Transformers
  • 🌍GET STARTED
    • Transformers
    • Quick tour
    • Installation
  • 🌍TUTORIALS
    • Run inference with pipelines
    • Write portable code with AutoClass
    • Preprocess data
    • Fine-tune a pretrained model
    • Train with a script
    • Set up distributed training with BOINC AI Accelerate
    • Load and train adapters with BOINC AI PEFT
    • Share your model
    • Agents
    • Generation with LLMs
  • 🌍TASK GUIDES
    • 🌍NATURAL LANGUAGE PROCESSING
      • Text classification
      • Token classification
      • Question answering
      • Causal language modeling
      • Masked language modeling
      • Translation
      • Summarization
      • Multiple choice
    • 🌍AUDIO
      • Audio classification
      • Automatic speech recognition
    • 🌍COMPUTER VISION
      • Image classification
      • Semantic segmentation
      • Video classification
      • Object detection
      • Zero-shot object detection
      • Zero-shot image classification
      • Depth estimation
    • 🌍MULTIMODAL
      • Image captioning
      • Document Question Answering
      • Visual Question Answering
      • Text to speech
    • 🌍GENERATION
      • Customize the generation strategy
    • 🌍PROMPTING
      • Image tasks with IDEFICS
  • 🌍DEVELOPER GUIDES
    • Use fast tokenizers from BOINC AI Tokenizers
    • Run inference with multilingual models
    • Use model-specific APIs
    • Share a custom model
    • Templates for chat models
    • Run training on Amazon SageMaker
    • Export to ONNX
    • Export to TFLite
    • Export to TorchScript
    • Benchmarks
    • Notebooks with examples
    • Community resources
    • Custom Tools and Prompts
    • Troubleshoot
  • 🌍PERFORMANCE AND SCALABILITY
    • Overview
    • 🌍EFFICIENT TRAINING TECHNIQUES
      • Methods and tools for efficient training on a single GPU
      • Multiple GPUs and parallelism
      • Efficient training on CPU
      • Distributed CPU training
      • Training on TPUs
      • Training on TPU with TensorFlow
      • Training on Specialized Hardware
      • Custom hardware for training
      • Hyperparameter Search using Trainer API
    • 🌍OPTIMIZING INFERENCE
      • Inference on CPU
      • Inference on one GPU
      • Inference on many GPUs
      • Inference on Specialized Hardware
    • Instantiating a big model
    • Troubleshooting
    • XLA Integration for TensorFlow Models
    • Optimize inference using `torch.compile()`
  • 🌍CONTRIBUTE
    • How to contribute to transformers?
    • How to add a model to BOINC AI Transformers?
    • How to convert a BOINC AI Transformers model to TensorFlow?
    • How to add a pipeline to BOINC AI Transformers?
    • Testing
    • Checks on a Pull Request
  • 🌍CONCEPTUAL GUIDES
    • Philosophy
    • Glossary
    • What BOINC AI Transformers can do
    • How BOINC AI Transformers solve tasks
    • The Transformer model family
    • Summary of the tokenizers
    • Attention mechanisms
    • Padding and truncation
    • BERTology
    • Perplexity of fixed-length models
    • Pipelines for webserver inference
    • Model training anatomy
  • 🌍API
    • 🌍MAIN CLASSES
      • Agents and Tools
      • 🌍Auto Classes
        • Extending the Auto Classes
        • AutoConfig
        • AutoTokenizer
        • AutoFeatureExtractor
        • AutoImageProcessor
        • AutoProcessor
        • Generic model classes
          • AutoModel
          • TFAutoModel
          • FlaxAutoModel
        • Generic pretraining classes
          • AutoModelForPreTraining
          • TFAutoModelForPreTraining
          • FlaxAutoModelForPreTraining
        • Natural Language Processing
          • AutoModelForCausalLM
          • TFAutoModelForCausalLM
          • FlaxAutoModelForCausalLM
          • AutoModelForMaskedLM
          • TFAutoModelForMaskedLM
          • FlaxAutoModelForMaskedLM
          • AutoModelForMaskGenerationge
          • TFAutoModelForMaskGeneration
          • AutoModelForSeq2SeqLM
