MT5
Last updated
Last updated
The mT5 model was presented in by Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya Barua, Colin Raffel.
The abstract from the paper is the following:
The recent “Text-to-Text Transfer Transformer” (T5) leveraged a unified text-to-text format and scale to attain state-of-the-art results on a wide variety of English-language NLP tasks. In this paper, we introduce mT5, a multilingual variant of T5 that was pre-trained on a new Common Crawl-based dataset covering 101 languages. We detail the design and modified training of mT5 and demonstrate its state-of-the-art performance on many multilingual benchmarks. We also describe a simple technique to prevent “accidental translation” in the zero-shot setting, where a generative model chooses to (partially) translate its prediction into the wrong language. All of the code and model checkpoints used in this work are publicly available.
Note: mT5 was only pre-trained on excluding any supervised training. Therefore, this model has to be fine-tuned before it is usable on a downstream task, unlike the original T5 model. Since mT5 was pre-trained unsupervisedly, there’s no real advantage to using a task prefix during single-task fine-tuning. If you are doing multi-task fine-tuning, you should use a prefix.
Google has released the following variants:
.
This model was contributed by . The original code can be found .
( vocab_size = 250112d_model = 512d_kv = 64d_ff = 1024num_layers = 8num_decoder_layers = Nonenum_heads = 6relative_attention_num_buckets = 32relative_attention_max_distance = 128dropout_rate = 0.1layer_norm_epsilon = 1e-06initializer_factor = 1.0feed_forward_proj = 'gated-gelu'is_encoder_decoder = Trueuse_cache = Truetokenizer_class = 'T5Tokenizer'tie_word_embeddings = Falsepad_token_id = 0eos_token_id = 1decoder_start_token_id = 0classifier_dropout = 0.0**kwargs )
Parameters
d_model (int
, optional, defaults to 512) — Size of the encoder layers and the pooler layer.
d_kv (int
, optional, defaults to 64) — Size of the key, query, value projections per attention head. d_kv
has to be equal to d_model // num_heads
.
d_ff (int
, optional, defaults to 1024) — Size of the intermediate feed forward layer in each T5Block
.
num_layers (int
, optional, defaults to 8) — Number of hidden layers in the Transformer encoder.
num_decoder_layers (int
, optional) — Number of hidden layers in the Transformer decoder. Will use the same value as num_layers
if not set.
num_heads (int
, optional, defaults to 6) — Number of attention heads for each attention layer in the Transformer encoder.
relative_attention_num_buckets (int
, optional, defaults to 32) — The number of buckets to use for each attention layer.
relative_attention_max_distance (int
, optional, defaults to 128) — The maximum distance of the longer sequences for the bucket separation.
dropout_rate (float
, optional, defaults to 0.1) — The ratio for all dropout layers.
classifier_dropout (float
, optional, defaults to 0.0) — The dropout ratio for classifier.
layer_norm_eps (float
, optional, defaults to 1e-6) — The epsilon used by the layer normalization layers.
initializer_factor (float
, optional, defaults to 1) — A factor for initializing all weight matrices (should be kept to 1, used internally for initialization testing).
feed_forward_proj (string
, optional, defaults to "gated-gelu"
) — Type of feed forward layer to be used. Should be one of "relu"
or "gated-gelu"
.
use_cache (bool
, optional, defaults to True
) — Whether or not the model should return the last key/values attentions (not used by all models).
( vocab_fileeos_token = '</s>'unk_token = '<unk>'pad_token = '<pad>'extra_ids = 100additional_special_tokens = Nonesp_model_kwargs: typing.Union[typing.Dict[str, typing.Any], NoneType] = Nonelegacy = None**kwargs )
Parameters
eos_token (str
, optional, defaults to "</s>"
) — The end of sequence token.
When building a sequence using special tokens, this is not the token that is used for the end of sequence. The token used is the sep_token
.
unk_token (str
, optional, defaults to "<unk>"
) — The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead.
pad_token (str
, optional, defaults to "<pad>"
) — The token used for padding, for example when batching sequences of different lengths.
extra_ids (int
, optional, defaults to 100) — Add a number of extra ids added to the vocabulary for use as sentinels. These tokens are accessible as “id{%d}>” where ”{%d}” is a number between 0 and extra_ids-1. These tokens can be retrieved by calling get_sentinel_tokens method and token ids can be by calling get_sentinel_token_ids method additional_special_tokens (List[str]
, optional): Additional special tokens used by the tokenizer.
enable_sampling
: Enable subword regularization.
nbest_size
: Sampling parameters for unigram. Invalid for BPE-Dropout.
nbest_size = {0,1}
: No sampling is performed.
nbest_size > 1
: samples from the nbest_size results.
nbest_size < 0
: assuming that nbest_size is infinite and samples from the all hypothesis (lattice) using forward-filtering-and-backward-sampling algorithm.
alpha
: Smoothing parameter for unigram sampling, and dropout probability of merge operations for BPE-dropout.
legacy (bool
, optional) — Whether or not the legacy
behaviour of the tokenizer should be used. Legacy is before the merge of #24622 and #25224 which includes fixes to properly handle tokens that appear after special tokens. A simple example:
legacy=True
:
build_inputs_with_special_tokens
( token_ids_0: typing.List[int]token_ids_1: typing.Optional[typing.List[int]] = None ) → List[int]
Parameters
token_ids_0 (List[int]
) — List of IDs to which the special tokens will be added.
token_ids_1 (List[int]
, optional) — Optional second list of IDs for sequence pairs.
Returns
List[int]
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. A sequence has the following format:
single sequence: X </s>
pair of sequences: A </s> B </s>
convert_tokens_to_string
( tokens )
Converts a sequence of tokens (string) in a single string.
create_token_type_ids_from_sequences
( token_ids_0: typing.List[int]token_ids_1: typing.Optional[typing.List[int]] = None ) → List[int]
Parameters
token_ids_0 (List[int]
) — List of IDs.
token_ids_1 (List[int]
, optional) — Optional second list of IDs for sequence pairs.
