EfficientFormer
EfficientFormer
Overview
The EfficientFormer model was proposed in EfficientFormer: Vision Transformers at MobileNet Speed by Yanyu Li, Geng Yuan, Yang Wen, Eric Hu, Georgios Evangelidis, Sergey Tulyakov, Yanzhi Wang, Jian Ren. EfficientFormer proposes a dimension-consistent pure transformer that can be run on mobile devices for dense prediction tasks like image classification, object detection and semantic segmentation.
The abstract from the paper is the following:
Vision Transformers (ViT) have shown rapid progress in computer vision tasks, achieving promising results on various benchmarks. However, due to the massive number of parameters and model design, e.g., attention mechanism, ViT-based models are generally times slower than lightweight convolutional networks. Therefore, the deployment of ViT for real-time applications is particularly challenging, especially on resource-constrained hardware such as mobile devices. Recent efforts try to reduce the computation complexity of ViT through network architecture search or hybrid design with MobileNet block, yet the inference speed is still unsatisfactory. This leads to an important question: can transformers run as fast as MobileNet while obtaining high performance? To answer this, we first revisit the network architecture and operators used in ViT-based models and identify inefficient designs. Then we introduce a dimension-consistent pure transformer (without MobileNet blocks) as a design paradigm. Finally, we perform latency-driven slimming to get a series of final models dubbed EfficientFormer. Extensive experiments show the superiority of EfficientFormer in performance and speed on mobile devices. Our fastest model, EfficientFormer-L1, achieves 79.2% top-1 accuracy on ImageNet-1K with only 1.6 ms inference latency on iPhone 12 (compiled with CoreML), which { runs as fast as MobileNetV2×1.4 (1.6 ms, 74.7% top-1),} and our largest model, EfficientFormer-L7, obtains 83.3% accuracy with only 7.0 ms latency. Our work proves that properly designed transformers can reach extremely low latency on mobile devices while maintaining high performance.
This model was contributed by novice03 and Bearnardd. The original code can be found here. The TensorFlow version of this model was added by D-Roberts.
Documentation resources
EfficientFormerConfig
class transformers.EfficientFormerConfig
( depths: typing.List[int] = [3, 2, 6, 4]hidden_sizes: typing.List[int] = [48, 96, 224, 448]downsamples: typing.List[bool] = [True, True, True, True]dim: int = 448key_dim: int = 32attention_ratio: int = 4resolution: int = 7num_hidden_layers: int = 5num_attention_heads: int = 8mlp_expansion_ratio: int = 4hidden_dropout_prob: float = 0.0patch_size: int = 16num_channels: int = 3pool_size: int = 3downsample_patch_size: int = 3downsample_stride: int = 2downsample_pad: int = 1drop_path_rate: float = 0.0num_meta3d_blocks: int = 1distillation: bool = Trueuse_layer_scale: bool = Truelayer_scale_init_value: float = 1e-05hidden_act: str = 'gelu'initializer_range: float = 0.02layer_norm_eps: float = 1e-12image_size: int = 224batch_norm_eps: float = 1e-05**kwargs )
Parameters
depths (
List(int)
, optional, defaults to[3, 2, 6, 4]
) — Depth of each stage.hidden_sizes (
List(int)
, optional, defaults to[48, 96, 224, 448]
) — Dimensionality of each stage.downsamples (
List(bool)
, optional, defaults to[True, True, True, True]
) — Whether or not to downsample inputs between two stages.dim (
int
, optional, defaults to 448) — Number of channels in Meta3D layerskey_dim (
int
, optional, defaults to 32) — The size of the key in meta3D block.attention_ratio (
int
, optional, defaults to 4) — Ratio of the dimension of the query and value to the dimension of the key in MSHA blockresolution (
int
, optional, defaults to 7) — Size of each patchnum_hidden_layers (
int
, optional, defaults to 5) — Number of hidden layers in the Transformer encoder.num_attention_heads (
int
, optional, defaults to 8) — Number of attention heads for each attention layer in the 3D MetaBlock.mlp_expansion_ratio (
int
, optional, defaults to 4) — Ratio of size of the hidden dimensionality of an MLP to the dimensionality of its input.hidden_dropout_prob (
float
, optional, defaults to 0.1) — The dropout probability for all fully connected layers in the embeddings and encoder.patch_size (
int
, optional, defaults to 16) — The size (resolution) of each patch.num_channels (
int