          • TFAutoModelForSeq2SeqLM
          • FlaxAutoModelForSeq2SeqLM
          • AutoModelForSequenceClassification
          • TFAutoModelForSequenceClassification
          • FlaxAutoModelForSequenceClassification
          • AutoModelForMultipleChoice
          • TFAutoModelForMultipleChoice
          • FlaxAutoModelForMultipleChoice
          • AutoModelForNextSentencePrediction
          • TFAutoModelForNextSentencePrediction
          • FlaxAutoModelForNextSentencePrediction
          • AutoModelForTokenClassification
          • TFAutoModelForTokenClassification
          • FlaxAutoModelForTokenClassification
          • AutoModelForQuestionAnswering
          • TFAutoModelForQuestionAnswering
          • FlaxAutoModelForQuestionAnswering
          • AutoModelForTextEncoding
          • TFAutoModelForTextEncoding
        • Computer vision
          • AutoModelForDepthEstimation
          • AutoModelForImageClassification
          • TFAutoModelForImageClassification
          • FlaxAutoModelForImageClassification
          • AutoModelForVideoClassification
          • AutoModelForMaskedImageModeling
          • TFAutoModelForMaskedImageModeling
          • AutoModelForObjectDetection
          • AutoModelForImageSegmentation
          • AutoModelForImageToImage
          • AutoModelForSemanticSegmentation
          • TFAutoModelForSemanticSegmentation
          • AutoModelForInstanceSegmentation
          • AutoModelForUniversalSegmentation
          • AutoModelForZeroShotImageClassification
          • TFAutoModelForZeroShotImageClassification
          • AutoModelForZeroShotObjectDetection
        • Audio
          • AutoModelForAudioClassification
          • AutoModelForAudioFrameClassification
          • TFAutoModelForAudioFrameClassification
          • AutoModelForCTC
          • AutoModelForSpeechSeq2Seq
          • TFAutoModelForSpeechSeq2Seq
          • FlaxAutoModelForSpeechSeq2Seq
          • AutoModelForAudioXVector
          • AutoModelForTextToSpectrogram
          • AutoModelForTextToWaveform
        • Multimodal
          • AutoModelForTableQuestionAnswering
          • TFAutoModelForTableQuestionAnswering
          • AutoModelForDocumentQuestionAnswering
          • TFAutoModelForDocumentQuestionAnswering
          • AutoModelForVisualQuestionAnswering
          • AutoModelForVision2Seq
          • TFAutoModelForVision2Seq
          • FlaxAutoModelForVision2Seq
      • Callbacks
      • Configuration
      • Data Collator
      • Keras callbacks
      • Logging
      • Models
      • Text Generation
      • ONNX
      • Optimization
      • Model outputs
      • Pipelines
      • Processors
      • Quantization
      • Tokenizer
      • Trainer
      • DeepSpeed Integration
      • Feature Extractor
      • Image Processor
    • 🌍MODELS
      • 🌍TEXT MODELS
        • ALBERT
        • BART
        • BARThez
        • BARTpho
        • BERT
        • BertGeneration
        • BertJapanese
        • Bertweet
        • BigBird
        • BigBirdPegasus
        • BioGpt
        • Blenderbot
        • Blenderbot Small
        • BLOOM
        • BORT
        • ByT5
        • CamemBERT
        • CANINE
        • CodeGen
        • CodeLlama
        • ConvBERT
        • CPM
        • CPMANT
        • CTRL
        • DeBERTa
        • DeBERTa-v2
        • DialoGPT
        • DistilBERT
        • DPR
        • ELECTRA
        • Encoder Decoder Models
        • ERNIE
        • ErnieM
        • ESM
        • Falcon
        • FLAN-T5
        • FLAN-UL2
        • FlauBERT
        • FNet
        • FSMT
        • Funnel Transformer
        • GPT
        • GPT Neo
        • GPT NeoX
        • GPT NeoX Japanese
        • GPT-J
        • GPT2
        • GPTBigCode
        • GPTSAN Japanese
        • GPTSw3
        • HerBERT
        • I-BERT
        • Jukebox
        • LED
        • LLaMA
        • LLama2
        • Longformer
        • LongT5
        • LUKE
        • M2M100
        • MarianMT