Returns
List[int]
List of zeros.
Create a mask from the two sequences passed to be used in a sequence-pair classification task. T5 does not make use of token type ids, therefore a list of zeros is returned.
get_special_tokens_mask
( token_ids_0: typing.List[int]token_ids_1: typing.Optional[typing.List[int]] = Nonealready_has_special_tokens: bool = False ) → List[int]
Parameters
token_ids_0 (List[int]
) — List of IDs.
token_ids_1 (List[int]
, optional) — Optional second list of IDs for sequence pairs.
already_has_special_tokens (bool
, optional, defaults to False
) — Whether or not the token list is already formatted with special tokens for the model.
Returns
List[int]
A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer prepare_for_model
method.
tokenize
( text: TextInputadd_special_tokens = False**kwargs )
Converts a string to a list of tokens. If self.legacy
is set to False
, a prefix token is added unless the first token is special.
( vocab_file = Nonetokenizer_file = Noneeos_token = '</s>'unk_token = '<unk>'pad_token = '<pad>'extra_ids = 100additional_special_tokens = None**kwargs )
Parameters
eos_token (str
, optional, defaults to "</s>"
) — The end of sequence token.
When building a sequence using special tokens, this is not the token that is used for the end of sequence. The token used is the sep_token
.
unk_token (str
, optional, defaults to "<unk>"
) — The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead.
pad_token (str
, optional, defaults to "<pad>"
) — The token used for padding, for example when batching sequences of different lengths.
extra_ids (int
, optional, defaults to 100) — Add a number of extra ids added to the vocabulary for use as sentinels. These tokens are accessible as “id{%d}>” where ”{%d}” is a number between 0 and extra_ids-1. These tokens can be retrieved by calling get_sentinel_tokens method and token ids can be by calling get_sentinel_token_ids method
additional_special_tokens (List[str]
, optional) — Additional special tokens used by the tokenizer.
build_inputs_with_special_tokens
( token_ids_0: typing.List[int]token_ids_1: typing.Optional[typing.List[int]] = None ) → List[int]
Parameters
token_ids_0 (List[int]
) — List of IDs to which the special tokens will be added.
token_ids_1 (List[int]
, optional) — Optional second list of IDs for sequence pairs.
Returns
List[int]
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. A sequence has the following format:
single sequence: X </s>
pair of sequences: A </s> B </s>
create_token_type_ids_from_sequences
( token_ids_0: typing.List[int]token_ids_1: typing.Optional[typing.List[int]] = None ) → List[int]
Parameters
token_ids_0 (List[int]
) — List of IDs.
token_ids_1 (List[int]
, optional) — Optional second list of IDs for sequence pairs.
Returns
List[int]
List of zeros.
Create a mask from the two sequences passed to be used in a sequence-pair classification task. T5 does not make use of token type ids, therefore a list of zeros is returned.
( config: MT5Config )
Parameters
The bare MT5 Model transformer outputting raw hidden-states without any specific head on top.
Examples:
Copied
deparallelize
( )
Moves the model to cpu from a model parallel state.
Example:
Copied
forward
Parameters
input_ids (torch.LongTensor
of shape (batch_size, sequence_length)
) — Indices of input sequence tokens in the vocabulary. MT5 is a model with relative position embeddings so you should be able to pad the inputs on both the right and the left.
attention_mask (torch.FloatTensor
of shape (batch_size, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]
:
1 for tokens that are not masked,
0 for tokens that are masked.
decoder_input_ids (torch.LongTensor
of shape (batch_size, target_sequence_length)
, optional) — Indices of decoder input sequence tokens in the vocabulary.
MT5 uses the pad_token_id
as the starting token for decoder_input_ids
generation. If past_key_values
is used, optionally only the last decoder_input_ids
have to be input (see past_key_values
).
decoder_attention_mask (torch.BoolTensor
of shape (batch_size, target_sequence_length)
, optional) — Default behavior: generate a tensor that ignores pad tokens in decoder_input_ids
. Causal mask will also be used by default.
head_mask (torch.FloatTensor
of shape (num_heads,)
or (num_layers, num_heads)
, optional) — Mask to nullify selected heads of the self-attention modules in the encoder. Mask values selected in [0, 1]
:
1 indicates the head is not masked,
0 indicates the head is masked.
decoder_head_mask (torch.FloatTensor
of shape (num_heads,)
or (num_layers, num_heads)
, optional) — Mask to nullify selected heads of the self-attention modules in the decoder. Mask values selected in [0, 1]
:
1 indicates the head is not masked,
0 indicates the head is masked.
cross_attn_head_mask (torch.Tensor
of shape (num_heads,)
or (num_layers, num_heads)
, optional) — Mask to nullify selected heads of the cross-attention modules in the decoder. Mask values selected in [0, 1]
:
1 indicates the head is not masked,
0 indicates the head is masked.
encoder_outputs (tuple(tuple(torch.FloatTensor)
, optional) — Tuple consists of (last_hidden_state
, optional
: hidden_states, optional
: attentions) last_hidden_state
of shape (batch_size, sequence_length, hidden_size)
is a sequence of hidden states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.
past_key_values (tuple(tuple(torch.FloatTensor))
of length config.n_layers
with each tuple having 4 tensors of shape (batch_size, num_heads, sequence_length - 1, embed_size_per_head)
) — Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
If past_key_values
are used, the user can optionally input only the last decoder_input_ids
(those that don’t have their past key value states given to this model) of shape (batch_size, 1)
instead of all decoder_input_ids
of shape (batch_size, sequence_length)
.
inputs_embeds (torch.FloatTensor
of shape (batch_size, sequence_length, hidden_size)
, optional) — Optionally, instead of passing input_ids
you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids
indices into associated vectors than the model’s internal embedding lookup matrix.
decoder_inputs_embeds (torch.FloatTensor
of shape (batch_size, target_sequence_length, hidden_size)
, optional) — Optionally, instead of passing decoder_input_ids
you can choose to directly pass an embedded representation. If past_key_values
is used, optionally only the last decoder_inputs_embeds
have to be input (see past_key_values
). This is useful if you want more control over how to convert decoder_input_ids
indices into associated vectors than the model’s internal embedding lookup matrix.