, optional, defaults to 3) — The number of input channels.pool_size (
int
, optional, defaults to 3) — Kernel size of pooling layers.downsample_patch_size (
int
, optional, defaults to 3) — The size of patches in downsampling layers.downsample_stride (
int
, optional, defaults to 2) — The stride of convolution kernels in downsampling layers.downsample_pad (
int
, optional, defaults to 1) — Padding in downsampling layers.drop_path_rate (
int
, optional, defaults to 0) — Rate at which to increase dropout probability in DropPath.num_meta3d_blocks (
int
, optional, defaults to 1) — The number of 3D MetaBlocks in the last stage.distillation (
bool
, optional, defaults toTrue
) — Whether to add a distillation head.use_layer_scale (
bool
, optional, defaults toTrue
) — Whether to scale outputs from token mixers.layer_scale_init_value (
float
, optional, defaults to 1e-5) — Factor by which outputs from token mixers are scaled.hidden_act (
str
orfunction
, optional, defaults to"gelu"
) — The non-linear activation function (function or string) in the encoder and pooler. If string,"gelu"
,"relu"
,"selu"
and"gelu_new"
are supported.initializer_range (
float
, optional, defaults to 0.02) — The standard deviation of the truncated_normal_initializer for initializing all weight matrices.layer_norm_eps (
float
, optional, defaults to 1e-12) — The epsilon used by the layer normalization layers.image_size (
int
, optional, defaults to224
) — The size (resolution) of each image.
This is the configuration class to store the configuration of an EfficientFormerModel. It is used to instantiate an EfficientFormer model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the EfficientFormer snap-research/efficientformer-l1 architecture.
Configuration objects inherit from PretrainedConfig and can be used to control the model outputs. Read the documentation from PretrainedConfig for more information.
Example:
Copied
EfficientFormerImageProcessor
class transformers.EfficientFormerImageProcessor
( do_resize: bool = Truesize: typing.Union[typing.Dict[str, int], NoneType] = Noneresample: Resampling = <Resampling.BICUBIC: 3>do_center_crop: bool = Truedo_rescale: bool = Truerescale_factor: typing.Union[int, float] = 0.00392156862745098crop_size: typing.Dict[str, int] = Nonedo_normalize: bool = Trueimage_mean: typing.Union[float, typing.List[float], NoneType] = Noneimage_std: typing.Union[float, typing.List[float], NoneType] = None**kwargs )
Parameters
do_resize (
bool
, optional, defaults toTrue
) — Whether to resize the image’s (height, width) dimensions to the specified(size["height"], size["width"])
. Can be overridden by thedo_resize
parameter in thepreprocess
method.size (
dict
, optional, defaults to{"height" -- 224, "width": 224}
): Size of the output image after resizing. Can be overridden by thesize
parameter in thepreprocess
method.resample (
PILImageResampling
, optional, defaults toPILImageResampling.BILINEAR
) — Resampling filter to use if resizing the image. Can be overridden by theresample
parameter in thepreprocess
method.do_center_crop (
bool
, optional, defaults toTrue
) — Whether to center crop the image to the specifiedcrop_size
. Can be overridden bydo_center_crop
in thepreprocess
method.crop_size (
Dict[str, int]
optional, defaults to 224) — Size of the output image after applyingcenter_crop
. Can be overridden bycrop_size
in thepreprocess
method.do_rescale (
bool
, optional, defaults toTrue
) — Whether to rescale the image by the specified scalerescale_factor
. Can be overridden by thedo_rescale
parameter in thepreprocess
method.rescale_factor (
int
orfloat
, optional, defaults to1/255
) — Scale factor to use if rescaling the image. Can be overridden by therescale_factor
parameter in thepreprocess
method. do_normalize — Whether to normalize the image. Can be overridden by thedo_normalize
parameter in thepreprocess
method.image_mean (
float
orList[float]
, optional, defaults toIMAGENET_STANDARD_MEAN
) — Mean to use if normalizing the image. This is a float or list of floats the length of the number of channels in the image. Can be overridden by theimage_mean
parameter in thepreprocess
method.image_std (
float
orList[float]
, optional, defaults toIMAGENET_STANDARD_STD
) — Standard deviation to use if normalizing the image. This is a float or list of floats the length of the number of channels in the image. Can be overridden by theimage_std
parameter in thepreprocess
method.
