction score of segment with segment_id.

post_process_semantic_segmentation

( outputstarget_sizes: typing.List[typing.Tuple[int, int]] = None ) → List[torch.Tensor]

Parameters

  • target_sizes (List[Tuple[int, int]], optional) — A list of tuples (Tuple[int, int]) containing the target size (height, width) of each image in the batch. If unset, predictions will not be resized.

Returns

List[torch.Tensor]

A list of length batch_size, where each item is a semantic segmentation map of shape (height, width) corresponding to the target_sizes entry (if target_sizes is specified). Each entry of each torch.Tensor correspond to a semantic class id.

post_process_panoptic_segmentation

( outputsthreshold: float = 0.5mask_threshold: float = 0.5overlap_mask_area_threshold: float = 0.8label_ids_to_fuse: typing.Optional[typing.Set[int]] = Nonetarget_sizes: typing.Union[typing.List[typing.Tuple[int, int]], NoneType] = None ) → List[Dict]

Parameters

  • threshold (float, optional, defaults to 0.5) — The probability score threshold to keep predicted instance masks.

  • mask_threshold (float, optional, defaults to 0.5) — Threshold to use when turning the predicted masks into binary values.

  • overlap_mask_area_threshold (float, optional, defaults to 0.8) — The overlap mask area threshold to merge or discard small disconnected parts within each binary instance mask.

  • label_ids_to_fuse (Set[int], optional) — The labels in this state will have all their instances be fused together. For instance we could say there can only be one sky in an image, but several persons, so the label ID for sky would be in that set, but not the one for person.

  • target_sizes (List[Tuple], optional) — List of length (batch_size), where each list item (Tuple[int, int]]) corresponds to the requested final size (height, width) of each prediction in batch. If unset, predictions will not be resized.

Returns

List[Dict]

A list of dictionaries, one per image, each dictionary containing two keys:

  • segmentation — a tensor of shape (height, width) where each pixel represents a segment_id or None if no mask if found above threshold. If target_sizes is specified, segmentation is resized to the corresponding target_sizes entry.

  • segments_info — A dictionary that contains additional information on each segment.

    • id — an integer representing the segment_id.

    • label_id — An integer representing the label / semantic class id corresponding to segment_id.

    • was_fused — a boolean, True if label_id was in label_ids_to_fuse, False otherwise. Multiple instances of the same class / label were fused and assigned a single segment_id.

    • score — Prediction score of segment with segment_id.

ConditionalDetrFeatureExtractor

class transformers.ConditionalDetrFeatureExtractor

( *args**kwargs )

__call__

( images**kwargs )

Preprocess an image or a batch of images.

post_process_object_detection

( outputsthreshold: float = 0.5target_sizes: typing.Union[transformers.utils.generic.TensorType, typing.List[typing.Tuple]] = Nonetop_k: int = 100 ) → List[Dict]

Parameters

  • outputs (DetrObjectDetectionOutput) — Raw outputs of the model.

  • threshold (float, optional) — Score threshold to keep object detection predictions.

  • target_sizes (torch.Tensor or List[Tuple[int, int]], optional) — Tensor of shape (batch_size, 2) or list of tuples (Tuple[int, int]) containing the target size (height, width) of each image in the batch. If left to None, predictions will not be resized.

  • top_k (int, optional, defaults to 100) — Keep only top k bounding boxes before filtering by thresholding.

Returns

List[Dict]

A list of dictionaries, each dictionary containing the scores, labels and boxes for an image in the batch as predicted by the model.

post_process_instance_segmentation

( outputsthreshold: float = 0.5mask_threshold: float = 0.5overlap_mask_area_threshold: float = 0.8target_sizes: typing.Union[typing.List[typing.Tuple[int, int]], NoneType] = Nonereturn_coco_annotation: typing.Optional[bool] = False ) → List[Dict]

Expand 6 parameters

Parameters

  • threshold (float, optional, defaults to 0.5) — The probability score threshold to keep predicted instance masks.

