MarianMT
Last updated
Last updated
Bugs: If you see something strange, file a Github Issue and assign @patrickvonplaten.
Translations should be similar, but not identical to output in the test set linked to in each model card.
Tips:
A framework for translation models, using the same models as BART.
Each model is about 298 MB on disk, there are more than 1,000 models.
The list of supported language pairs can be found here.
Models were originally trained by JΓΆrg Tiedemann using the Marian C++ library, which supports fast training and translation.
All models are transformer encoder-decoders with 6 layers in each component. Each modelβs performance is documented in a model card.
The 80 opus models that require BPE preprocessing are not supported.
The modeling code is the same as BartForConditionalGeneration with a few minor modifications:
static (sinusoid) positional embeddings (MarianConfig.static_position_embeddings=True
)
no layernorm_embedding (MarianConfig.normalize_embedding=False
)
the model starts generating with pad_token_id
(which has 0 as a token_embedding) as the prefix (Bart uses <s/>
),
Code to bulk convert models can be found in convert_marian_to_pytorch.py
.
This model was contributed by sshleifer.
All model names use the following format: Helsinki-NLP/opus-mt-{src}-{tgt}
The language codes used to name models are inconsistent. Two digit codes can usually be found here, three digit codes require googling βlanguage code {code}β.
Codes formatted like es_AR
are usually code_{region}
. That one is Spanish from Argentina.
The models were converted in two stages. The first 1000 models use ISO-639-2 codes to identify languages, the second group use a combination of ISO-639-5 codes and ISO-639-2 codes.
Since Marian models are smaller than many other translation models available in the library, they can be useful for fine-tuning experiments and integration tests.
All model names use the following format: Helsinki-NLP/opus-mt-{src}-{tgt}
:
If a model can output multiple languages, and you should specify a language code by prepending the desired output language to the src_text
.
You can see a modelsβs supported language codes in its model card, under target constituents, like in opus-mt-en-roa.
Note that if a model is only multilingual on the source side, like Helsinki-NLP/opus-mt-roa-en
, no language codes are required.
New multi-lingual models from the Tatoeba-Challenge repo require 3 character language codes:
Copied
Here is the code to see all available pretrained models on the hub:
Copied
These are the old style multi-lingual models ported from the OPUS-MT-Train repo: and the members of each language group:
Copied
Example of translating english to many romance languages, using old-style 2 character language codes
Copied
( vocab_size = 58101decoder_vocab_size = Nonemax_position_embeddings = 1024encoder_layers = 12encoder_ffn_dim = 4096encoder_attention_heads = 16decoder_layers = 12decoder_ffn_dim = 4096decoder_attention_heads = 16encoder_layerdrop = 0.0decoder_layerdrop = 0.0use_cache = Trueis_encoder_decoder = Trueactivation_function = 'gelu'd_model = 1024dropout = 0.1attention_dropout = 0.0activation_dropout = 0.0init_std = 0.02decoder_start_token_id = 58100scale_embedding = Falsepad_token_id = 58100eos_token_id = 0forced_eos_token_id = 0share_encoder_decoder_embeddings = True**kwargs )
Parameters
vocab_size (int
, optional, defaults to 58101) β Vocabulary size of the Marian model. Defines the number of different tokens that can be represented by the inputs_ids
passed when calling MarianModel or TFMarianModel.
d_model (int
, optional, defaults to 1024) β Dimensionality of the layers and the pooler layer.
encoder_layers (int
, optional, defaults to 12) β Number of encoder layers.
decoder_layers (int
, optional, defaults to 12) β Number of decoder layers.
encoder_attention_heads (int
, optional, defaults to 16) β Number of attention heads for each attention layer in the Transformer encoder.
decoder_attention_heads (int
, optional, defaults to 16) β Number of attention heads for each attention layer in the Transformer decoder.
decoder_ffn_dim (int
, optional, defaults to 4096) β Dimensionality of the βintermediateβ (often named feed-forward) layer in decoder.
encoder_ffn_dim (int
, optional, defaults to 4096) β Dimensionality of the βintermediateβ (often named feed-forward) layer in decoder.
activation_function (str
or function
, optional, defaults to "gelu"
) β The non-linear activation function (function or string) in the encoder and pooler. If string, "gelu"
, "relu"
, "silu"
and "gelu_new"
are supported.
dropout (float
, optional, defaults to 0.1) β The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_dropout (float
, optional, defaults to 0.0) β The dropout ratio for the attention probabilities.
activation_dropout (float
, optional, defaults to 0.0) β The dropout ratio for activations inside the fully connected layer.
max_position_embeddings (int
, optional, defaults to 1024) β The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048).
init_std (float
, optional, defaults to 0.02) β The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
encoder_layerdrop (float
, optional, defaults to 0.0) β The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) for more details.
decoder_layerdrop (float
, optional, defaults to 0.0) β The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) for more details.
scale_embedding (bool
, optional, defaults to False
) β Scale embeddings by diving by sqrt(d_model).
use_cache (bool
, optional, defaults to True
) β Whether or not the model should return the last key/values attentions (not used by all models)
forced_eos_token_id (int
, optional, defaults to 0) β The id of the token to force as the last generated token when max_length
is reached. Usually set to eos_token_id
.
This is the configuration class to store the configuration of a MarianModel. It is used to instantiate an Marian model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the Marian Helsinki-NLP/opus-mt-en-de architecture.
Configuration objects inherit from PretrainedConfig and can be used to control the model outputs. Read the documentation from PretrainedConfig for more information.