Constructs a EfficientFormer image processor.
preprocess
( images: typing.Union[ForwardRef('PIL.Image.Image'), numpy.ndarray, ForwardRef('torch.Tensor'), typing.List[ForwardRef('PIL.Image.Image')], typing.List[numpy.ndarray], typing.List[ForwardRef('torch.Tensor')]]do_resize: typing.Optional[bool] = Nonesize: typing.Dict[str, int] = Noneresample: Resampling = Nonedo_center_crop: bool = Nonecrop_size: int = Nonedo_rescale: typing.Optional[bool] = Nonerescale_factor: typing.Optional[float] = Nonedo_normalize: typing.Optional[bool] = Noneimage_mean: typing.Union[float, typing.List[float], NoneType] = Noneimage_std: typing.Union[float, typing.List[float], NoneType] = Nonereturn_tensors: typing.Union[str, transformers.utils.generic.TensorType, NoneType] = Nonedata_format: typing.Union[str, transformers.image_utils.ChannelDimension] = <ChannelDimension.FIRST: 'channels_first'>input_data_format: typing.Union[str, transformers.image_utils.ChannelDimension, NoneType] = None**kwargs )
Parameters
images (
ImageInput
) — Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If passing in images with pixel values between 0 and 1, setdo_rescale=False
.do_resize (
bool
, optional, defaults toself.do_resize
) — Whether to resize the image.size (
Dict[str, int]
, optional, defaults toself.size
) — Dictionary in the format{"height": h, "width": w}
specifying the size of the output image after resizing.resample (
PILImageResampling
filter, optional, defaults toself.resample
) —PILImageResampling
filter to use if resizing the image e.g.PILImageResampling.BILINEAR
. Only has an effect ifdo_resize
is set toTrue
.do_center_crop (
bool
, optional, defaults toself.do_center_crop
) — Whether to center crop the image.do_rescale (
bool
, optional, defaults toself.do_rescale
) — Whether to rescale the image values between [0 - 1].rescale_factor (
float
, optional, defaults toself.rescale_factor
) — Rescale factor to rescale the image by ifdo_rescale
is set toTrue
.crop_size (
Dict[str, int]
, optional, defaults toself.crop_size
) — Size of the center crop. Only has an effect ifdo_center_crop
is set toTrue
.do_normalize (
bool
, optional, defaults toself.do_normalize
) — Whether to normalize the image.image_mean (
float
orList[float]
, optional, defaults toself.image_mean
) — Image mean to use ifdo_normalize
is set toTrue
.image_std (
float
orList[float]
, optional, defaults toself.image_std
) — Image standard deviation to use ifdo_normalize
is set toTrue
.return_tensors (
str
orTensorType
, optional) — The type of tensors to return. Can be one of:Unset: Return a list of
np.ndarray
.TensorType.TENSORFLOW
or'tf'
: Return a batch of typetf.Tensor
.TensorType.PYTORCH
or'pt'
: Return a batch of typetorch.Tensor
.TensorType.NUMPY
or'np'
: Return a batch of typenp.ndarray
.TensorType.JAX
or'jax'
: Return a batch of typejax.numpy.ndarray
.
data_format (
ChannelDimension
orstr
, optional, defaults toChannelDimension.FIRST
) — The channel dimension format for the output image. Can be one of:"channels_first"
orChannelDimension.FIRST
: image in (num_channels, height, width) format."channels_last"
orChannelDimension.LAST
: image in (height, width, num_channels) format.Unset: Use the channel dimension format of the input image.
input_data_format (
ChannelDimension
orstr
, optional) — The channel dimension format for the input image. If unset, the channel dimension format is inferred from the input image. Can be one of:"channels_first"
orChannelDimension.FIRST
: image in (num_channels, height, width) format."channels_last"
orChannelDimension.LAST
: image in (height, width, num_channels) format."none"
orChannelDimension.NONE
: image in (height, width) format.
Preprocess an image or batch of images.