  • mask_threshold (float, optional, defaults to 0.5) — Threshold to use when turning the predicted masks into binary values.

  • overlap_mask_area_threshold (float, optional, defaults to 0.8) — The overlap mask area threshold to merge or discard small disconnected parts within each binary instance mask.

  • target_sizes (List[Tuple], optional) — List of length (batch_size), where each list item (Tuple[int, int]]) corresponds to the requested final size (height, width) of each prediction. If unset, predictions will not be resized.

  • return_coco_annotation (bool, optional) — Defaults to False. If set to True, segmentation maps are returned in COCO run-length encoding (RLE) format.

Returns

List[Dict]

A list of dictionaries, one per image, each dictionary containing two keys:

  • segmentation — A tensor of shape (height, width) where each pixel represents a segment_id or List[List] run-length encoding (RLE) of the segmentation map if return_coco_annotation is set to True. Set to None if no mask if found above threshold.

  • segments_info — A dictionary that contains additional information on each segment.

    • id — An integer representing the segment_id.

    • label_id — An integer representing the label / semantic class id corresponding to segment_id.

    • score — Prediction score of segment with segment_id.

post_process_semantic_segmentation

( outputstarget_sizes: typing.List[typing.Tuple[int, int]] = None ) → List[torch.Tensor]

Parameters

  • target_sizes (List[Tuple[int, int]], optional) — A list of tuples (Tuple[int, int]) containing the target size (height, width) of each image in the batch. If unset, predictions will not be resized.

Returns

List[torch.Tensor]

A list of length batch_size, where each item is a semantic segmentation map of shape (height, width) corresponding to the target_sizes entry (if target_sizes is specified). Each entry of each torch.Tensor correspond to a semantic class id.

post_process_panoptic_segmentation

( outputsthreshold: float = 0.5mask_threshold: float = 0.5overlap_mask_area_threshold: float = 0.8label_ids_to_fuse: typing.Optional[typing.Set[int]] = Nonetarget_sizes: typing.Union[typing.List[typing.Tuple[int, int]], NoneType] = None ) → List[Dict]

Parameters

  • threshold (float, optional, defaults to 0.5) — The probability score threshold to keep predicted instance masks.

  • mask_threshold (float, optional, defaults to 0.5) — Threshold to use when turning the predicted masks into binary values.

  • overlap_mask_area_threshold (float, optional, defaults to 0.8) — The overlap mask area threshold to merge or discard small disconnected parts within each binary instance mask.

  • label_ids_to_fuse (Set[int], optional) — The labels in this state will have all their instances be fused together. For instance we could say there can only be one sky in an image, but several persons, so the label ID for sky would be in that set, but not the one for person.

  • target_sizes (List[Tuple], optional) — List of length (batch_size), where each list item (Tuple[int, int]]) corresponds to the requested final size (height, width) of each prediction in batch. If unset, predictions will not be resized.

Returns

List[Dict]

A list of dictionaries, one per image, each dictionary containing two keys:

  • segmentation — a tensor of shape (height, width) where each pixel represents a segment_id or None if no mask if found above threshold. If target_sizes is specified, segmentation is resized to the corresponding target_sizes entry.

  • segments_info — A dictionary that contains additional information on each segment.

    • id — an integer representing the segment_id.

    • label_id — An integer representing the label / semantic class id corresponding to segment_id.

    • was_fused — a boolean, True if label_id was in label_ids_to_fuse, False otherwise. Multiple instances of the same class / label were fused and assigned a single segment_id.

    • score — Prediction score of segment with segment_id.