Examples:
Copied
( source_spmtarget_spmvocabtarget_vocab_file = Nonesource_lang = Nonetarget_lang = Noneunk_token = '<unk>'eos_token = '</s>'pad_token = '<pad>'model_max_length = 512sp_model_kwargs: typing.Union[typing.Dict[str, typing.Any], NoneType] = Noneseparate_vocabs = False**kwargs )
Parameters
source_spm (str
) β SentencePiece file (generally has a .spm extension) that contains the vocabulary for the source language.
target_spm (str
) β SentencePiece file (generally has a .spm extension) that contains the vocabulary for the target language.
source_lang (str
, optional) β A string representing the source language.
target_lang (str
, optional) β A string representing the target language.
unk_token (str
, optional, defaults to "<unk>"
) β The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead.
eos_token (str
, optional, defaults to "</s>"
) β The end of sequence token.
pad_token (str
, optional, defaults to "<pad>"
) β The token used for padding, for example when batching sequences of different lengths.
model_max_length (int
, optional, defaults to 512) β The maximum sentence length the model accepts.
additional_special_tokens (List[str]
, optional, defaults to ["<eop>", "<eod>"]
) β Additional special tokens used by the tokenizer.
sp_model_kwargs (dict
, optional) β Will be passed to the SentencePieceProcessor.__init__()
method. The Python wrapper for SentencePiece can be used, among other things, to set:
enable_sampling
: Enable subword regularization.
nbest_size
: Sampling parameters for unigram. Invalid for BPE-Dropout.
nbest_size = {0,1}
: No sampling is performed.
nbest_size > 1
: samples from the nbest_size results.
nbest_size < 0
: assuming that nbest_size is infinite and samples from the all hypothesis (lattice) using forward-filtering-and-backward-sampling algorithm.
alpha
: Smoothing parameter for unigram sampling, and dropout probability of merge operations for BPE-dropout.
Construct a Marian tokenizer. Based on SentencePiece.
This tokenizer inherits from PreTrainedTokenizer which contains most of the main methods. Users should refer to this superclass for more information regarding those methods.
Examples:
Copied
build_inputs_with_special_tokens
( token_ids_0token_ids_1 = None )
Build model inputs from a sequence by appending eos_token_id.
( config: MarianConfig )
Parameters
config (MarianConfig) β Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.
The bare Marian Model outputting raw hidden-states without any specific head on top. This model inherits from PreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)
This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
forward
( input_ids: LongTensor = Noneattention_mask: typing.Optional[torch.Tensor] = Nonedecoder_input_ids: typing.Optional[torch.LongTensor] = Nonedecoder_attention_mask: typing.Optional[torch.Tensor] = Nonehead_mask: typing.Optional[torch.Tensor] = Nonedecoder_head_mask: typing.Optional[torch.Tensor] = Nonecross_attn_head_mask: typing.Optional[torch.Tensor] = Noneencoder_outputs: typing.Union[typing.Tuple[torch.Tensor], transformers.modeling_outputs.BaseModelOutput, NoneType] = Nonepast_key_values: typing.Optional[typing.Tuple[typing.Tuple[torch.FloatTensor]]] = Noneinputs_embeds: typing.Optional[torch.FloatTensor] = Nonedecoder_inputs_embeds: typing.Optional[torch.FloatTensor] = Noneuse_cache: typing.Optional[bool] = Noneoutput_attentions: typing.Optional[bool] = Noneoutput_hidden_states: typing.Optional[bool] = Nonereturn_dict: typing.Optional[bool] = None ) β transformers.modeling_outputs.Seq2SeqModelOutput or tuple(torch.FloatTensor)
Parameters
input_ids (torch.LongTensor
of shape (batch_size, sequence_length)
) β Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it.
Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
attention_mask (torch.Tensor
of shape (batch_size, sequence_length)
, optional) β Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]
:
1 for tokens that are not masked,
0 for tokens that are masked.
decoder_input_ids (torch.LongTensor
of shape (batch_size, target_sequence_length)
, optional) β Indices of decoder input sequence tokens in the vocabulary.
Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
Marian uses the pad_token_id
as the starting token for decoder_input_ids
generation. If past_key_values
is used, optionally only the last decoder_input_ids
have to be input (see past_key_values
).
decoder_attention_mask (torch.LongTensor
of shape (batch_size, target_sequence_length)
, optional) β Default behavior: generate a tensor that ignores pad tokens in decoder_input_ids
. Causal mask will also be used by default.
head_mask (torch.Tensor
of shape (encoder_layers, encoder_attention_heads)
, optional) β Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in [0, 1]
:
1 indicates the head is not masked,
0 indicates the head is masked.
decoder_head_mask (torch.Tensor
of shape (decoder_layers, decoder_attention_heads)
, optional) β Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in [0, 1]
:
1 indicates the head is not masked,
0 indicates the head is masked.
cross_attn_head_mask (torch.Tensor
of shape (decoder_layers, decoder_attention_heads)
, optional) β Mask to nullify selected heads of the cross-attention modules in the decoder. Mask values selected in [0, 1]
:
1 indicates the head is not masked,
0 indicates the head is masked.
encoder_outputs (tuple(tuple(torch.FloatTensor)
, optional) β Tuple consists of (last_hidden_state
, optional: hidden_states
, optional: attentions
) last_hidden_state
of shape (batch_size, sequence_length, hidden_size)
, optional) is a sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.
past_key_values (tuple(tuple(torch.FloatTensor))
, optional, returned when use_cache=True
is passed or when config.use_cache=True
) β Tuple of tuple(torch.FloatTensor)
of length config.n_layers
, with each tuple having 2 tensors of shape (batch_size, num_heads, sequence_length, embed_size_per_head)
) and 2 additional tensors of shape (batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used (see past_key_values
input) to speed up sequential decoding.
If past_key_values
are used, the user can optionally input only the last decoder_input_ids
(those that donβt have their past key value states given to this model) of shape (batch_size, 1)
instead of all decoder_input_ids
of shape (batch_size, sequence_length)
.
inputs_embeds (torch.FloatTensor
of shape (batch_size, sequence_length, hidden_size)
, optional) β Optionally, instead of passing input_ids
you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids
indices into associated vectors than the modelβs internal embedding lookup matrix.
decoder_inputs_embeds (torch.FloatTensor
of shape (batch_size, target_sequence_length, hidden_size)
, optional) β Optionally, instead of passing decoder_input_ids
you can choose to directly pass an embedded representation. If past_key_values
is used, optionally only the last decoder_inputs_embeds
have to be input (see past_key_values
). This is useful if you want more control over how to convert decoder_input_ids
indices into associated vectors than the modelβs internal embedding lookup matrix.