EfficientFormerModel
class transformers.EfficientFormerModel
( config: EfficientFormerConfig )
Parameters
config (EfficientFormerConfig) — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.
The bare EfficientFormer Model transformer outputting raw hidden-states without any specific head on top. This model is a PyTorch nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
forward
( pixel_values: typing.Optional[torch.Tensor] = Noneoutput_attentions: typing.Optional[bool] = Noneoutput_hidden_states: typing.Optional[bool] = Nonereturn_dict: typing.Optional[bool] = None ) → transformers.modeling_outputs.BaseModelOutputWithPooling or tuple(torch.FloatTensor)
Parameters
pixel_values (
torch.FloatTensor
of shape(batch_size, num_channels, height, width)
) — Pixel values. Pixel values can be obtained using ViTImageProcessor. See ViTImageProcessor.preprocess() for details.output_attentions (
bool
, optional) — Whether or not to return the attentions tensors of all attention layers. Seeattentions
under returned tensors for more detail.output_hidden_states (
bool
, optional) — Whether or not to return the hidden states of all layers. Seehidden_states
under returned tensors for more detail.return_dict (
bool
, optional) — Whether or not to return a ModelOutput instead of a plain tuple.
Returns
transformers.modeling_outputs.BaseModelOutputWithPooling or tuple(torch.FloatTensor)
A transformers.modeling_outputs.BaseModelOutputWithPooling or a tuple of torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various elements depending on the configuration (EfficientFormerConfig) and inputs.
last_hidden_state (
torch.FloatTensor
of shape(batch_size, sequence_length, hidden_size)
) — Sequence of hidden-states at the output of the last layer of the model.pooler_output (
torch.FloatTensor
of shape(batch_size, hidden_size)
) — Last layer hidden-state of the first token of the sequence (classification token) after further processing through the layers used for the auxiliary pretraining task. E.g. for BERT-family of models, this returns the classification token after processing through a linear layer and a tanh activation function. The linear layer weights are trained from the next sentence prediction (classification) objective during pretraining.hidden_states (
tuple(torch.FloatTensor)
, optional, returned whenoutput_hidden_states=True
is passed or whenconfig.output_hidden_states=True
) — Tuple oftorch.FloatTensor
(one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size)
.Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (
tuple(torch.FloatTensor)
, optional, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) — Tuple oftorch.FloatTensor
(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length)
.Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
The EfficientFormerModel forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.
Example:
Copied
EfficientFormerForImageClassification
class transformers.EfficientFormerForImageClassification
( config: EfficientFormerConfig )
Parameters
config (EfficientFormerConfig) — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.
EfficientFormer Model transformer with an image classification head on top (a linear layer on top of the final hidden state of the [CLS] token) e.g. for ImageNet.
This model is a PyTorch nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
forward
( pixel_values: typing.Optional[torch.Tensor] = Nonelabels: typing.Optional[torch.Tensor] = Noneoutput_attentions: typing.Optional[bool] = Noneoutput_hidden_states: typing.Optional[bool] = Nonereturn_dict: typing.Optional[bool] = None ) → transformers.modeling_outputs.ImageClassifierOutput or tuple(torch.FloatTensor)
Parameters
pixel_values (
torch.FloatTensor
of shape(batch_size, num_channels, height, width)
) — Pixel values. Pixel values can be obtained using ViTImageProcessor. See ViTImageProcessor.preprocess() for details.output_attentions (
bool
, optional) — Whether or not to return the attentions tensors of all attention layers. Seeattentions
under returned tensors for more detail.output_hidden_states (
bool
, optional) — Whether or not to return the hidden states of all layers. Seehidden_states
under returned tensors for more detail.return_dict (
bool
, optional) — Whether or not to return a ModelOutput instead of a plain tuple.labels (
torch.LongTensor
of shape(batch_size,)
, optional) — Labels for computing the image classification/regression loss. Indices should be in[0, ..., config.num_labels - 1]
. Ifconfig.num_labels == 1
a regression loss is computed (Mean-Square loss), Ifconfig.num_labels > 1
a classification loss is computed (Cross-Entropy).