        • MarkupLM
        • MBart and MBart-50
        • MEGA
        • MegatronBERT
        • MegatronGPT2
        • Mistral
        • mLUKE
        • MobileBERT
        • MPNet
        • MPT
        • MRA
        • MT5
        • MVP
        • NEZHA
        • NLLB
        • NLLB-MoE
        • Nyströmformer
        • Open-Llama
        • OPT
        • Pegasus
        • PEGASUS-X
        • Persimmon
        • PhoBERT
        • PLBart
        • ProphetNet
        • QDQBert
        • RAG
        • REALM
        • Reformer
        • RemBERT
        • RetriBERT
        • RoBERTa
        • RoBERTa-PreLayerNorm
        • RoCBert
        • RoFormer
        • RWKV
        • Splinter
        • SqueezeBERT
        • SwitchTransformers
        • T5
        • T5v1.1
        • TAPEX
        • Transformer XL
        • UL2
        • UMT5
        • X-MOD
        • XGLM
        • XLM
        • XLM-ProphetNet
        • XLM-RoBERTa
        • XLM-RoBERTa-XL
        • XLM-V
        • XLNet
        • YOSO
      • 🌍VISION MODELS
        • BEiT
        • BiT
        • Conditional DETR
        • ConvNeXT
        • ConvNeXTV2
        • CvT
        • Deformable DETR
        • DeiT
        • DETA
        • DETR
        • DiNAT
        • DINO V2
        • DiT
        • DPT
        • EfficientFormer
        • EfficientNet
        • FocalNet
        • GLPN
        • ImageGPT
        • LeViT
        • Mask2Former
        • MaskFormer
        • MobileNetV1
        • MobileNetV2
        • MobileViT
        • MobileViTV2
        • NAT
        • PoolFormer
        • Pyramid Vision Transformer (PVT)
        • RegNet
        • ResNet
        • SegFormer
        • SwiftFormer
        • Swin Transformer
        • Swin Transformer V2
        • Swin2SR
        • Table Transformer
        • TimeSformer
        • UperNet
        • VAN
        • VideoMAE
        • Vision Transformer (ViT)
        • ViT Hybrid
        • ViTDet
        • ViTMAE
        • ViTMatte
        • ViTMSN
        • ViViT
        • YOLOS
      • 🌍AUDIO MODELS
        • Audio Spectrogram Transformer
        • Bark
        • CLAP
        • EnCodec
        • Hubert
        • MCTCT
        • MMS
        • MusicGen
        • Pop2Piano
        • SEW
        • SEW-D
        • Speech2Text
        • Speech2Text2
        • SpeechT5
        • UniSpeech
        • UniSpeech-SAT
        • VITS
        • Wav2Vec2
        • Wav2Vec2-Conformer
        • Wav2Vec2Phoneme
        • WavLM
        • Whisper
        • XLS-R
        • XLSR-Wav2Vec2
      • 🌍MULTIMODAL MODELS
        • ALIGN
        • AltCLIP
        • BLIP
        • BLIP-2
        • BridgeTower
        • BROS
        • Chinese-CLIP
        • CLIP
        • CLIPSeg
        • Data2Vec
        • DePlot
        • Donut
        • FLAVA
        • GIT
        • GroupViT
        • IDEFICS
        • InstructBLIP
        • LayoutLM
        • LayoutLMV2
        • LayoutLMV3
        • LayoutXLM
        • LiLT
        • LXMERT
        • MatCha
        • MGP-STR
        • Nougat
        • OneFormer
        • OWL-ViT
        • Perceiver
        • Pix2Struct
        • Segment Anything
        • Speech Encoder Decoder Models
        • TAPAS
        • TrOCR
        • TVLT
        • ViLT
        • Vision Encoder Decoder Models
        • Vision Text Dual Encoder
        • VisualBERT
        • X-CLIP
      • 🌍REINFORCEMENT LEARNING MODELS
        • Decision Transformer
        • Trajectory Transformer
      • 🌍TIME SERIES MODELS
        • Autoformer
        • Informer
        • Time Series Transformer
      • 🌍GRAPH MODELS
        • Graphormer
  • 🌍INTERNAL HELPERS
    • Custom Layers and Utilities
    • Utilities for pipelines
    • Utilities for Tokenizers
    • Utilities for Trainer
    • Utilities for Generation
    • Utilities for Image Processors
    • Utilities for Audio processing
    • General Utilities
    • Utilities for Time Series
Powered by GitBook
On this page
  1. API
  2. MAIN CLASSES
  3. Auto Classes
  4. Natural Language Processing