If decoder_input_ids
and decoder_inputs_embeds
are both unset, decoder_inputs_embeds
takes the value of inputs_embeds
.
use_cache (bool
, optional) — If set to True
, past_key_values
key value states are returned and can be used to speed up decoding (see past_key_values
).
output_attentions (bool
, optional) — Whether or not to return the attentions tensors of all attention layers. See attentions
under returned tensors for more detail.
output_hidden_states (bool
, optional) — Whether or not to return the hidden states of all layers. See hidden_states
under returned tensors for more detail.
Returns
last_hidden_state (torch.FloatTensor
of shape (batch_size, sequence_length, hidden_size)
) — Sequence of hidden-states at the output of the last layer of the decoder of the model.
If past_key_values
is used only the last hidden-state of the sequences of shape (batch_size, 1, hidden_size)
is output.
past_key_values (tuple(tuple(torch.FloatTensor))
, optional, returned when use_cache=True
is passed or when config.use_cache=True
) — Tuple of tuple(torch.FloatTensor)
of length config.n_layers
, with each tuple having 2 tensors of shape (batch_size, num_heads, sequence_length, embed_size_per_head)
) and 2 additional tensors of shape (batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used (see past_key_values
input) to speed up sequential decoding.
decoder_hidden_states (tuple(torch.FloatTensor)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of torch.FloatTensor
(one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size)
.
Hidden-states of the decoder at the output of each layer plus the optional initial embedding outputs.
decoder_attentions (tuple(torch.FloatTensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of torch.FloatTensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
cross_attentions (tuple(torch.FloatTensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of torch.FloatTensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the decoder’s cross-attention layer, after the attention softmax, used to compute the weighted average in the cross-attention heads.
encoder_last_hidden_state (torch.FloatTensor
of shape (batch_size, sequence_length, hidden_size)
, optional) — Sequence of hidden-states at the output of the last layer of the encoder of the model.
encoder_hidden_states (tuple(torch.FloatTensor)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of torch.FloatTensor
(one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size)
.
Hidden-states of the encoder at the output of each layer plus the optional initial embedding outputs.
encoder_attentions (tuple(torch.FloatTensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of torch.FloatTensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.
Example:
Copied
parallelize
( device_map = None )
Parameters
device_map (Dict[int, list]
, optional, defaults to None) — A dictionary that maps attention modules to devices. Note that the embedding module and LMHead are always automatically mapped to the first device (for esoteric reasons). That means that the first device should have fewer attention modules mapped to it than other devices. For reference, the mt5 models have the following number of attention modules:
mt5-small: 6
mt5-base: 12
mt5-large: 24
mt5-xl: 24
mt5-xxl: 24
This is an experimental feature and is a subject to change at a moment’s notice.
Uses a device map to distribute attention modules of the model across several devices. If no device map is given, it will evenly distribute blocks across all devices.
Example:
Copied
( config: MT5Config )
Parameters
MT5 Model with a language modeling
head on top.
Examples:
Copied
deparallelize
( )
Moves the model to cpu from a model parallel state.
Example:
Copied
forward
Parameters
input_ids (torch.LongTensor
of shape (batch_size, sequence_length)
) — Indices of input sequence tokens in the vocabulary. MT5 is a model with relative position embeddings so you should be able to pad the inputs on both the right and the left.
attention_mask (torch.FloatTensor
of shape (batch_size, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]
:
1 for tokens that are not masked,
0 for tokens that are masked.
decoder_input_ids (torch.LongTensor
of shape (batch_size, target_sequence_length)
, optional) — Indices of decoder input sequence tokens in the vocabulary.
MT5 uses the pad_token_id
as the starting token for decoder_input_ids
generation. If past_key_values
is used, optionally only the last decoder_input_ids
have to be input (see past_key_values
).
decoder_attention_mask (torch.BoolTensor
of shape (batch_size, target_sequence_length)
, optional) — Default behavior: generate a tensor that ignores pad tokens in decoder_input_ids
. Causal mask will also be used by default.
head_mask (torch.FloatTensor
of shape (num_heads,)
or (num_layers, num_heads)
, optional) — Mask to nullify selected heads of the self-attention modules in the encoder. Mask values selected in [0, 1]
:
1 indicates the head is not masked,
0 indicates the head is masked.
decoder_head_mask (torch.FloatTensor
of shape (num_heads,)
or (num_layers, num_heads)
, optional) — Mask to nullify selected heads of the self-attention modules in the decoder. Mask values selected in [0, 1]
:
1 indicates the head is not masked,
0 indicates the head is masked.
cross_attn_head_mask (torch.Tensor
of shape (num_heads,)
or (num_layers, num_heads)
, optional) — Mask to nullify selected heads of the cross-attention modules in the decoder. Mask values selected in [0, 1]
:
1 indicates the head is not masked,
0 indicates the head is masked.
encoder_outputs (tuple(tuple(torch.FloatTensor)
, optional) — Tuple consists of (last_hidden_state
, optional
: hidden_states, optional
: attentions) last_hidden_state
of shape (batch_size, sequence_length, hidden_size)
is a sequence of hidden states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.