Returns
transformers.modeling_outputs.ImageClassifierOutput or tuple(torch.FloatTensor)
A transformers.modeling_outputs.ImageClassifierOutput or a tuple of torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various elements depending on the configuration (EfficientFormerConfig) and inputs.
loss (
torch.FloatTensor
of shape(1,)
, optional, returned whenlabels
is provided) — Classification (or regression if config.num_labels==1) loss.logits (
torch.FloatTensor
of shape(batch_size, config.num_labels)
) — Classification (or regression if config.num_labels==1) scores (before SoftMax).hidden_states (
tuple(torch.FloatTensor)
, optional, returned whenoutput_hidden_states=True
is passed or whenconfig.output_hidden_states=True
) — Tuple oftorch.FloatTensor
(one for the output of the embeddings, if the model has an embedding layer, + one for the output of each stage) of shape(batch_size, sequence_length, hidden_size)
. Hidden-states (also called feature maps) of the model at the output of each stage.attentions (
tuple(torch.FloatTensor)
, optional, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) — Tuple oftorch.FloatTensor
(one for each layer) of shape(batch_size, num_heads, patch_size, sequence_length)
.Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
The EfficientFormerForImageClassification forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.
Example:
Copied
EfficientFormerForImageClassificationWithTeacher
class transformers.EfficientFormerForImageClassificationWithTeacher
( config: EfficientFormerConfig )
Parameters
config (EfficientFormerConfig) — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.
EfficientFormer Model transformer with image classification heads on top (a linear layer on top of the final hidden state of the [CLS] token and a linear layer on top of the final hidden state of the distillation token) e.g. for ImageNet.
This model supports inference-only. Fine-tuning with distillation (i.e. with a teacher) is not yet supported.
This model is a PyTorch nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
forward
( pixel_values: typing.Optional[torch.Tensor] = Noneoutput_attentions: typing.Optional[bool] = Noneoutput_hidden_states: typing.Optional[bool] = Nonereturn_dict: typing.Optional[bool] = None ) → transformers.models.efficientformer.modeling_efficientformer.EfficientFormerForImageClassificationWithTeacherOutput
or tuple(torch.FloatTensor)
Parameters
pixel_values (
torch.FloatTensor
of shape(batch_size, num_channels, height, width)
) — Pixel values. Pixel values can be obtained using ViTImageProcessor. See ViTImageProcessor.preprocess() for details.output_attentions (
bool
, optional) — Whether or not to return the attentions tensors of all attention layers. Seeattentions
under returned tensors for more detail.output_hidden_states (
bool
, optional) — Whether or not to return the hidden states of all layers. Seehidden_states
under returned tensors for more detail.return_dict (
bool
, optional) — Whether or not to return a ModelOutput instead of a plain tuple.
Returns
transformers.models.efficientformer.modeling_efficientformer.EfficientFormerForImageClassificationWithTeacherOutput
or tuple(torch.FloatTensor)
A transformers.models.efficientformer.modeling_efficientformer.EfficientFormerForImageClassificationWithTeacherOutput
or a tuple of torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various elements depending on the configuration (EfficientFormerConfig) and inputs.
logits (
torch.FloatTensor
of shape(batch_size, config.num_labels)
) — Prediction scores as the average of the cls_logits and distillation logits.cls_logits (
torch.FloatTensor
of shape(batch_size, config.num_labels)
) — Prediction scores of the classification head (i.e. the linear layer on top of the final hidden state of the class token).distillation_logits (
torch.FloatTensor
of shape(batch_size, config.num_labels)
) — Prediction scores of the distillation head (i.e. the linear layer on top of the final hidden state of the distillation token).hidden_states (
tuple(torch.FloatTensor)
, optional, returned whenoutput_hidden_states=True
is passed or whenconfig.output_hidden_states=True
) — Tuple oftorch.FloatTensor
(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size)
. Hidden-states of the model at the output of each layer plus the initial embedding outputs.attentions (
tuple(torch.FloatTensor)
, optional, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) — Tuple oftorch.FloatTensor
(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length)
. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
The EfficientFormerForImageClassificationWithTeacher forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.
Example:
Copied
TFEfficientFormerModel
class transformers.TFEfficientFormerModel
( *args**kwargs )
Parameters
config (EfficientFormerConfig) — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.