If decoder_input_ids
and decoder_inputs_embeds
are both unset, decoder_inputs_embeds
takes the value of inputs_embeds
.
use_cache (bool
, optional) β If set to True
, past_key_values
key value states are returned and can be used to speed up decoding (see past_key_values
).
output_attentions (bool
, optional) β Whether or not to return the attentions tensors of all attention layers. See attentions
under returned tensors for more detail.
output_hidden_states (bool
, optional) β Whether or not to return the hidden states of all layers. See hidden_states
under returned tensors for more detail.
return_dict (bool
, optional) β Whether or not to return a ModelOutput instead of a plain tuple.
Returns
transformers.modeling_outputs.Seq2SeqModelOutput or tuple(torch.FloatTensor)
A transformers.modeling_outputs.Seq2SeqModelOutput or a tuple of torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various elements depending on the configuration (MarianConfig) and inputs.
last_hidden_state (torch.FloatTensor
of shape (batch_size, sequence_length, hidden_size)
) β Sequence of hidden-states at the output of the last layer of the decoder of the model.
If past_key_values
is used only the last hidden-state of the sequences of shape (batch_size, 1, hidden_size)
is output.
past_key_values (tuple(tuple(torch.FloatTensor))
, optional, returned when use_cache=True
is passed or when config.use_cache=True
) β Tuple of tuple(torch.FloatTensor)
of length config.n_layers
, with each tuple having 2 tensors of shape (batch_size, num_heads, sequence_length, embed_size_per_head)
) and 2 additional tensors of shape (batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used (see past_key_values
input) to speed up sequential decoding.
decoder_hidden_states (tuple(torch.FloatTensor)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) β Tuple of torch.FloatTensor
(one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size)
.
Hidden-states of the decoder at the output of each layer plus the optional initial embedding outputs.
decoder_attentions (tuple(torch.FloatTensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) β Tuple of torch.FloatTensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
cross_attentions (tuple(torch.FloatTensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) β Tuple of torch.FloatTensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the decoderβs cross-attention layer, after the attention softmax, used to compute the weighted average in the cross-attention heads.
encoder_last_hidden_state (torch.FloatTensor
of shape (batch_size, sequence_length, hidden_size)
, optional) β Sequence of hidden-states at the output of the last layer of the encoder of the model.
encoder_hidden_states (tuple(torch.FloatTensor)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) β Tuple of torch.FloatTensor
(one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size)
.
Hidden-states of the encoder at the output of each layer plus the optional initial embedding outputs.
encoder_attentions (tuple(torch.FloatTensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) β Tuple of torch.FloatTensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
The MarianModel forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.
Example:
Copied
( config: MarianConfig )
Parameters
config (MarianConfig) β Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.
The Marian Model with a language modeling head. Can be used for summarization. This model inherits from PreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)
This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
forward
( input_ids: LongTensor = Noneattention_mask: typing.Optional[torch.Tensor] = Nonedecoder_input_ids: typing.Optional[torch.LongTensor] = Nonedecoder_attention_mask: typing.Optional[torch.Tensor] = Nonehead_mask: typing.Optional[torch.Tensor] = Nonedecoder_head_mask: typing.Optional[torch.Tensor] = Nonecross_attn_head_mask: typing.Optional[torch.Tensor] = Noneencoder_outputs: typing.Union[typing.Tuple[torch.Tensor], transformers.modeling_outputs.BaseModelOutput, NoneType] = Nonepast_key_values: typing.Optional[typing.Tuple[typing.Tuple[torch.FloatTensor]]] = Noneinputs_embeds: typing.Optional[torch.FloatTensor] = Nonedecoder_inputs_embeds: typing.Optional[torch.FloatTensor] = Nonelabels: typing.Optional[torch.LongTensor] = Noneuse_cache: typing.Optional[bool] = Noneoutput_attentions: typing.Optional[bool] = Noneoutput_hidden_states: typing.Optional[bool] = Nonereturn_dict: typing.Optional[bool] = None ) β transformers.modeling_outputs.Seq2SeqLMOutput or tuple(torch.FloatTensor)
Parameters
input_ids (torch.LongTensor
of shape (batch_size, sequence_length)
) β Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it.
Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
attention_mask (torch.Tensor
of shape (batch_size, sequence_length)
, optional) β Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]
:
1 for tokens that are not masked,
0 for tokens that are masked.
decoder_input_ids (torch.LongTensor
of shape (batch_size, target_sequence_length)
, optional) β Indices of decoder input sequence tokens in the vocabulary.
Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
Marian uses the pad_token_id
as the starting token for decoder_input_ids
generation. If past_key_values
is used, optionally only the last decoder_input_ids
have to be input (see past_key_values
).
decoder_attention_mask (torch.LongTensor
of shape (batch_size, target_sequence_length)
, optional) β Default behavior: generate a tensor that ignores pad tokens in decoder_input_ids
. Causal mask will also be used by default.
head_mask (torch.Tensor
of shape (encoder_layers, encoder_attention_heads)
, optional) β Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in [0, 1]
:
1 indicates the head is not masked,
0 indicates the head is masked.
decoder_head_mask (torch.Tensor
of shape (decoder_layers, decoder_attention_heads)
, optional) β Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in [0, 1]
:
1 indicates the head is not masked,
0 indicates the head is masked.
cross_attn_head_mask (torch.Tensor
of shape (decoder_layers, decoder_attention_heads)
, optional) β Mask to nullify selected heads of the cross-attention modules in the decoder. Mask values selected in [0, 1]
:
1 indicates the head is not masked,
0 indicates the head is masked.
encoder_outputs (tuple(tuple(torch.FloatTensor)
, optional) β Tuple consists of (last_hidden_state
, optional: hidden_states
, optional: attentions
) last_hidden_state
of shape (batch_size, sequence_length, hidden_size)
, optional) is a sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.
past_key_values (tuple(tuple(torch.FloatTensor))
, optional, returned when use_cache=True
is passed or when config.use_cache=True
) β Tuple of tuple(torch.FloatTensor)
of length config.n_layers
, with each tuple having 2 tensors of shape (batch_size, num_heads, sequence_length, embed_size_per_head)
) and 2 additional tensors of shape (batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used (see past_key_values
input) to speed up sequential decoding.