past_key_values (tuple(tuple(torch.FloatTensor))
of length config.n_layers
with each tuple having 4 tensors of shape (batch_size, num_heads, sequence_length - 1, embed_size_per_head)
) — Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
If past_key_values
are used, the user can optionally input only the last decoder_input_ids
(those that don’t have their past key value states given to this model) of shape (batch_size, 1)
instead of all decoder_input_ids
of shape (batch_size, sequence_length)
.
inputs_embeds (torch.FloatTensor
of shape (batch_size, sequence_length, hidden_size)
, optional) — Optionally, instead of passing input_ids
you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids
indices into associated vectors than the model’s internal embedding lookup matrix.
decoder_inputs_embeds (torch.FloatTensor
of shape (batch_size, target_sequence_length, hidden_size)
, optional) — Optionally, instead of passing decoder_input_ids
you can choose to directly pass an embedded representation. If past_key_values
is used, optionally only the last decoder_inputs_embeds
have to be input (see past_key_values
). This is useful if you want more control over how to convert decoder_input_ids
indices into associated vectors than the model’s internal embedding lookup matrix.
If decoder_input_ids
and decoder_inputs_embeds
are both unset, decoder_inputs_embeds
takes the value of inputs_embeds
.
use_cache (bool
, optional) — If set to True
, past_key_values
key value states are returned and can be used to speed up decoding (see past_key_values
).
output_attentions (bool
, optional) — Whether or not to return the attentions tensors of all attention layers. See attentions
under returned tensors for more detail.
output_hidden_states (bool
, optional) — Whether or not to return the hidden states of all layers. See hidden_states
under returned tensors for more detail.
labels (torch.LongTensor
of shape (batch_size,)
, optional) — Labels for computing the sequence classification/regression loss. Indices should be in [-100, 0, ..., config.vocab_size - 1]
. All labels set to -100
are ignored (masked), the loss is only computed for labels in [0, ..., config.vocab_size]
Returns
loss (torch.FloatTensor
of shape (1,)
, optional, returned when labels
is provided) — Language modeling loss.
logits (torch.FloatTensor
of shape (batch_size, sequence_length, config.vocab_size)
) — Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
past_key_values (tuple(tuple(torch.FloatTensor))
, optional, returned when use_cache=True
is passed or when config.use_cache=True
) — Tuple of tuple(torch.FloatTensor)
of length config.n_layers
, with each tuple having 2 tensors of shape (batch_size, num_heads, sequence_length, embed_size_per_head)
) and 2 additional tensors of shape (batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used (see past_key_values
input) to speed up sequential decoding.
decoder_hidden_states (tuple(torch.FloatTensor)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of torch.FloatTensor
(one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size)
.
Hidden-states of the decoder at the output of each layer plus the initial embedding outputs.
decoder_attentions (tuple(torch.FloatTensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of torch.FloatTensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
cross_attentions (tuple(torch.FloatTensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of torch.FloatTensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the decoder’s cross-attention layer, after the attention softmax, used to compute the weighted average in the cross-attention heads.
encoder_last_hidden_state (torch.FloatTensor
of shape (batch_size, sequence_length, hidden_size)
, optional) — Sequence of hidden-states at the output of the last layer of the encoder of the model.
encoder_hidden_states (tuple(torch.FloatTensor)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of torch.FloatTensor
(one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size)
.
Hidden-states of the encoder at the output of each layer plus the initial embedding outputs.
encoder_attentions (tuple(torch.FloatTensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of torch.FloatTensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.
Examples:
Copied
parallelize
( device_map = None )
Parameters
device_map (Dict[int, list]
, optional, defaults to None) — A dictionary that maps attention modules to devices. Note that the embedding module and LMHead are always automatically mapped to the first device (for esoteric reasons). That means that the first device should have fewer attention modules mapped to it than other devices. For reference, the mt5 models have the following number of attention modules:
mt5-small: 6
mt5-base: 12
mt5-large: 24
mt5-xl: 24
mt5-xxl: 24
This is an experimental feature and is a subject to change at a moment’s notice.
Uses a device map to distribute attention modules of the model across several devices. If no device map is given, it will evenly distribute blocks across all devices.
Example:
Copied
( config: MT5Config )
Parameters
The bare MT5 Model transformer outputting encoder’s raw hidden-states without any specific head on top.
Examples:
Copied
deparallelize
( )
Moves the model to cpu from a model parallel state.
Example:
Copied
forward
Parameters
input_ids (torch.LongTensor
of shape (batch_size, sequence_length)
) — Indices of input sequence tokens in the vocabulary. MT5 is a model with relative position embeddings so you should be able to pad the inputs on both the right and the left.
attention_mask (torch.FloatTensor
of shape (batch_size, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]
:
1 for tokens that are not masked,
0 for tokens that are masked.
head_mask (torch.FloatTensor
of shape (num_heads,)
or (num_layers, num_heads)
, optional) — Mask to nullify selected heads of the self-attention modules. Mask values selected in [0, 1]
:
1 indicates the head is not masked,
0 indicates the head is masked.
inputs_embeds (torch.FloatTensor
of shape (batch_size, sequence_length, hidden_size)
, optional) — Optionally, instead of passing input_ids
you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids
indices into associated vectors than the model’s internal embedding lookup matrix.
output_attentions (bool
, optional) — Whether or not to return the attentions tensors of all attention layers. See attentions
under returned tensors for more detail.
output_hidden_states (bool
, optional) — Whether or not to return the hidden states of all layers. See hidden_states
under returned tensors for more detail.
Returns
last_hidden_state (torch.FloatTensor
of shape (batch_size, sequence_length, hidden_size)
) — Sequence of hidden-states at the output of the last layer of the model.
hidden_states (tuple(torch.FloatTensor)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of torch.FloatTensor
(one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size)
.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (tuple(torch.FloatTensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of torch.FloatTensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.