The bare EfficientFormer Model transformer outputting raw hidden-states without any specific head on top. This model is a TensorFlow tf.keras.layers.Layer. Use it as a regular TensorFlow Module and refer to the TensorFlow documentation for all matter related to general usage and behavior.
call
( pixel_values: typing.Optional[tensorflow.python.framework.ops.Tensor] = Noneoutput_attentions: typing.Optional[bool] = Noneoutput_hidden_states: typing.Optional[bool] = Nonereturn_dict: typing.Optional[bool] = Nonetraining: bool = False ) → transformers.modeling_tf_outputs.TFBaseModelOutputWithPooling or tuple(tf.Tensor)
Parameters
pixel_values ((
tf.Tensor
of shape(batch_size, num_channels, height, width)
) — Pixel values. Pixel values can be obtained using AutoImageProcessor. See EfficientFormerImageProcessor.call() for details.output_attentions (
bool
, optional) — Whether or not to return the attentions tensors of all attention layers. Seeattentions
under returned tensors for more detail.output_hidden_states (
bool
, optional) — Whether or not to return the hidden states of all layers. Seehidden_states
under returned tensors for more detail.return_dict (
bool
, optional) — Whether or not to return a ModelOutput instead of a plain tuple.
Returns
transformers.modeling_tf_outputs.TFBaseModelOutputWithPooling or tuple(tf.Tensor)
A transformers.modeling_tf_outputs.TFBaseModelOutputWithPooling or a tuple of tf.Tensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various elements depending on the configuration (EfficientFormerConfig) and inputs.
last_hidden_state (
tf.Tensor
of shape(batch_size, sequence_length, hidden_size)
) — Sequence of hidden-states at the output of the last layer of the model.pooler_output (
tf.Tensor
of shape(batch_size, hidden_size)
) — Last layer hidden-state of the first token of the sequence (classification token) further processed by a Linear layer and a Tanh activation function. The Linear layer weights are trained from the next sentence prediction (classification) objective during pretraining.This output is usually not a good summary of the semantic content of the input, you’re often better with averaging or pooling the sequence of hidden-states for the whole input sequence.
hidden_states (
tuple(tf.Tensor)
, optional, returned whenoutput_hidden_states=True
is passed or whenconfig.output_hidden_states=True
) — Tuple oftf.Tensor
(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size)
.Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (
tuple(tf.Tensor)
, optional, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) — Tuple oftf.Tensor
(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length)
.Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
The TFEfficientFormerModel forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.
Example:
Copied
TFEfficientFormerForImageClassification
class transformers.TFEfficientFormerForImageClassification
( *args**kwargs )
Parameters
config (EfficientFormerConfig) — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.
EfficientFormer Model transformer with an image classification head on top of pooled last hidden state, e.g. for ImageNet.
This model is a TensorFlow tf.keras.layers.Layer. Use it as a regular TensorFlow Module and refer to the TensorFlow documentation for all matter related to general usage and behavior.
call
( pixel_values: typing.Optional[tensorflow.python.framework.ops.Tensor] = Nonelabels: typing.Optional[tensorflow.python.framework.ops.Tensor] = Noneoutput_attentions: typing.Optional[bool] = Noneoutput_hidden_states: typing.Optional[bool] = Nonereturn_dict: typing.Optional[bool] = Nonetraining: bool = False ) → transformers.modeling_tf_outputs.TFImageClassifierOutput
or tuple(tf.Tensor)
Parameters
pixel_values ((
tf.Tensor
of shape(batch_size, num_channels, height, width)
) — Pixel values. Pixel values can be obtained using AutoImageProcessor. See EfficientFormerImageProcessor.call() for details.output_attentions (
bool
, optional) — Whether or not to return the attentions tensors of all attention layers. Seeattentions
under returned tensors for more detail.output_hidden_states (
bool
, optional) — Whether or not to return the hidden states of all layers. Seehidden_states
under returned tensors for more detail.return_dict (
bool
, optional) — Whether or not to return a ModelOutput instead of a plain tuple.labels (
tf.Tensor
of shape(batch_size,)
, optional) — Labels for computing the image classification/regression loss. Indices should be in[0, ..., config.num_labels - 1]
. Ifconfig.num_labels == 1
a regression loss is computed (Mean-Square loss), Ifconfig.num_labels > 1
a classification loss is computed (Cross-Entropy).