TFAutoModelForSequenceClassification

PreviousAutoModelForSequenceClassificationNextFlaxAutoModelForSequenceClassification

Last updated 1 year ago

TFAutoModelForSequenceClassification

class transformers.TFAutoModelForSequenceClassification

( *args**kwargs )

This is a generic model class that will be instantiated as one of the model classes of the library (with a sequence classification head) when created with the class method or the class method.

This class cannot be instantiated directly using __init__() (throws an error).

from_config

( **kwargs )

Parameters

  • config () — The model class to instantiate is selected based on the configuration class:

    • configuration class: (ALBERT model)

    • configuration class: (BART model)

    • configuration class: (BERT model)

    • configuration class: (CTRL model)

    • configuration class: (CamemBERT model)

    • configuration class: (ConvBERT model)

    • configuration class: (DeBERTa model)

    • configuration class: (DeBERTa-v2 model)

    • configuration class: (DistilBERT model)

    • configuration class: (ELECTRA model)

    • configuration class: (ESM model)

    • configuration class: (FlauBERT model)

    • configuration class: (Funnel Transformer model)

    • configuration class: (OpenAI GPT-2 model)

    • configuration class: (GPT-J model)

    • configuration class: (LayoutLM model)

    • configuration class: (LayoutLMv3 model)

    • configuration class: (Longformer model)

    • configuration class: (MPNet model)

    • configuration class: (MobileBERT model)

    • configuration class: (OpenAI GPT model)

    • configuration class: (RemBERT model)

    • configuration class: (RoFormer model)

    • configuration class: (RoBERTa model)

    • configuration class: (RoBERTa-PreLayerNorm model)

    • configuration class: (TAPAS model)

    • configuration class: (Transformer-XL model)

    • configuration class: (XLM model)

    • configuration class: (XLM-RoBERTa model)

    • configuration class: (XLNet model)

Instantiates one of the model classes of the library (with a sequence classification head) from a configuration.

Examples:

Copied

>>> from transformers import AutoConfig, TFAutoModelForSequenceClassification

>>> # Download configuration from huggingface.co and cache.
>>> config = AutoConfig.from_pretrained("bert-base-cased")
>>> model = TFAutoModelForSequenceClassification.from_config(config)

from_pretrained

( *model_args**kwargs )

Parameters

  • pretrained_model_name_or_path (str or os.PathLike) — Can be either:

    • A string, the model id of a pretrained model hosted inside a model repo on huggingface.co. Valid model ids can be located at the root-level, like bert-base-uncased, or namespaced under a user or organization name, like dbmdz/bert-base-german-cased.

    • A path or url to a PyTorch state_dict save file (e.g, ./pt_model/pytorch_model.bin). In this case, from_pt should be set to True and a configuration object should be provided as config argument. This loading path is slower than converting the PyTorch model in a TensorFlow model using the provided conversion scripts and loading the TensorFlow model afterwards.

  • model_args (additional positional arguments, optional) — Will be passed along to the underlying model __init__() method.

    • The model is a model provided by the library (loaded with the model id string of a pretrained model).

    • The model is loaded by supplying a local directory as pretrained_model_name_or_path and a configuration JSON file named config.json is found in the directory.