Example:
Copied
parallelize
( device_map = None )
Parameters
device_map (Dict[int, list]
, optional, defaults to None) — A dictionary that maps attention modules to devices. Note that the embedding module and LMHead are always automatically mapped to the first device (for esoteric reasons). That means that the first device should have fewer attention modules mapped to it than other devices. For reference, the mt5 models have the following number of attention modules:
mt5-small: 6
mt5-base: 12
mt5-large: 24
mt5-xl: 24
mt5-xxl: 24
This is an experimental feature and is a subject to change at a moment’s notice.
Uses a device map to distribute attention modules of the model across several devices. If no device map is given, it will evenly distribute blocks across all devices.
Example:
Copied
( config: MT5Config )
Parameters
MT5 model with a sequence classification/head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks.
forward
Parameters
input_ids (torch.LongTensor
of shape (batch_size, sequence_length)
) — Indices of input sequence tokens in the vocabulary. MT5 is a model with relative position embeddings so you should be able to pad the inputs on both the right and the left.
attention_mask (torch.FloatTensor
of shape (batch_size, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]
:
1 for tokens that are not masked,
0 for tokens that are masked.
decoder_input_ids (torch.LongTensor
of shape (batch_size, target_sequence_length)
, optional) — Indices of decoder input sequence tokens in the vocabulary.
MT5 uses the pad_token_id
as the starting token for decoder_input_ids
generation. If past_key_values
is used, optionally only the last decoder_input_ids
have to be input (see past_key_values
).
decoder_attention_mask (torch.BoolTensor
of shape (batch_size, target_sequence_length)
, optional) — Default behavior: generate a tensor that ignores pad tokens in decoder_input_ids
. Causal mask will also be used by default.
head_mask (torch.FloatTensor
of shape (num_heads,)
or (num_layers, num_heads)
, optional) — Mask to nullify selected heads of the self-attention modules in the encoder. Mask values selected in [0, 1]
:
1 indicates the head is not masked,
0 indicates the head is masked.
decoder_head_mask (torch.FloatTensor
of shape (num_heads,)
or (num_layers, num_heads)
, optional) — Mask to nullify selected heads of the self-attention modules in the decoder. Mask values selected in [0, 1]
:
1 indicates the head is not masked,
0 indicates the head is masked.
cross_attn_head_mask (torch.Tensor
of shape (num_heads,)
or (num_layers, num_heads)
, optional) — Mask to nullify selected heads of the cross-attention modules in the decoder. Mask values selected in [0, 1]
:
1 indicates the head is not masked,
0 indicates the head is masked.
encoder_outputs (tuple(tuple(torch.FloatTensor)
, optional) — Tuple consists of (last_hidden_state
, optional
: hidden_states, optional
: attentions) last_hidden_state
of shape (batch_size, sequence_length, hidden_size)
is a sequence of hidden states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.
past_key_values (tuple(tuple(torch.FloatTensor))
of length config.n_layers
with each tuple having 4 tensors of shape (batch_size, num_heads, sequence_length - 1, embed_size_per_head)
) — Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
If past_key_values
are used, the user can optionally input only the last decoder_input_ids
(those that don’t have their past key value states given to this model) of shape (batch_size, 1)
instead of all decoder_input_ids
of shape (batch_size, sequence_length)
.
inputs_embeds (torch.FloatTensor
of shape (batch_size, sequence_length, hidden_size)
, optional) — Optionally, instead of passing input_ids
you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids
indices into associated vectors than the model’s internal embedding lookup matrix.
decoder_inputs_embeds (torch.FloatTensor
of shape (batch_size, target_sequence_length, hidden_size)
, optional) — Optionally, instead of passing decoder_input_ids
you can choose to directly pass an embedded representation. If past_key_values
is used, optionally only the last decoder_inputs_embeds
have to be input (see past_key_values
). This is useful if you want more control over how to convert decoder_input_ids
indices into associated vectors than the model’s internal embedding lookup matrix.
If decoder_input_ids
and decoder_inputs_embeds
are both unset, decoder_inputs_embeds
takes the value of inputs_embeds
.
use_cache (bool
, optional) — If set to True
, past_key_values
key value states are returned and can be used to speed up decoding (see past_key_values
).
output_attentions (bool
, optional) — Whether or not to return the attentions tensors of all attention layers. See attentions
under returned tensors for more detail.
output_hidden_states (bool
, optional) — Whether or not to return the hidden states of all layers. See hidden_states
under returned tensors for more detail.
labels (torch.LongTensor
of shape (batch_size,)
, optional) — Labels for computing the sequence classification/regression loss. Indices should be in [0, ..., config.num_labels - 1]
. If config.num_labels > 1
a classification loss is computed (Cross-Entropy).
Returns
loss (torch.FloatTensor
of shape (1,)
, optional, returned when label
is provided) — Classification (or regression if config.num_labels==1) loss.
logits (torch.FloatTensor
of shape (batch_size, config.num_labels)
) — Classification (or regression if config.num_labels==1) scores (before SoftMax).
past_key_values (tuple(tuple(torch.FloatTensor))
, optional, returned when use_cache=True
is passed or when config.use_cache=True
) — Tuple of tuple(torch.FloatTensor)
of length config.n_layers
, with each tuple having 2 tensors of shape (batch_size, num_heads, sequence_length, embed_size_per_head)
) and 2 additional tensors of shape (batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used (see past_key_values
input) to speed up sequential decoding.
decoder_hidden_states (tuple(torch.FloatTensor)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of torch.FloatTensor
(one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size)
.