Returns
transformers.modeling_tf_outputs.TFImageClassifierOutput
or tuple(tf.Tensor)
A transformers.modeling_tf_outputs.TFImageClassifierOutput
or a tuple of tf.Tensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various elements depending on the configuration (EfficientFormerConfig) and inputs.
loss (
tf.Tensor
of shape(1,)
, optional, returned whenlabels
is provided) — Classification (or regression if config.num_labels==1) loss.logits (
tf.Tensor
of shape(batch_size, config.num_labels)
) — Classification (or regression if config.num_labels==1) scores (before SoftMax).hidden_states (
tuple(tf.Tensor)
, optional, returned whenoutput_hidden_states=True
is passed or whenconfig.output_hidden_states=True
) — Tuple oftf.Tensor
(one for the output of the embeddings, if the model has an embedding layer, + one for the output of each stage) of shape(batch_size, sequence_length, hidden_size)
. Hidden-states (also called feature maps) of the model at the output of each stage.attentions (
tuple(tf.Tensor)
, optional, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) — Tuple oftf.Tensor
(one for each layer) of shape(batch_size, num_heads, patch_size, sequence_length)
.Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
The TFEfficientFormerForImageClassification forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.
Example:
Copied
TFEfficientFormerForImageClassificationWithTeacher
class transformers.TFEfficientFormerForImageClassificationWithTeacher
( *args**kwargs )
Parameters
config (EfficientFormerConfig) — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.
EfficientFormer Model transformer with image classification heads on top (a linear layer on top of the final hidden state and a linear layer on top of the final hidden state of the distillation token) e.g. for ImageNet.
.. warning:: This model supports inference-only. Fine-tuning with distillation (i.e. with a teacher) is not yet supported.
This model is a TensorFlow tf.keras.layers.Layer. Use it as a regular TensorFlow Module and refer to the TensorFlow documentation for all matter related to general usage and behavior.
call
( pixel_values: typing.Optional[tensorflow.python.framework.ops.Tensor] = Noneoutput_attentions: typing.Optional[bool] = Noneoutput_hidden_states: typing.Optional[bool] = Nonereturn_dict: typing.Optional[bool] = Nonetraining: bool = False ) → transformers.models.efficientformer.modeling_tf_efficientformer.TFEfficientFormerForImageClassificationWithTeacherOutput
or tuple(tf.Tensor)
Parameters
pixel_values ((
tf.Tensor
of shape(batch_size, num_channels, height, width)
) — Pixel values. Pixel values can be obtained using AutoImageProcessor. See EfficientFormerImageProcessor.call() for details.output_attentions (
bool
, optional) — Whether or not to return the attentions tensors of all attention layers. Seeattentions
under returned tensors for more detail.output_hidden_states (
bool
, optional) — Whether or not to return the hidden states of all layers. Seehidden_states
under returned tensors for more detail.return_dict (
bool
, optional) — Whether or not to return a ModelOutput instead of a plain tuple.
Returns
transformers.models.efficientformer.modeling_tf_efficientformer.TFEfficientFormerForImageClassificationWithTeacherOutput
or tuple(tf.Tensor)
A transformers.models.efficientformer.modeling_tf_efficientformer.TFEfficientFormerForImageClassificationWithTeacherOutput
or a tuple of tf.Tensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various elements depending on the configuration (EfficientFormerConfig) and inputs.
The TFEfficientFormerForImageClassificationWithTeacher forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.
Output type of EfficientFormerForImageClassificationWithTeacher. logits (
tf.Tensor
of shape(batch_size, config.num_labels)
) — Prediction scores as the average of the cls_logits and distillation logits. cls_logits (tf.Tensor
of shape(batch_size, config.num_labels)
) — Prediction scores of the classification head (i.e. the linear layer on top of the final hidden state of the class token). distillation_logits (tf.Tensor
of shape(batch_size, config.num_labels)
) — Prediction scores of the distillation head (i.e. the linear layer on top of the final hidden state of the distillation token). hidden_states (tuple(tf.Tensor)
, optional, returned whenoutput_hidden_states=True
is passed or whenconfig.output_hidden_states=True
) — Tuple oftf.Tensor
(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size)
. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (tuple(tf.Tensor)
, optional, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) — Tuple oftf.Tensor
(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length)
. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
Example:
Copied
Last updated