ConditionalDetrModel

class transformers.ConditionalDetrModel

( config: ConditionalDetrConfig )

Parameters

The bare Conditional DETR Model (consisting of a backbone and encoder-decoder Transformer) outputting raw hidden-states without any specific head on top.

forward

( pixel_values: FloatTensorpixel_mask: typing.Optional[torch.LongTensor] = Nonedecoder_attention_mask: typing.Optional[torch.LongTensor] = Noneencoder_outputs: typing.Optional[torch.FloatTensor] = Noneinputs_embeds: typing.Optional[torch.FloatTensor] = Nonedecoder_inputs_embeds: typing.Optional[torch.FloatTensor] = Noneoutput_attentions: typing.Optional[bool] = Noneoutput_hidden_states: typing.Optional[bool] = Nonereturn_dict: typing.Optional[bool] = None ) → transformers.models.conditional_detr.modeling_conditional_detr.ConditionalDetrModelOutput or tuple(torch.FloatTensor)

Parameters

  • pixel_values (torch.FloatTensor of shape (batch_size, num_channels, height, width)) — Pixel values. Padding will be ignored by default should you provide it.

  • pixel_mask (torch.LongTensor of shape (batch_size, height, width), optional) — Mask to avoid performing attention on padding pixel values. Mask values selected in [0, 1]:

    • 1 for pixels that are real (i.e. not masked),

    • 0 for pixels that are padding (i.e. masked).

  • decoder_attention_mask (torch.FloatTensor of shape (batch_size, num_queries), optional) — Not used by default. Can be used to mask object queries.

  • encoder_outputs (tuple(tuple(torch.FloatTensor), optional) — Tuple consists of (last_hidden_state, optional: hidden_states, optional: attentions) last_hidden_state of shape (batch_size, sequence_length, hidden_size), optional) is a sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.

  • inputs_embeds (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) — Optionally, instead of passing the flattened feature map (output of the backbone + projection layer), you can choose to directly pass a flattened representation of an image.

  • decoder_inputs_embeds (torch.FloatTensor of shape (batch_size, num_queries, hidden_size), optional) — Optionally, instead of initializing the queries with a tensor of zeros, you can choose to directly pass an embedded representation.

  • output_attentions (bool, optional) — Whether or not to return the attentions tensors of all attention layers. See attentions under returned tensors for more detail.

  • output_hidden_states (bool, optional) — Whether or not to return the hidden states of all layers. See hidden_states under returned tensors for more detail.

Returns

transformers.models.conditional_detr.modeling_conditional_detr.ConditionalDetrModelOutput or tuple(torch.FloatTensor)

  • last_hidden_state (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size)) — Sequence of hidden-states at the output of the last layer of the decoder of the model.

  • decoder_hidden_states (tuple(torch.FloatTensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) — Tuple of torch.FloatTensor (one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size). Hidden-states of the decoder at the output of each layer plus the initial embedding outputs.

  • decoder_attentions (tuple(torch.FloatTensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) — Tuple of torch.FloatTensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length). Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the self-attention heads.

  • cross_attentions (tuple(torch.FloatTensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) — Tuple of torch.FloatTensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length). Attentions weights of the decoder’s cross-attention layer, after the attention softmax, used to compute the weighted average in the cross-attention heads.

  • encoder_last_hidden_state (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) — Sequence of hidden-states at the output of the last layer of the encoder of the model.

  • encoder_hidden_states (tuple(torch.FloatTensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) — Tuple of torch.FloatTensor (one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size). Hidden-states of the encoder at the output of each layer plus the initial embedding outputs.

  • encoder_attentions (tuple(torch.FloatTensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) — Tuple of torch.FloatTensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length). Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the self-attention heads.

  • intermediate_hidden_states (torch.FloatTensor of shape (config.decoder_layers, batch_size, sequence_length, hidden_size), optional, returned when config.auxiliary_loss=True) — Intermediate decoder activations, i.e. the output of each decoder layer, each of them gone through a layernorm.