If past_key_values
are used, the user can optionally input only the last decoder_input_ids
(those that donβt have their past key value states given to this model) of shape (batch_size, 1)
instead of all decoder_input_ids
of shape (batch_size, sequence_length)
.
inputs_embeds (torch.FloatTensor
of shape (batch_size, sequence_length, hidden_size)
, optional) β Optionally, instead of passing input_ids
you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids
indices into associated vectors than the modelβs internal embedding lookup matrix.
decoder_inputs_embeds (torch.FloatTensor
of shape (batch_size, target_sequence_length, hidden_size)
, optional) β Optionally, instead of passing decoder_input_ids
you can choose to directly pass an embedded representation. If past_key_values
is used, optionally only the last decoder_inputs_embeds
have to be input (see past_key_values
). This is useful if you want more control over how to convert decoder_input_ids
indices into associated vectors than the modelβs internal embedding lookup matrix.
If decoder_input_ids
and decoder_inputs_embeds
are both unset, decoder_inputs_embeds
takes the value of inputs_embeds
.
use_cache (bool
, optional) β If set to True
, past_key_values
key value states are returned and can be used to speed up decoding (see past_key_values
).
output_attentions (bool
, optional) β Whether or not to return the attentions tensors of all attention layers. See attentions
under returned tensors for more detail.
output_hidden_states (bool
, optional) β Whether or not to return the hidden states of all layers. See hidden_states
under returned tensors for more detail.
return_dict (bool
, optional) β Whether or not to return a ModelOutput instead of a plain tuple.
labels (torch.LongTensor
of shape (batch_size, sequence_length)
, optional) β Labels for computing the masked language modeling loss. Indices should either be in [0, ..., config.vocab_size]
or -100 (see input_ids
docstring). Tokens with indices set to -100
are ignored (masked), the loss is only computed for the tokens with labels in [0, ..., config.vocab_size]
.
Returns
transformers.modeling_outputs.Seq2SeqLMOutput or tuple(torch.FloatTensor)
A transformers.modeling_outputs.Seq2SeqLMOutput or a tuple of torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various elements depending on the configuration (MarianConfig) and inputs.
loss (torch.FloatTensor
of shape (1,)
, optional, returned when labels
is provided) β Language modeling loss.
logits (torch.FloatTensor
of shape (batch_size, sequence_length, config.vocab_size)
) β Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
past_key_values (tuple(tuple(torch.FloatTensor))
, optional, returned when use_cache=True
is passed or when config.use_cache=True
) β Tuple of tuple(torch.FloatTensor)
of length config.n_layers
, with each tuple having 2 tensors of shape (batch_size, num_heads, sequence_length, embed_size_per_head)
) and 2 additional tensors of shape (batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used (see past_key_values
input) to speed up sequential decoding.
decoder_hidden_states (tuple(torch.FloatTensor)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) β Tuple of torch.FloatTensor
(one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size)
.
Hidden-states of the decoder at the output of each layer plus the initial embedding outputs.
decoder_attentions (tuple(torch.FloatTensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) β Tuple of torch.FloatTensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
cross_attentions (tuple(torch.FloatTensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) β Tuple of torch.FloatTensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the decoderβs cross-attention layer, after the attention softmax, used to compute the weighted average in the cross-attention heads.
encoder_last_hidden_state (torch.FloatTensor
of shape (batch_size, sequence_length, hidden_size)
, optional) β Sequence of hidden-states at the output of the last layer of the encoder of the model.
encoder_hidden_states (tuple(torch.FloatTensor)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) β Tuple of torch.FloatTensor
(one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size)
.
Hidden-states of the encoder at the output of each layer plus the initial embedding outputs.
encoder_attentions (tuple(torch.FloatTensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) β Tuple of torch.FloatTensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
The MarianMTModel forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.
Pytorch version of marian-nmtβs transformer.h (c++). Designed for the OPUS-NMT translation checkpoints. Available models are listed here.
Examples:
Copied
( config )
forward
( input_ids: LongTensor = Noneattention_mask: typing.Optional[torch.Tensor] = Noneencoder_hidden_states: typing.Optional[torch.FloatTensor] = Noneencoder_attention_mask: typing.Optional[torch.FloatTensor] = Nonehead_mask: typing.Optional[torch.Tensor] = Nonecross_attn_head_mask: typing.Optional[torch.Tensor] = Nonepast_key_values: typing.Optional[typing.List[torch.FloatTensor]] = Noneinputs_embeds: typing.Optional[torch.FloatTensor] = Nonelabels: typing.Optional[torch.LongTensor] = Noneuse_cache: typing.Optional[bool] = Noneoutput_attentions: typing.Optional[bool] = Noneoutput_hidden_states: typing.Optional[bool] = Nonereturn_dict: typing.Optional[bool] = None ) β transformers.modeling_outputs.CausalLMOutputWithCrossAttentions or tuple(torch.FloatTensor)
Parameters
input_ids (torch.LongTensor
of shape (batch_size, sequence_length)
) β Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it.
Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
attention_mask (torch.Tensor
of shape (batch_size, sequence_length)
, optional) β Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]
:
1 for tokens that are not masked,
0 for tokens that are masked.
encoder_hidden_states (torch.FloatTensor
of shape (batch_size, sequence_length, hidden_size)
, optional) β Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder.
encoder_attention_mask (torch.FloatTensor
of shape (batch_size, sequence_length)
, optional) β Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in [0, 1]
:
head_mask (torch.Tensor
of shape (decoder_layers, decoder_attention_heads)
, optional) β Mask to nullify selected heads of the attention modules. Mask values selected in [0, 1]
:
1 indicates the head is not masked,
0 indicates the head is masked.
cross_attn_head_mask (torch.Tensor
of shape (decoder_layers, decoder_attention_heads)
, optional) β Mask to nullify selected heads of the cross-attention modules. Mask values selected in [0, 1]
:
1 indicates the head is not masked,
0 indicates the head is masked.
past_key_values (tuple(tuple(torch.FloatTensor))
, optional, returned when use_cache=True
is passed or when config.use_cache=True
) β Tuple of tuple(torch.FloatTensor)
of length config.n_layers
, with each tuple having 2 tensors of shape (batch_size, num_heads, sequence_length, embed_size_per_head)
) and 2 additional tensors of shape (batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
. The two additional tensors are only required when the model is used as a decoder in a Sequence to Sequence model.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used (see past_key_values
input) to speed up sequential decoding.