Hidden-states of the decoder at the output of each layer plus the initial embedding outputs.
decoder_attentions (tuple(torch.FloatTensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of torch.FloatTensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
cross_attentions (tuple(torch.FloatTensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of torch.FloatTensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the decoder’s cross-attention layer, after the attention softmax, used to compute the weighted average in the cross-attention heads.
encoder_last_hidden_state (torch.FloatTensor
of shape (batch_size, sequence_length, hidden_size)
, optional) — Sequence of hidden-states at the output of the last layer of the encoder of the model.
encoder_hidden_states (tuple(torch.FloatTensor)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of torch.FloatTensor
(one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size)
.
Hidden-states of the encoder at the output of each layer plus the initial embedding outputs.
encoder_attentions (tuple(torch.FloatTensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of torch.FloatTensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.
( config: MT5Config )
Parameters
MT5 Model with a span classification head on top for extractive question-answering tasks like SQuAD (linear layers on top of the hidden-states output to compute span start logits
and span end logits
).
forward
Parameters
input_ids (torch.LongTensor
of shape (batch_size, sequence_length)
) — Indices of input sequence tokens in the vocabulary. MT5 is a model with relative position embeddings so you should be able to pad the inputs on both the right and the left.
attention_mask (torch.FloatTensor
of shape (batch_size, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]
:
1 for tokens that are not masked,
0 for tokens that are masked.
decoder_input_ids (torch.LongTensor
of shape (batch_size, target_sequence_length)
, optional) — Indices of decoder input sequence tokens in the vocabulary.
MT5 uses the pad_token_id
as the starting token for decoder_input_ids
generation. If past_key_values
is used, optionally only the last decoder_input_ids
have to be input (see past_key_values
).
decoder_attention_mask (torch.BoolTensor
of shape (batch_size, target_sequence_length)
, optional) — Default behavior: generate a tensor that ignores pad tokens in decoder_input_ids
. Causal mask will also be used by default.
head_mask (torch.FloatTensor
of shape (num_heads,)
or (num_layers, num_heads)
, optional) — Mask to nullify selected heads of the self-attention modules in the encoder. Mask values selected in [0, 1]
:
1 indicates the head is not masked,
0 indicates the head is masked.
decoder_head_mask (torch.FloatTensor
of shape (num_heads,)
or (num_layers, num_heads)
, optional) — Mask to nullify selected heads of the self-attention modules in the decoder. Mask values selected in [0, 1]
:
1 indicates the head is not masked,
0 indicates the head is masked.
cross_attn_head_mask (torch.Tensor
of shape (num_heads,)
or (num_layers, num_heads)
, optional) — Mask to nullify selected heads of the cross-attention modules in the decoder. Mask values selected in [0, 1]
:
1 indicates the head is not masked,
0 indicates the head is masked.
encoder_outputs (tuple(tuple(torch.FloatTensor)
, optional) — Tuple consists of (last_hidden_state
, optional
: hidden_states, optional
: attentions) last_hidden_state
of shape (batch_size, sequence_length, hidden_size)
is a sequence of hidden states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.
past_key_values (tuple(tuple(torch.FloatTensor))
of length config.n_layers
with each tuple having 4 tensors of shape (batch_size, num_heads, sequence_length - 1, embed_size_per_head)
) — Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
If past_key_values
are used, the user can optionally input only the last decoder_input_ids
(those that don’t have their past key value states given to this model) of shape (batch_size, 1)
instead of all decoder_input_ids
of shape (batch_size, sequence_length)
.
inputs_embeds (torch.FloatTensor
of shape (batch_size, sequence_length, hidden_size)
, optional) — Optionally, instead of passing input_ids
you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids
indices into associated vectors than the model’s internal embedding lookup matrix.
decoder_inputs_embeds (torch.FloatTensor
of shape (batch_size, target_sequence_length, hidden_size)
, optional) — Optionally, instead of passing decoder_input_ids
you can choose to directly pass an embedded representation. If past_key_values
is used, optionally only the last decoder_inputs_embeds
have to be input (see past_key_values
). This is useful if you want more control over how to convert decoder_input_ids
indices into associated vectors than the model’s internal embedding lookup matrix.
If decoder_input_ids
and decoder_inputs_embeds
are both unset, decoder_inputs_embeds
takes the value of inputs_embeds
.
use_cache (bool
, optional) — If set to True
, past_key_values
key value states are returned and can be used to speed up decoding (see past_key_values
).
output_attentions (bool
, optional) — Whether or not to return the attentions tensors of all attention layers. See attentions
under returned tensors for more detail.
output_hidden_states (bool
, optional) — Whether or not to return the hidden states of all layers. See hidden_states
under returned tensors for more detail.
start_positions (torch.LongTensor
of shape (batch_size,)
, optional) — Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (sequence_length). Position outside of the sequence are not taken into account for computing the loss.
end_positions (torch.LongTensor
of shape (batch_size,)
, optional) — Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (sequence_length). Position outside of the sequence are not taken into account for computing the loss.
Returns
loss (torch.FloatTensor
of shape (1,)
, optional, returned when labels
is provided) — Total span extraction loss is the sum of a Cross-Entropy for the start and end positions.
start_logits (torch.FloatTensor
of shape (batch_size, sequence_length)
) — Span-start scores (before SoftMax).
end_logits (torch.FloatTensor
of shape (batch_size, sequence_length)
) — Span-end scores (before SoftMax).
past_key_values (tuple(tuple(torch.FloatTensor))
, optional, returned when use_cache=True
is passed or when config.use_cache=True
) — Tuple of tuple(torch.FloatTensor)
of length config.n_layers
, with each tuple having 2 tensors of shape (batch_size, num_heads, sequence_length, embed_size_per_head)
) and 2 additional tensors of shape (batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used (see past_key_values
input) to speed up sequential decoding.
decoder_hidden_states (tuple(torch.FloatTensor)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of torch.FloatTensor
(one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size)
.