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Examples:

Copied

>>> from transformers import AutoImageProcessor, AutoModel
>>> from PIL import Image
>>> import requests

>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)

>>> image_processor = AutoImageProcessor.from_pretrained("microsoft/conditional-detr-resnet-50")
>>> model = AutoModel.from_pretrained("microsoft/conditional-detr-resnet-50")

>>> # prepare image for the model
>>> inputs = image_processor(images=image, return_tensors="pt")

>>> # forward pass
>>> outputs = model(**inputs)

>>> # the last hidden states are the final query embeddings of the Transformer decoder
>>> # these are of shape (batch_size, num_queries, hidden_size)
>>> last_hidden_states = outputs.last_hidden_state
>>> list(last_hidden_states.shape)
[1, 300, 256]

ConditionalDetrForObjectDetection

class transformers.ConditionalDetrForObjectDetection

( config: ConditionalDetrConfig )

Parameters

CONDITIONAL_DETR Model (consisting of a backbone and encoder-decoder Transformer) with object detection heads on top, for tasks such as COCO detection.

forward

( pixel_values: FloatTensorpixel_mask: typing.Optional[torch.LongTensor] = Nonedecoder_attention_mask: typing.Optional[torch.LongTensor] = Noneencoder_outputs: typing.Optional[torch.FloatTensor] = Noneinputs_embeds: typing.Optional[torch.FloatTensor] = Nonedecoder_inputs_embeds: typing.Optional[torch.FloatTensor] = Nonelabels: typing.Optional[typing.List[dict]] = Noneoutput_attentions: typing.Optional[bool] = Noneoutput_hidden_states: typing.Optional[bool] = Nonereturn_dict: typing.Optional[bool] = None ) → transformers.models.conditional_detr.modeling_conditional_detr.ConditionalDetrObjectDetectionOutput or tuple(torch.FloatTensor)

Parameters

  • pixel_values (torch.FloatTensor of shape (batch_size, num_channels, height, width)) — Pixel values. Padding will be ignored by default should you provide it.

  • pixel_mask (torch.LongTensor of shape (batch_size, height, width), optional) — Mask to avoid performing attention on padding pixel values. Mask values selected in [0, 1]:

    • 1 for pixels that are real (i.e. not masked),

    • 0 for pixels that are padding (i.e. masked).

  • decoder_attention_mask (torch.FloatTensor of shape (batch_size, num_queries), optional) — Not used by default. Can be used to mask object queries.

  • encoder_outputs (tuple(tuple(torch.FloatTensor), optional) — Tuple consists of (last_hidden_state, optional: hidden_states, optional: attentions) last_hidden_state of shape (batch_size, sequence_length, hidden_size), optional) is a sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.

  • inputs_embeds (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) — Optionally, instead of passing the flattened feature map (output of the backbone + projection layer), you can choose to directly pass a flattened representation of an image.

  • decoder_inputs_embeds (torch.FloatTensor of shape (batch_size, num_queries, hidden_size), optional) — Optionally, instead of initializing the queries with a tensor of zeros, you can choose to directly pass an embedded representation.

  • output_attentions (bool, optional) — Whether or not to return the attentions tensors of all attention layers. See attentions under returned tensors for more detail.

  • output_hidden_states (bool, optional) — Whether or not to return the hidden states of all layers. See hidden_states under returned tensors for more detail.

  • labels (List[Dict] of len (batch_size,), optional) — Labels for computing the bipartite matching loss. List of dicts, each dictionary containing at least the following 2 keys: ‘class_labels’ and ‘boxes’ (the class labels and bounding boxes of an image in the batch respectively). The class labels themselves should be a torch.LongTensor of len (number of bounding boxes in the image,) and the boxes a torch.FloatTensor of shape (number of bounding boxes in the image, 4).

Returns

transformers.models.conditional_detr.modeling_conditional_detr.ConditionalDetrObjectDetectionOutput or tuple(torch.FloatTensor)

  • loss (torch.FloatTensor of shape (1,), optional, returned when labels are provided)) — Total loss as a linear combination of a negative log-likehood (cross-entropy) for class prediction and a bounding box loss. The latter is defined as a linear combination of the L1 loss and the generalized scale-invariant IoU loss.

  • loss_dict (Dict, optional) — A dictionary containing the individual losses. Useful for logging.