  • cache_dir (str or os.PathLike, optional) — Path to a directory in which a downloaded pretrained model configuration should be cached if the standard cache should not be used.

  • from_pt (bool, optional, defaults to False) — Load the model weights from a PyTorch checkpoint save file (see docstring of pretrained_model_name_or_path argument).

  • force_download (bool, optional, defaults to False) — Whether or not to force the (re-)download of the model weights and configuration files, overriding the cached versions if they exist.

  • resume_download (bool, optional, defaults to False) — Whether or not to delete incompletely received files. Will attempt to resume the download if such a file exists.

  • proxies (Dict[str, str], optional) — A dictionary of proxy servers to use by protocol or endpoint, e.g., {'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}. The proxies are used on each request.

  • output_loading_info(bool, optional, defaults to False) — Whether ot not to also return a dictionary containing missing keys, unexpected keys and error messages.

  • local_files_only(bool, optional, defaults to False) — Whether or not to only look at local files (e.g., not try downloading the model).

  • revision (str, optional, defaults to "main") — The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, so revision can be any identifier allowed by git.

  • trust_remote_code (bool, optional, defaults to False) — Whether or not to allow for custom models defined on the Hub in their own modeling files. This option should only be set to True for repositories you trust and in which you have read the code, as it will execute code present on the Hub on your local machine.

  • code_revision (str, optional, defaults to "main") — The specific revision to use for the code on the Hub, if the code leaves in a different repository than the rest of the model. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, so revision can be any identifier allowed by git.

  • kwargs (additional keyword arguments, optional) — Can be used to update the configuration object (after it being loaded) and initiate the model (e.g., output_attentions=True). Behaves differently depending on whether a config is provided or automatically loaded:

    • If a configuration is provided with config, **kwargs will be directly passed to the underlying model’s __init__ method (we assume all relevant updates to the configuration have already been done)

Instantiate one of the model classes of the library (with a sequence classification head) from a pretrained model.

The model class to instantiate is selected based on the model_type property of the config object (either passed as an argument or loaded from pretrained_model_name_or_path if possible), or when it’s missing, by falling back to using pattern matching on pretrained_model_name_or_path:

Examples:

Copied

>>> from transformers import AutoConfig, TFAutoModelForSequenceClassification

>>> # Download model and configuration from huggingface.co and cache.
>>> model = TFAutoModelForSequenceClassification.from_pretrained("bert-base-cased")

>>> # Update configuration during loading
>>> model = TFAutoModelForSequenceClassification.from_pretrained("bert-base-cased", output_attentions=True)
>>> model.config.output_attentions
True

>>> # Loading from a PyTorch checkpoint file instead of a TensorFlow model (slower)
>>> config = AutoConfig.from_pretrained("./pt_model/bert_pt_model_config.json")
>>> model = TFAutoModelForSequenceClassification.from_pretrained(
...     "./pt_model/bert_pytorch_model.bin", from_pt=True, config=config
... )

Note: Loading a model from its configuration file does not load the model weights. It only affects the model’s configuration. Use to load the model weights.

A path to a directory containing model weights saved using , e.g., ./my_model_directory/.

config (, optional) — Configuration for the model to use instead of an automatically loaded configuration. Configuration can be automatically loaded when:

The model was saved using and is reloaded by supplying the save directory.

If a configuration is not provided, kwargs will be first passed to the configuration class initialization function (). Each key of kwargs that corresponds to a configuration attribute will be used to override said attribute with the supplied kwargs value. Remaining keys that do not correspond to any configuration attribute will be passed to the underlying model’s __init__ function.