Hidden-states of the decoder at the output of each layer plus the initial embedding outputs.
decoder_attentions (tuple(torch.FloatTensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of torch.FloatTensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
cross_attentions (tuple(torch.FloatTensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of torch.FloatTensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the decoder’s cross-attention layer, after the attention softmax, used to compute the weighted average in the cross-attention heads.
encoder_last_hidden_state (torch.FloatTensor
of shape (batch_size, sequence_length, hidden_size)
, optional) — Sequence of hidden-states at the output of the last layer of the encoder of the model.
encoder_hidden_states (tuple(torch.FloatTensor)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of torch.FloatTensor
(one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size)
.
Hidden-states of the encoder at the output of each layer plus the initial embedding outputs.
encoder_attentions (tuple(torch.FloatTensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of torch.FloatTensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.
( *args**kwargs )
Examples:
Copied
( *args**kwargs )
Examples:
Copied
( *args**kwargs )
Examples:
Copied
( config: T5Configinput_shape: typing.Tuple[int] = (1, 1)seed: int = 0dtype: dtype = <class 'jax.numpy.float32'>_do_init: bool = Truegradient_checkpointing: bool = False**kwargs )
Examples:
Copied
( config: T5Configinput_shape: typing.Tuple[int] = (1, 1)seed: int = 0dtype: dtype = <class 'jax.numpy.float32'>_do_init: bool = Truegradient_checkpointing: bool = False**kwargs )
Examples:
Copied
( config: T5Configinput_shape: typing.Tuple[int] = (1, 1)seed: int = 0dtype: dtype = <class 'jax.numpy.float32'>_do_init: bool = Truegradient_checkpointing: bool = False**kwargs )
Examples:
Copied
vocab_size (int
, optional, defaults to 250112) — Vocabulary size of the T5 model. Defines the number of different tokens that can be represented by the inputs_ids
passed when calling or .
This is the configuration class to store the configuration of a or a . It is used to instantiate a mT5 model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the mT5 architecture.
Configuration objects inherit from and can be used to control the model outputs. Read the documentation from for more information.
vocab_file (str
) — file (generally has a .spm extension) that contains the vocabulary necessary to instantiate a tokenizer.
sp_model_kwargs (dict
, optional) — Will be passed to the SentencePieceProcessor.__init__()
method. The can be used, among other things, to set:
Construct a T5 tokenizer. Based on .
This tokenizer inherits from which contains most of the main methods. Users should refer to this superclass for more information regarding those methods.
List of with the appropriate special tokens.
See for all details.
vocab_file (str
) — file (generally has a .spm extension) that contains the vocabulary necessary to instantiate a tokenizer.
Construct a “fast” T5 tokenizer (backed by BOINCAI’s tokenizers library). Based on .
This tokenizer inherits from which contains most of the main methods. Users should refer to this superclass for more information regarding those methods.
List of with the appropriate special tokens.
See for all details.
config () — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the method to load the model weights.
The MT5 model was proposed in by Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu. It’s an encoder decoder transformer pre-trained in a text-to-text denoising generative setting.
This model inherits from . Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)
This model is also a PyTorch subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
( input_ids: typing.Optional[torch.LongTensor] = Noneattention_mask: typing.Optional[torch.FloatTensor] = Nonedecoder_input_ids: typing.Optional[torch.LongTensor] = Nonedecoder_attention_mask: typing.Optional[torch.BoolTensor] = Nonehead_mask: typing.Optional[torch.FloatTensor] = Nonedecoder_head_mask: typing.Optional[torch.FloatTensor] = Nonecross_attn_head_mask: typing.Optional[torch.Tensor] = Noneencoder_outputs: typing.Optional[typing.Tuple[typing.Tuple[torch.FloatTensor]]] = Nonepast_key_values: typing.Optional[typing.Tuple[typing.Tuple[torch.FloatTensor]]] = Noneinputs_embeds: typing.Optional[torch.Tensor] = Nonedecoder_inputs_embeds: typing.Optional[torch.Tensor] = Noneuse_cache: typing.Optional[bool] = Noneoutput_attentions: typing.Optional[bool] = Noneoutput_hidden_states: typing.Optional[bool] = Nonereturn_dict: typing.Optional[bool] = None ) → or tuple(torch.FloatTensor)
Indices can be obtained using . See and for detail.
To know more on how to prepare input_ids
for pretraining take a look a .
Indices can be obtained using . See and for details.
To know more on how to prepare decoder_input_ids
for pretraining take a look at .
return_dict (bool
, optional) — Whether or not to return a instead of a plain tuple.
or tuple(torch.FloatTensor)
A or a tuple of torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various elements depending on the configuration () and inputs.
The forward method, overrides the __call__
special method.
config () — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the method to load the model weights.
The MT5 model was proposed in by Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu. It’s an encoder decoder transformer pre-trained in a text-to-text denoising generative setting.
This model inherits from . Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)
This model is also a PyTorch subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
( input_ids: typing.Optional[torch.LongTensor] = Noneattention_mask: typing.Optional[torch.FloatTensor] = Nonedecoder_input_ids: typing.Optional[torch.LongTensor] = Nonedecoder_attention_mask: typing.Optional[torch.BoolTensor] = Nonehead_mask: typing.Optional[torch.FloatTensor] = Nonedecoder_head_mask: typing.Optional[torch.FloatTensor] = Nonecross_attn_head_mask: typing.Optional[torch.Tensor] = Noneencoder_outputs: typing.Optional[typing.Tuple[typing.Tuple[torch.Tensor]]] = Nonepast_key_values: typing.Optional[typing.Tuple[typing.Tuple[torch.Tensor]]] = Noneinputs_embeds: typing.Optional[torch.FloatTensor] = Nonedecoder_inputs_embeds: typing.Optional[torch.FloatTensor] = Nonelabels: typing.Optional[torch.LongTensor] = Noneuse_cache: typing.Optional[bool] = Noneoutput_attentions: typing.Optional[bool] = Noneoutput_hidden_states: typing.Optional[bool] = Nonereturn_dict: typing.Optional[bool] = None ) → or tuple(torch.FloatTensor)
Indices can be obtained using . See and for detail.