  • logits (torch.FloatTensor of shape (batch_size, num_queries, num_classes + 1)) — Classification logits (including no-object) for all queries.

  • auxiliary_outputs (list[Dict], optional) — Optional, only returned when auxilary losses are activated (i.e. config.auxiliary_loss is set to True) and labels are provided. It is a list of dictionaries containing the two above keys (logits and pred_boxes) for each decoder layer.

  • last_hidden_state (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) — Sequence of hidden-states at the output of the last layer of the decoder of the model.

  • decoder_hidden_states (tuple(torch.FloatTensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) — Tuple of torch.FloatTensor (one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size). Hidden-states of the decoder at the output of each layer plus the initial embedding outputs.

  • decoder_attentions (tuple(torch.FloatTensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) — Tuple of torch.FloatTensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length). Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the self-attention heads.

  • cross_attentions (tuple(torch.FloatTensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) — Tuple of torch.FloatTensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length). Attentions weights of the decoder’s cross-attention layer, after the attention softmax, used to compute the weighted average in the cross-attention heads.

  • encoder_last_hidden_state (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) — Sequence of hidden-states at the output of the last layer of the encoder of the model.

  • encoder_hidden_states (tuple(torch.FloatTensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) — Tuple of torch.FloatTensor (one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size). Hidden-states of the encoder at the output of each layer plus the initial embedding outputs.

  • encoder_attentions (tuple(torch.FloatTensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) — Tuple of torch.FloatTensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length). Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the self-attention heads.

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Examples:

Copied

>>> from transformers import AutoImageProcessor, AutoModelForObjectDetection
>>> from PIL import Image
>>> import requests

>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)

>>> image_processor = AutoImageProcessor.from_pretrained("microsoft/conditional-detr-resnet-50")
>>> model = AutoModelForObjectDetection.from_pretrained("microsoft/conditional-detr-resnet-50")

>>> inputs = image_processor(images=image, return_tensors="pt")

>>> outputs = model(**inputs)

>>> # convert outputs (bounding boxes and class logits) to COCO API
>>> target_sizes = torch.tensor([image.size[::-1]])
>>> results = image_processor.post_process_object_detection(outputs, threshold=0.5, target_sizes=target_sizes)[
...     0
... ]
>>> for score, label, box in zip(results["scores"], results["labels"], results["boxes"]):
...     box = [round(i, 2) for i in box.tolist()]
...     print(
...         f"Detected {model.config.id2label[label.item()]} with confidence "
...         f"{round(score.item(), 3)} at location {box}"
...     )
Detected remote with confidence 0.833 at location [38.31, 72.1, 177.63, 118.45]
Detected cat with confidence 0.831 at location [9.2, 51.38, 321.13, 469.0]
Detected cat with confidence 0.804 at location [340.3, 16.85, 642.93, 370.95]
Detected remote with confidence 0.683 at location [334.48, 73.49, 366.37, 190.01]
Detected couch with confidence 0.535 at location [0.52, 1.19, 640.35, 475.1]

ConditionalDetrForSegmentation

class transformers.ConditionalDetrForSegmentation

( config: ConditionalDetrConfig )

Parameters

CONDITIONAL_DETR Model (consisting of a backbone and encoder-decoder Transformer) with a segmentation head on top, for tasks such as COCO panoptic.

forward

( pixel_values: FloatTensorpixel_mask: typing.Optional[torch.LongTensor] = Nonedecoder_attention_mask: typing.Optional[torch.FloatTensor] = Noneencoder_outputs: typing.Optional[torch.FloatTensor] = Noneinputs_embeds: typing.Optional[torch.FloatTensor] = Nonedecoder_inputs_embeds: typing.Optional[torch.FloatTensor] = Nonelabels: typing.Optional[typing.List[dict]] = Noneoutput_attentions: typing.Optional[bool] = Noneoutput_hidden_states: typing.Optional[bool] = Nonereturn_dict: typing.Optional[bool] = None ) → transformers.models.conditional_detr.modeling_conditional_detr.ConditionalDetrSegmentationOutput or tuple(torch.FloatTensor)

Parameters

  • pixel_values (torch.FloatTensor of shape (batch_size, num_channels, height, width)) — Pixel values. Padding will be ignored by default should you provide it.