albert — (ALBERT model)

bart — (BART model)

bert — (BERT model)

camembert — (CamemBERT model)

convbert — (ConvBERT model)

ctrl — (CTRL model)

deberta — (DeBERTa model)

deberta-v2 — (DeBERTa-v2 model)

distilbert — (DistilBERT model)

electra — (ELECTRA model)

esm — (ESM model)

flaubert — (FlauBERT model)

funnel — (Funnel Transformer model)

gpt-sw3 — (GPT-Sw3 model)

gpt2 — (OpenAI GPT-2 model)

gptj — (GPT-J model)

layoutlm — (LayoutLM model)

layoutlmv3 — (LayoutLMv3 model)

longformer — (Longformer model)

mobilebert — (MobileBERT model)

mpnet — (MPNet model)

openai-gpt — (OpenAI GPT model)

rembert — (RemBERT model)

roberta — (RoBERTa model)

roberta-prelayernorm — (RoBERTa-PreLayerNorm model)

roformer — (RoFormer model)

tapas — (TAPAS model)

transfo-xl — (Transformer-XL model)

xlm — (XLM model)

xlm-roberta — (XLM-RoBERTa model)

xlnet — (XLNet model)

🌍
🌍
🌍
<source>
from_pretrained()
from_config()
<source>
PretrainedConfig
AlbertConfig
TFAlbertForSequenceClassification
BartConfig
TFBartForSequenceClassification
BertConfig
TFBertForSequenceClassification
CTRLConfig
TFCTRLForSequenceClassification
CamembertConfig
TFCamembertForSequenceClassification
ConvBertConfig
TFConvBertForSequenceClassification
DebertaConfig
TFDebertaForSequenceClassification
DebertaV2Config
TFDebertaV2ForSequenceClassification
DistilBertConfig
TFDistilBertForSequenceClassification
ElectraConfig
TFElectraForSequenceClassification
EsmConfig
TFEsmForSequenceClassification
FlaubertConfig
TFFlaubertForSequenceClassification
FunnelConfig
TFFunnelForSequenceClassification
GPT2Config
TFGPT2ForSequenceClassification
GPTJConfig
TFGPTJForSequenceClassification
LayoutLMConfig
TFLayoutLMForSequenceClassification
LayoutLMv3Config
TFLayoutLMv3ForSequenceClassification
LongformerConfig
TFLongformerForSequenceClassification
MPNetConfig
TFMPNetForSequenceClassification
MobileBertConfig
TFMobileBertForSequenceClassification
OpenAIGPTConfig
TFOpenAIGPTForSequenceClassification
RemBertConfig
TFRemBertForSequenceClassification
RoFormerConfig
TFRoFormerForSequenceClassification
RobertaConfig
TFRobertaForSequenceClassification
RobertaPreLayerNormConfig
TFRobertaPreLayerNormForSequenceClassification
TapasConfig
TFTapasForSequenceClassification
TransfoXLConfig
TFTransfoXLForSequenceClassification
XLMConfig
TFXLMForSequenceClassification
XLMRobertaConfig
TFXLMRobertaForSequenceClassification
XLNetConfig
TFXLNetForSequenceClassification
from_pretrained()
<source>
save_pretrained()
PretrainedConfig
save_pretrained()
from_pretrained()
TFAlbertForSequenceClassification
TFBartForSequenceClassification
TFBertForSequenceClassification
TFCamembertForSequenceClassification
TFConvBertForSequenceClassification
TFCTRLForSequenceClassification
TFDebertaForSequenceClassification
TFDebertaV2ForSequenceClassification
TFDistilBertForSequenceClassification
TFElectraForSequenceClassification
TFEsmForSequenceClassification
TFFlaubertForSequenceClassification
TFFunnelForSequenceClassification
TFGPT2ForSequenceClassification
TFGPT2ForSequenceClassification
TFGPTJForSequenceClassification
TFLayoutLMForSequenceClassification
TFLayoutLMv3ForSequenceClassification
TFLongformerForSequenceClassification
TFMobileBertForSequenceClassification
TFMPNetForSequenceClassification
TFOpenAIGPTForSequenceClassification
TFRemBertForSequenceClassification
TFRobertaForSequenceClassification
TFRobertaPreLayerNormForSequenceClassification
TFRoFormerForSequenceClassification
TFTapasForSequenceClassification
TFTransfoXLForSequenceClassification
TFXLMForSequenceClassification
TFXLMRobertaForSequenceClassification
TFXLNetForSequenceClassification