To know more on how to prepare input_ids
for pretraining take a look a .
Indices can be obtained using . See and for details.
To know more on how to prepare decoder_input_ids
for pretraining take a look at .
return_dict (bool
, optional) — Whether or not to return a instead of a plain tuple.
or tuple(torch.FloatTensor)
A or a tuple of torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various elements depending on the configuration () and inputs.
The forward method, overrides the __call__
special method.
config () — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the method to load the model weights.
The MT5 model was proposed in by Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu. It’s an encoder decoder transformer pre-trained in a text-to-text denoising generative setting.
This model inherits from . Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)
This model is also a PyTorch subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
( input_ids: typing.Optional[torch.LongTensor] = Noneattention_mask: typing.Optional[torch.FloatTensor] = Nonehead_mask: typing.Optional[torch.FloatTensor] = Noneinputs_embeds: typing.Optional[torch.FloatTensor] = Noneoutput_attentions: typing.Optional[bool] = Noneoutput_hidden_states: typing.Optional[bool] = Nonereturn_dict: typing.Optional[bool] = None ) → or tuple(torch.FloatTensor)
Indices can be obtained using . See and for detail.
To know more on how to prepare input_ids
for pretraining take a look a .
return_dict (bool
, optional) — Whether or not to return a instead of a plain tuple.
or tuple(torch.FloatTensor)
A or a tuple of torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various elements depending on the configuration () and inputs.
The forward method, overrides the __call__
special method.
config () — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the method to load the model weights.
The MT5 model was proposed in by Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu. It’s an encoder decoder transformer pre-trained in a text-to-text denoising generative setting.
This model inherits from . Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)
This model is also a PyTorch subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
( input_ids: LongTensor = Noneattention_mask: typing.Optional[torch.Tensor] = Nonedecoder_input_ids: typing.Optional[torch.LongTensor] = Nonedecoder_attention_mask: typing.Optional[torch.LongTensor] = Nonehead_mask: typing.Optional[torch.Tensor] = Nonedecoder_head_mask: typing.Optional[torch.Tensor] = Nonecross_attn_head_mask: typing.Optional[torch.Tensor] = Noneencoder_outputs: typing.Optional[typing.List[torch.FloatTensor]] = Noneinputs_embeds: typing.Optional[torch.FloatTensor] = Nonedecoder_inputs_embeds: typing.Optional[torch.FloatTensor] = Nonelabels: typing.Optional[torch.LongTensor] = Noneuse_cache: typing.Optional[bool] = Noneoutput_attentions: typing.Optional[bool] = Noneoutput_hidden_states: typing.Optional[bool] = Nonereturn_dict: typing.Optional[bool] = None ) → or tuple(torch.FloatTensor)
Indices can be obtained using . See and for detail.
To know more on how to prepare input_ids
for pretraining take a look a .
Indices can be obtained using . See and for details.
To know more on how to prepare decoder_input_ids
for pretraining take a look at .
return_dict (bool
, optional) — Whether or not to return a instead of a plain tuple.
or tuple(torch.FloatTensor)
A or a tuple of torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various elements depending on the configuration () and inputs.
The forward method, overrides the __call__
special method.
config () — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the method to load the model weights.
The MT5 model was proposed in by Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu. It’s an encoder decoder transformer pre-trained in a text-to-text denoising generative setting.
This model inherits from . Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)
This model is also a PyTorch subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
( input_ids: typing.Optional[torch.LongTensor] = Noneattention_mask: typing.Optional[torch.FloatTensor] = Nonedecoder_input_ids: typing.Optional[torch.LongTensor] = Nonedecoder_attention_mask: typing.Optional[torch.BoolTensor] = Nonehead_mask: typing.Optional[torch.FloatTensor] = Nonedecoder_head_mask: typing.Optional[torch.FloatTensor] = Nonecross_attn_head_mask: typing.Optional[torch.Tensor] = Noneencoder_outputs: typing.Optional[typing.Tuple[typing.Tuple[torch.Tensor]]] = Nonestart_positions: typing.Optional[torch.LongTensor] = Noneend_positions: typing.Optional[torch.LongTensor] = Noneinputs_embeds: typing.Optional[torch.FloatTensor] = Nonedecoder_inputs_embeds: typing.Optional[torch.FloatTensor] = Noneuse_cache: typing.Optional[bool] = Noneoutput_attentions: typing.Optional[bool] = Noneoutput_hidden_states: typing.Optional[bool] = Nonereturn_dict: typing.Optional[bool] = None ) → or tuple(torch.FloatTensor)
Indices can be obtained using . See and for detail.
To know more on how to prepare input_ids
for pretraining take a look a .
Indices can be obtained using . See and for details.
To know more on how to prepare decoder_input_ids
for pretraining take a look at .
return_dict (bool
, optional) — Whether or not to return a instead of a plain tuple.
or tuple(torch.FloatTensor)
A or a tuple of torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various elements depending on the configuration () and inputs.
The forward method, overrides the __call__
special method.
This class overrides . Please check the superclass for the appropriate documentation alongside usage examples.
This class overrides . Please check the superclass for the appropriate documentation alongside usage examples.
This class overrides . Please check the superclass for the appropriate documentation alongside usage examples.
This class overrides . Please check the superclass for the appropriate documentation alongside usage examples.
This class overrides . Please check the superclass for the appropriate documentation alongside usage examples.
This class overrides . Please check the superclass for the appropriate documentation alongside usage examples.