  • pixel_mask (torch.LongTensor of shape (batch_size, height, width), optional) — Mask to avoid performing attention on padding pixel values. Mask values selected in [0, 1]:

    • 1 for pixels that are real (i.e. not masked),

    • 0 for pixels that are padding (i.e. masked).

  • decoder_attention_mask (torch.FloatTensor of shape (batch_size, num_queries), optional) — Not used by default. Can be used to mask object queries.

  • encoder_outputs (tuple(tuple(torch.FloatTensor), optional) — Tuple consists of (last_hidden_state, optional: hidden_states, optional: attentions) last_hidden_state of shape (batch_size, sequence_length, hidden_size), optional) is a sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.

  • inputs_embeds (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) — Optionally, instead of passing the flattened feature map (output of the backbone + projection layer), you can choose to directly pass a flattened representation of an image.

  • decoder_inputs_embeds (torch.FloatTensor of shape (batch_size, num_queries, hidden_size), optional) — Optionally, instead of initializing the queries with a tensor of zeros, you can choose to directly pass an embedded representation.

  • output_attentions (bool, optional) — Whether or not to return the attentions tensors of all attention layers. See attentions under returned tensors for more detail.

  • output_hidden_states (bool, optional) — Whether or not to return the hidden states of all layers. See hidden_states under returned tensors for more detail.

  • labels (List[Dict] of len (batch_size,), optional) — Labels for computing the bipartite matching loss, DICE/F-1 loss and Focal loss. List of dicts, each dictionary containing at least the following 3 keys: ‘class_labels’, ‘boxes’ and ‘masks’ (the class labels, bounding boxes and segmentation masks of an image in the batch respectively). The class labels themselves should be a torch.LongTensor of len (number of bounding boxes in the image,), the boxes a torch.FloatTensor of shape (number of bounding boxes in the image, 4) and the masks a torch.FloatTensor of shape (number of bounding boxes in the image, height, width).

Returns

transformers.models.conditional_detr.modeling_conditional_detr.ConditionalDetrSegmentationOutput or tuple(torch.FloatTensor)

  • loss (torch.FloatTensor of shape (1,), optional, returned when labels are provided)) — Total loss as a linear combination of a negative log-likehood (cross-entropy) for class prediction and a bounding box loss. The latter is defined as a linear combination of the L1 loss and the generalized scale-invariant IoU loss.

  • loss_dict (Dict, optional) — A dictionary containing the individual losses. Useful for logging.

  • logits (torch.FloatTensor of shape (batch_size, num_queries, num_classes + 1)) — Classification logits (including no-object) for all queries.

  • auxiliary_outputs (list[Dict], optional) — Optional, only returned when auxiliary losses are activated (i.e. config.auxiliary_loss is set to True) and labels are provided. It is a list of dictionaries containing the two above keys (logits and pred_boxes) for each decoder layer.

  • last_hidden_state (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) — Sequence of hidden-states at the output of the last layer of the decoder of the model.

  • decoder_hidden_states (tuple(torch.FloatTensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) — Tuple of torch.FloatTensor (one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size). Hidden-states of the decoder at the output of each layer plus the initial embedding outputs.

  • decoder_attentions (tuple(torch.FloatTensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) — Tuple of torch.FloatTensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length). Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the self-attention heads.

  • cross_attentions (tuple(torch.FloatTensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) — Tuple of torch.FloatTensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length). Attentions weights of the decoder’s cross-attention layer, after the attention softmax, used to compute the weighted average in the cross-attention heads.

  • encoder_last_hidden_state (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) — Sequence of hidden-states at the output of the last layer of the encoder of the model.

  • encoder_hidden_states (tuple(torch.FloatTensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) — Tuple of torch.FloatTensor (one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size). Hidden-states of the encoder at the output of each layer plus the initial embedding outputs.

  • encoder_attentions (tuple(torch.FloatTensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) — Tuple of torch.FloatTensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length). Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the self-attention heads.

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Examples:

Copied

>>> import io
>>> import requests
>>> from PIL import Image
>>> import torch
>>> import numpy

>>> from transformers import (
...     AutoImageProcessor,
...     ConditionalDetrConfig,
...     ConditionalDetrForSegmentation,
... )
>>> from transformers.image_transforms import rgb_to_id

>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)

>>> image_processor = AutoImageProcessor.from_pretrained("microsoft/conditional-detr-resnet-50")

>>> # randomly initialize all weights of the model
>>> config = ConditionalDetrConfig()
>>> model = ConditionalDetrForSegmentation(config)

>>> # prepare image for the model
>>> inputs = image_processor(images=image, return_tensors="pt")

>>> # forward pass
>>> outputs = model(**inputs)

>>> # Use the `post_process_panoptic_segmentation` method of the `image_processor` to retrieve post-processed panoptic segmentation maps
>>> # Segmentation results are returned as a list of dictionaries
>>> result = image_processor.post_process_panoptic_segmentation(outputs, target_sizes=[(300, 500)])
>>> # A tensor of shape (height, width) where each value denotes a segment id, filled with -1 if no segment is found
>>> panoptic_seg = result[0]["segmentation"]
>>> # Get prediction score and segment_id to class_id mapping of each segment
>>> panoptic_segments_info = result[0]["segments_info"]

num_queries (int, optional, defaults to 100) — Number of object queries, i.e. detection slots. This is the maximal number of objects can detect in a single image. For COCO, we recommend 100 queries.

encoder_layerdrop (float, optional, defaults to 0.0) — The LayerDrop probability for the encoder. See the [LayerDrop paper](see ) for more details.

decoder_layerdrop (float, optional, defaults to 0.0) — The LayerDrop probability for the decoder. See the [LayerDrop paper](see ) for more details.

backbone (str, optional, defaults to "resnet50") — Name of convolutional backbone to use in case use_timm_backbone = True. Supports any convolutional backbone from the timm package. For a list of all available models, see .

This is the configuration class to store the configuration of a . It is used to instantiate a Conditional DETR model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the Conditional DETR architecture.

Configuration objects inherit from and can be used to control the model outputs. Read the documentation from for more information.

Converts the raw output of into final bounding boxes in (top_left_x, top_left_y, bottom_right_x, bottom_right_y) format. Only supports PyTorch.

outputs () — Raw outputs of the model.

Converts the output of into instance segmentation predictions. Only supports PyTorch.

outputs () — Raw outputs of the model.

Converts the output of into semantic segmentation maps. Only supports PyTorch.

outputs () — The outputs from .

Converts the output of into image panoptic segmentation predictions. Only supports PyTorch.

Converts the raw output of into final bounding boxes in (top_left_x, top_left_y, bottom_right_x, bottom_right_y) format. Only supports PyTorch.

outputs () — Raw outputs of the model.

Converts the output of into instance segmentation predictions. Only supports PyTorch.

outputs () — Raw outputs of the model.

Converts the output of into semantic segmentation maps. Only supports PyTorch.

outputs () — The outputs from .

Converts the output of into image panoptic segmentation predictions. Only supports PyTorch.

config () — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the method to load the model weights.

This model inherits from . Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)

This model is also a PyTorch subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.

Pixel values can be obtained using . See for details.

return_dict (bool, optional) — Whether or not to return a instead of a plain tuple.

A transformers.models.conditional_detr.modeling_conditional_detr.ConditionalDetrModelOutput or a tuple of torch.FloatTensor (if return_dict=False is passed or when config.return_dict=False) comprising various elements depending on the configuration () and inputs.

The forward method, overrides the __call__ special method.

config () — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the method to load the model weights.

This model inherits from . Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)

This model is also a PyTorch subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.

Pixel values can be obtained using . See for details.

return_dict (bool, optional) — Whether or not to return a instead of a plain tuple.

A transformers.models.conditional_detr.modeling_conditional_detr.ConditionalDetrObjectDetectionOutput or a tuple of torch.FloatTensor (if return_dict=False is passed or when config.return_dict=False) comprising various elements depending on the configuration () and inputs.

pred_boxes (torch.FloatTensor of shape (batch_size, num_queries, 4)) — Normalized boxes coordinates for all queries, represented as (center_x, center_y, width, height). These values are normalized in [0, 1], relative to the size of each individual image in the batch (disregarding possible padding). You can use to retrieve the unnormalized bounding boxes.

The forward method, overrides the __call__ special method.

config () — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the method to load the model weights.

This model inherits from . Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)

This model is also a PyTorch subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.

Pixel values can be obtained using . See for details.

return_dict (bool, optional) — Whether or not to return a instead of a plain tuple.

A transformers.models.conditional_detr.modeling_conditional_detr.ConditionalDetrSegmentationOutput or a tuple of torch.FloatTensor (if return_dict=False is passed or when config.return_dict=False) comprising various elements depending on the configuration () and inputs.

pred_boxes (torch.FloatTensor of shape (batch_size, num_queries, 4)) — Normalized boxes coordinates for all queries, represented as (center_x, center_y, width, height). These values are normalized in [0, 1], relative to the size of each individual image in the batch (disregarding possible padding). You can use to retrieve the unnormalized bounding boxes.

pred_masks (torch.FloatTensor of shape (batch_size, num_queries, height/4, width/4)) — Segmentation masks logits for all queries. See also or to evaluate semantic, instance and panoptic segmentation masks respectively.

The forward method, overrides the __call__ special method.

🌍
🌍
🌍
ConditionalDetrModel
https://arxiv.org/abs/1909.11556
https://arxiv.org/abs/1909.11556
this page
ConditionalDetrModel
microsoft/conditional-detr-resnet-50
PretrainedConfig
PretrainedConfig
<source>
<source>
<source>
ConditionalDetrForObjectDetection
<source>
ConditionalDetrForSegmentation
ConditionalDetrForSegmentation
<source>
ConditionalDetrForSegmentation
ConditionalDetrForSegmentation
<source>
ConditionalDetrForSegmentation
ConditionalDetrForSegmentation
ConditionalDetrForSegmentation
<source>
<source>
<source>
ConditionalDetrForObjectDetection
<source>
ConditionalDetrForSegmentation
ConditionalDetrForSegmentation
<source>
ConditionalDetrForSegmentation
ConditionalDetrForSegmentation
<source>
ConditionalDetrForSegmentation
ConditionalDetrForSegmentation
ConditionalDetrForSegmentation
<source>
ConditionalDetrConfig
from_pretrained()
PreTrainedModel
torch.nn.Module
<source>
AutoImageProcessor
ConditionalDetrImageProcessor.call()
What are attention masks?
ModelOutput
ConditionalDetrConfig
ConditionalDetrModel
<source>
ConditionalDetrConfig
from_pretrained()
PreTrainedModel
torch.nn.Module
<source>
AutoImageProcessor
ConditionalDetrImageProcessor.call()
What are attention masks?
ModelOutput
ConditionalDetrConfig
post_process_object_detection()
ConditionalDetrForObjectDetection
<source>
ConditionalDetrConfig
from_pretrained()
PreTrainedModel
torch.nn.Module
<source>
AutoImageProcessor
ConditionalDetrImageProcessor.call()
What are attention masks?
ModelOutput
ConditionalDetrConfig
post_process_object_detection()
post_process_semantic_segmentation()
post_process_instance_segmentation()
post_process_panoptic_segmentation()
ConditionalDetrForSegmentation
Conditional DETR for Fast Training Convergence
https://github.com/Atten4Vis/ConditionalDETR
original paper
DepuMeng
here
Object detection task guide
<source>