If past_key_values
are used, the user can optionally input only the last decoder_input_ids
(those that donβt have their past key value states given to this model) of shape (batch_size, 1)
instead of all decoder_input_ids
of shape (batch_size, sequence_length)
.
labels (torch.LongTensor
of shape (batch_size, sequence_length)
, optional) β Labels for computing the masked language modeling loss. Indices should either be in [0, ..., config.vocab_size]
or -100 (see input_ids
docstring). Tokens with indices set to -100
are ignored (masked), the loss is only computed for the tokens with labels in [0, ..., config.vocab_size]
.
use_cache (bool
, optional) β If set to True
, past_key_values
key value states are returned and can be used to speed up decoding (see past_key_values
).
1 for tokens that are not masked,
0 for tokens that are masked.
output_attentions (bool
, optional) β Whether or not to return the attentions tensors of all attention layers. See attentions
under returned tensors for more detail.
output_hidden_states (bool
, optional) β Whether or not to return the hidden states of all layers. See hidden_states
under returned tensors for more detail.
return_dict (bool
, optional) β Whether or not to return a ModelOutput instead of a plain tuple.
Returns
transformers.modeling_outputs.CausalLMOutputWithCrossAttentions or tuple(torch.FloatTensor)
A transformers.modeling_outputs.CausalLMOutputWithCrossAttentions or a tuple of torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various elements depending on the configuration (MarianConfig) and inputs.
loss (torch.FloatTensor
of shape (1,)
, optional, returned when labels
is provided) β Language modeling loss (for next-token prediction).
logits (torch.FloatTensor
of shape (batch_size, sequence_length, config.vocab_size)
) β Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
hidden_states (tuple(torch.FloatTensor)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) β Tuple of torch.FloatTensor
(one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size)
.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (tuple(torch.FloatTensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) β Tuple of torch.FloatTensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
cross_attentions (tuple(torch.FloatTensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) β Tuple of torch.FloatTensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Cross attentions weights after the attention softmax, used to compute the weighted average in the cross-attention heads.
past_key_values (tuple(tuple(torch.FloatTensor))
, optional, returned when use_cache=True
is passed or when config.use_cache=True
) β Tuple of torch.FloatTensor
tuples of length config.n_layers
, with each tuple containing the cached key, value states of the self-attention and the cross-attention layers if model is used in encoder-decoder setting. Only relevant if config.is_decoder = True
.
Contains pre-computed hidden-states (key and values in the attention blocks) that can be used (see past_key_values
input) to speed up sequential decoding.
Example:
Copied
( *args**kwargs )
Parameters
config (MarianConfig) β Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.
The bare MARIAN Model outputting raw hidden-states without any specific head on top. This model inherits from TFPreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)
This model is also a tf.keras.Model subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior.
TensorFlow models and layers in transformers
accept two formats as input:
having all inputs as keyword arguments (like PyTorch models), or
having all inputs as a list, tuple or dict in the first positional argument.
The reason the second format is supported is that Keras methods prefer this format when passing inputs to models and layers. Because of this support, when using methods like model.fit()
things should βjust workβ for you - just pass your inputs and labels in any format that model.fit()
supports! If, however, you want to use the second format outside of Keras methods like fit()
and predict()
, such as when creating your own layers or models with the Keras Functional
API, there are three possibilities you can use to gather all the input Tensors in the first positional argument:
a single Tensor with input_ids
only and nothing else: model(input_ids)
a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: model([input_ids, attention_mask])
or model([input_ids, attention_mask, token_type_ids])
a dictionary with one or several input Tensors associated to the input names given in the docstring: model({"input_ids": input_ids, "token_type_ids": token_type_ids})
Note that when creating models and layers with subclassing then you donβt need to worry about any of this, as you can just pass inputs like you would to any other Python function!
call
( input_ids: tf.Tensor | None = Noneattention_mask: tf.Tensor | None = Nonedecoder_input_ids: tf.Tensor | None = Nonedecoder_attention_mask: tf.Tensor | None = Nonedecoder_position_ids: tf.Tensor | None = Nonehead_mask: tf.Tensor | None = Nonedecoder_head_mask: tf.Tensor | None = Nonecross_attn_head_mask: tf.Tensor | None = Noneencoder_outputs: tf.Tensor | None = Nonepast_key_values: Tuple[Tuple[tf.Tensor]] | None = Noneinputs_embeds: tf.Tensor | None = Nonedecoder_inputs_embeds: tf.Tensor | None = Noneuse_cache: bool | None = Noneoutput_attentions: bool | None = Noneoutput_hidden_states: bool | None = Nonereturn_dict: bool | None = Nonetraining: bool = False**kwargs ) β transformers.modeling_tf_outputs.TFSeq2SeqModelOutput or tuple(tf.Tensor)
Parameters
input_ids (tf.Tensor
of shape (batch_size, sequence_length)
) β Indices of input sequence tokens in the vocabulary.
Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
attention_mask (tf.Tensor
of shape (batch_size, sequence_length)
, optional) β Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]
:
1 for tokens that are not masked,
0 for tokens that are masked.
decoder_input_ids (tf.Tensor
of shape (batch_size, target_sequence_length)
, optional) β Indices of decoder input sequence tokens in the vocabulary.
Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
Marian uses the pad_token_id
as the starting token for decoder_input_ids
generation. If past_key_values
is used, optionally only the last decoder_input_ids
have to be input (see past_key_values
).
decoder_attention_mask (tf.Tensor
of shape (batch_size, target_sequence_length)
, optional) β will be made by default and ignore pad tokens. It is not recommended to set this for most use cases.
decoder_position_ids (tf.Tensor
of shape (batch_size, sequence_length)
, optional) β Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1]
.
head_mask (tf.Tensor
of shape (encoder_layers, encoder_attention_heads)
, optional) β Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in [0, 1]
:
1 indicates the head is not masked,
0 indicates the head is masked.
decoder_head_mask (tf.Tensor
of shape (decoder_layers, decoder_attention_heads)
, optional) β Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in [0, 1]
:
1 indicates the head is not masked,
0 indicates the head is masked.
cross_attn_head_mask (tf.Tensor
of shape (decoder_layers, decoder_attention_heads)
, optional) β Mask to nullify selected heads of the cross-attention modules. Mask values selected in [0, 1]
:
1 indicates the head is not masked,
0 indicates the head is masked.
encoder_outputs (tf.FloatTensor
, optional) β hidden states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. of shape (batch_size, sequence_length, hidden_size)
is a sequence of
past_key_values (Tuple[Tuple[tf.Tensor]]
of length config.n_layers
) β contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If past_key_values
are used, the user can optionally input only the last decoder_input_ids
(those that donβt have their past key value states given to this model) of shape (batch_size, 1)
instead of all decoder_input_ids
of shape (batch_size, sequence_length)
.
use_cache (bool
, optional, defaults to True
) β If set to True
, past_key_values
key value states are returned and can be used to speed up decoding (see past_key_values
). Set to False
during training, True
during generation
output_attentions (bool
, optional) β Whether or not to return the attentions tensors of all attention layers. See attentions
under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead.
output_hidden_states (bool
, optional) β Whether or not to return the hidden states of all layers. See hidden_states
under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead.
return_dict (bool
, optional) β Whether or not to return a ModelOutput instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True.
training (bool
, optional, defaults to False
) β Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation).
Returns
transformers.modeling_tf_outputs.TFSeq2SeqModelOutput or tuple(tf.Tensor)
A transformers.modeling_tf_outputs.TFSeq2SeqModelOutput or a tuple of tf.Tensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various elements depending on the configuration (MarianConfig) and inputs.
last_hidden_state (tf.Tensor
of shape (batch_size, sequence_length, hidden_size)
) β Sequence of hidden-states at the output of the last layer of the decoder of the model.
If past_key_values
is used only the last hidden-state of the sequences of shape (batch_size, 1, hidden_size)
is output.
past_key_values (List[tf.Tensor]
, optional, returned when use_cache=True
is passed or when config.use_cache=True
) β List of tf.Tensor
of length config.n_layers
, with each tensor of shape (2, batch_size, num_heads, sequence_length, embed_size_per_head)
).
Contains pre-computed hidden-states (key and values in the attention blocks) of the decoder that can be used (see past_key_values
input) to speed up sequential decoding.
decoder_hidden_states (tuple(tf.Tensor)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) β Tuple of tf.Tensor
(one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size)
.
Hidden-states of the decoder at the output of each layer plus the initial embedding outputs.
decoder_attentions (tuple(tf.Tensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) β Tuple of tf.Tensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
cross_attentions (tuple(tf.Tensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) β Tuple of tf.Tensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the decoderβs cross-attention layer, after the attention softmax, used to compute the weighted average in the cross-attention heads.
encoder_last_hidden_state (tf.Tensor
of shape (batch_size, sequence_length, hidden_size)
, optional) β Sequence of hidden-states at the output of the last layer of the encoder of the model.
encoder_hidden_states (tuple(tf.Tensor)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) β Tuple of tf.Tensor
(one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size)
.
Hidden-states of the encoder at the output of each layer plus the initial embedding outputs.
encoder_attentions (tuple(tf.Tensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) β Tuple of tf.Tensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
The TFMarianModel forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.
Example:
Copied
( *args**kwargs )
Parameters
config (MarianConfig) β Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.
The MARIAN Model with a language modeling head. Can be used for summarization. This model inherits from TFPreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)
This model is also a tf.keras.Model subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior.
TensorFlow models and layers in transformers
accept two formats as input:
having all inputs as keyword arguments (like PyTorch models), or
having all inputs as a list, tuple or dict in the first positional argument.
The reason the second format is supported is that Keras methods prefer this format when passing inputs to models and layers. Because of this support, when using methods like model.fit()
things should βjust workβ for you - just pass your inputs and labels in any format that model.fit()
supports! If, however, you want to use the second format outside of Keras methods like fit()
and predict()
, such as when creating your own layers or models with the Keras Functional
API, there are three possibilities you can use to gather all the input Tensors in the first positional argument:
a single Tensor with input_ids
only and nothing else: model(input_ids)
a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: model([input_ids, attention_mask])
or model([input_ids, attention_mask, token_type_ids])
a dictionary with one or several input Tensors associated to the input names given in the docstring: model({"input_ids": input_ids, "token_type_ids": token_type_ids})
Note that when creating models and layers with subclassing then you donβt need to worry about any of this, as you can just pass inputs like you would to any other Python function!
call
( input_ids: tf.Tensor | None = Noneattention_mask: tf.Tensor | None = Nonedecoder_input_ids: tf.Tensor | None = Nonedecoder_attention_mask: tf.Tensor | None = Nonedecoder_position_ids: tf.Tensor | None = Nonehead_mask: tf.Tensor | None = Nonedecoder_head_mask: tf.Tensor | None = Nonecross_attn_head_mask: tf.Tensor | None = Noneencoder_outputs: TFBaseModelOutput | None = Nonepast_key_values: Tuple[Tuple[tf.Tensor]] | None = Noneinputs_embeds: tf.Tensor | None = Nonedecoder_inputs_embeds: tf.Tensor | None = Noneuse_cache: bool | None = Noneoutput_attentions: bool | None = Noneoutput_hidden_states: bool | None = Nonereturn_dict: bool | None = Nonelabels: tf.Tensor | None = Nonetraining: bool = False ) β transformers.modeling_tf_outputs.TFSeq2SeqLMOutput or tuple(tf.Tensor)
Parameters
input_ids (tf.Tensor
of shape ({0})
) β Indices of input sequence tokens in the vocabulary.
Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
attention_mask (tf.Tensor
of shape ({0})
, optional) β Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]
:
1 for tokens that are not masked,
0 for tokens that are masked.
decoder_input_ids (tf.Tensor
of shape (batch_size, target_sequence_length)
, optional) β Indices of decoder input sequence tokens in the vocabulary.
Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
Marian uses the pad_token_id
as the starting token for decoder_input_ids
generation. If past_key_values
is used, optionally only the last decoder_input_ids
have to be input (see past_key_values
).
decoder_attention_mask (tf.Tensor
of shape (batch_size, target_sequence_length)
, optional) β will be made by default and ignore pad tokens. It is not recommended to set this for most use cases.
decoder_position_ids (tf.Tensor
of shape (batch_size, sequence_length)
, optional) β Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1]
.
head_mask (tf.Tensor
of shape (encoder_layers, encoder_attention_heads)
, optional) β Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in [0, 1]
:
1 indicates the head is not masked,
0 indicates the head is masked.
decoder_head_mask (tf.Tensor
of shape (decoder_layers, decoder_attention_heads)
, optional) β Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in [0, 1]
:
1 indicates the head is not masked,
0 indicates the head is masked.
cross_attn_head_mask (tf.Tensor
of shape (decoder_layers, decoder_attention_heads)
, optional) β Mask to nullify selected heads of the cross-attention modules. Mask values selected in [0, 1]
:
1 indicates the head is not masked,
0 indicates the head is masked.
encoder_outputs (tf.FloatTensor
, optional) β hidden states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. of shape (batch_size, sequence_length, hidden_size)
is a sequence of
past_key_values (Tuple[Tuple[tf.Tensor]]
of length config.n_layers
) β contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If past_key_values
are used, the user can optionally input only the last decoder_input_ids
(those that donβt have their past key value states given to this model) of shape (batch_size, 1)
instead of all decoder_input_ids
of shape (batch_size, sequence_length)
.
use_cache (bool
, optional, defaults to True
) β If set to True
, past_key_values
key value states are returned and can be used to speed up decoding (see past_key_values
). Set to False
during training, True
during generation
output_attentions (bool
, optional) β Whether or not to return the attentions tensors of all attention layers. See attentions
under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead.
output_hidden_states (bool
, optional) β Whether or not to return the hidden states of all layers. See hidden_states
under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead.
return_dict (bool
, optional) β Whether or not to return a ModelOutput instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True.
training (bool
, optional, defaults to False
) β Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation).
labels (tf.tensor
of shape (batch_size, sequence_length)
, optional) β Labels for computing the masked language modeling loss. Indices should either be in [0, ..., config.vocab_size]
or -100 (see input_ids
docstring). Tokens with indices set to -100
are ignored (masked), the loss is only computed for the tokens with labels in [0, ..., config.vocab_size]
.
Returns
transformers.modeling_tf_outputs.TFSeq2SeqLMOutput or tuple(tf.Tensor)
A transformers.modeling_tf_outputs.TFSeq2SeqLMOutput or a tuple of tf.Tensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various elements depending on the configuration (MarianConfig) and inputs.
loss (tf.Tensor
of shape (n,)
, optional, where n is the number of non-masked labels, returned when labels
is provided) β Language modeling loss.
logits (tf.Tensor
of shape (batch_size, sequence_length, config.vocab_size)
) β Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
past_key_values (List[tf.Tensor]
, optional, returned when use_cache=True
is passed or when config.use_cache=True
) β List of tf.Tensor
of length config.n_layers
, with each tensor of shape (2, batch_size, num_heads, sequence_length, embed_size_per_head)
).
Contains pre-computed hidden-states (key and values in the attention blocks) of the decoder that can be used (see past_key_values
input) to speed up sequential decoding.
decoder_hidden_states (tuple(tf.Tensor)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) β Tuple of tf.Tensor
(one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size)
.
Hidden-states of the decoder at the output of each layer plus the initial embedding outputs.
decoder_attentions (tuple(tf.Tensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) β Tuple of tf.Tensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
cross_attentions (tuple(tf.Tensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) β Tuple of tf.Tensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the decoderβs cross-attention layer, after the attention softmax, used to compute the weighted average in the cross-attention heads.
encoder_last_hidden_state (tf.Tensor
of shape (batch_size, sequence_length, hidden_size)
, optional) β Sequence of hidden-states at the output of the last layer of the encoder of the model.
encoder_hidden_states (tuple(tf.Tensor)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) β Tuple of tf.Tensor
(one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size)
.
Hidden-states of the encoder at the output of each layer plus the initial embedding outputs.
encoder_attentions (tuple(tf.Tensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) β Tuple of tf.Tensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
The TFMarianMTModel forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.
TF version of marian-nmtβs transformer.h (c++). Designed for the OPUS-NMT translation checkpoints. Available models are listed here.
Examples:
Copied
( config: MarianConfiginput_shape: typing.Tuple[int] = (1, 1)seed: int = 0dtype: dtype = <class 'jax.numpy.float32'>_do_init: bool = True**kwargs )
Parameters
config (MarianConfig) β Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.
dtype (jax.numpy.dtype
, optional, defaults to jax.numpy.float32
) β The data type of the computation. Can be one of jax.numpy.float32
, jax.numpy.float16
(on GPUs) and jax.numpy.bfloat16
(on TPUs).
This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If specified all the computation will be performed with the given dtype
.
Note that this only specifies the dtype of the computation and does not influence the dtype of model parameters.
If you wish to change the dtype of the model parameters, see to_fp16() and to_bf16().
The bare Marian Model transformer outputting raw hidden-states without any specific head on top. This model inherits from FlaxPreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)
This model is also a Flax Linen flax.nn.Module subclass. Use it as a regular Flax Module and refer to the Flax documentation for all matter related to general usage and behavior.
Finally, this model supports inherent JAX features such as:
__call__
( input_ids: Arrayattention_mask: typing.Optional[jax.Array] = Nonedecoder_input_ids: typing.Optional[jax.Array] = Nonedecoder_attention_mask: typing.Optional[jax.Array] = Noneposition_ids: typing.Optional[jax.Array] = Nonedecoder_position_ids: typing.Optional[jax.Array] = Noneoutput_attentions: typing.Optional[bool] = Noneoutput_hidden_states: typing.Optional[bool] = Nonereturn_dict: typing.Optional[bool] = Nonetrain: bool = Falseparams: dict = Nonedropout_rng: PRNGKey = None ) β transformers.modeling_flax_outputs.FlaxSeq2SeqModelOutput or tuple(torch.FloatTensor)
Parameters
input_ids (jnp.ndarray
of shape (batch_size, sequence_length)
) β Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it.
Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
attention_mask (jnp.ndarray
of shape (batch_size, sequence_length)
, optional) β Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]
:
1 for tokens that are not masked,
0 for tokens that are masked.
decoder_input_ids (jnp.ndarray
of shape (batch_size, target_sequence_length)
, optional) β Indices of decoder input sequence tokens in the vocabulary.
Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
For translation and summarization training, decoder_input_ids
should be provided. If no decoder_input_ids
is provided, the model will create this tensor by shifting the input_ids
to the right for denoising pre-training following the paper.
decoder_attention_mask (jnp.ndarray
of shape (batch_size, target_sequence_length)
, optional) β Default behavior: generate a tensor that ignores pad tokens in decoder_input_ids
. Causal mask will also be used by default.
If you want to change padding behavior, you should modify to your needs. See diagram 1 in the paper for more information on the default strategy.
position_ids (numpy.ndarray
of shape (batch_size, sequence_length)
, optional) β Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1]
.
decoder_position_ids (numpy.ndarray
of shape (batch_size, sequence_length)
, optional) β Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1]
.
output_attentions (bool
, optional) β Whether or not to return the attentions tensors of all attention layers. See attentions
under returned tensors for more detail.
output_hidden_states (bool
, optional) β Whether or not to return the hidden states of all layers. See hidden_states
under returned tensors for more detail.
return_dict (bool
, optional) β Whether or not to return a ModelOutput instead of a plain tuple.
Returns
transformers.modeling_flax_outputs.FlaxSeq2SeqModelOutput or tuple(torch.FloatTensor)
A transformers.modeling_flax_outputs.FlaxSeq2SeqModelOutput or a tuple of torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various elements depending on the configuration (MarianConfig) and inputs.
last_hidden_state (jnp.ndarray
of shape (batch_size, sequence_length, hidden_size)
) β Sequence of hidden-states at the output of the last layer of the decoder of the model.
If past_key_values
is used only the last hidden-state of the sequences of shape (batch_size, 1, hidden_size)
is output.
past_key_values (tuple(tuple(jnp.ndarray))
, optional, returned when use_cache=True
is passed or when config.use_cache=True
) β Tuple of tuple(jnp.ndarray)
of length config.n_layers
, with each tuple having 2 tensors of shape (batch_size, num_heads, sequence_length, embed_size_per_head)
) and 2 additional tensors of shape (batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used (see past_key_values
input) to speed up sequential decoding.
decoder_hidden_states (tuple(jnp.ndarray)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) β Tuple of jnp.ndarray
(one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size)
.
Hidden-states of the decoder at the output of each layer plus the initial embedding outputs.
decoder_attentions (tuple(jnp.ndarray)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) β Tuple of jnp.ndarray
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
cross_attentions (tuple(jnp.ndarray)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) β Tuple of jnp.ndarray
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the decoderβs cross-attention layer, after the attention softmax, used to compute the weighted average in the cross-attention heads.
encoder_last_hidden_state (jnp.ndarray
of shape (batch_size, sequence_length, hidden_size)
, optional) β Sequence of hidden-states at the output of the last layer of the encoder of the model.
encoder_hidden_states (tuple(jnp.ndarray)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) β Tuple of jnp.ndarray
(one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size)
.
Hidden-states of the encoder at the output of each layer plus the initial embedding outputs.
encoder_attentions (tuple(jnp.ndarray)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) β Tuple of jnp.ndarray
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
The FlaxMarianPreTrainedModel
forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.
Example:
Copied
( config: MarianConfiginput_shape: typing.Tuple[int] = (1, 1)seed: int = 0dtype: dtype = <class 'jax.numpy.float32'>_do_init: bool = True**kwargs )
Parameters
config (MarianConfig) β Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.
dtype (jax.numpy.dtype
, optional, defaults to jax.numpy.float32
) β The data type of the computation. Can be one of jax.numpy.float32
, jax.numpy.float16
(on GPUs) and jax.numpy.bfloat16
(on TPUs).
This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If specified all the computation will be performed with the given dtype
.
Note that this only specifies the dtype of the computation and does not influence the dtype of model parameters.
If you wish to change the dtype of the model parameters, see to_fp16() and to_bf16().
The MARIAN Model with a language modeling head. Can be used for translation. This model inherits from FlaxPreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)
This model is also a Flax Linen flax.nn.Module subclass. Use it as a regular Flax Module and refer to the Flax documentation for all matter related to general usage and behavior.
Finally, this model supports inherent JAX features such as:
__call__
( input_ids: Arrayattention_mask: typing.Optional[jax.Array] = Nonedecoder_input_ids: typing.Optional[jax.Array] = Nonedecoder_attention_mask: typing.Optional[jax.Array] = Noneposition_ids: typing.Optional[jax.Array] = Nonedecoder_position_ids: typing.Optional[jax.Array] = Noneoutput_attentions: typing.Optional[bool] = Noneoutput_hidden_states: typing.Optional[bool] = Nonereturn_dict: typing.Optional[bool] = Nonetrain: bool = Falseparams: dict = Nonedropout_rng: PRNGKey = None ) β transformers.modeling_flax_outputs.FlaxSeq2SeqLMOutput or tuple(torch.FloatTensor)
Parameters
input_ids (jnp.ndarray
of shape (batch_size, sequence_length)
) β Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it.
Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
attention_mask (jnp.ndarray
of shape (batch_size, sequence_length)
, optional) β Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]
:
1 for tokens that are not masked,
0 for tokens that are masked.
decoder_input_ids (jnp.ndarray
of shape (batch_size, target_sequence_length)
, optional) β Indices of decoder input sequence tokens in the vocabulary.
Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
For translation and summarization training, decoder_input_ids
should be provided. If no decoder_input_ids
is provided, the model will create this tensor by shifting the input_ids
to the right for denoising pre-training following the paper.
decoder_attention_mask (jnp.ndarray
of shape (batch_size, target_sequence_length)
, optional) β Default behavior: generate a tensor that ignores pad tokens in decoder_input_ids
. Causal mask will also be used by default.
If you want to change padding behavior, you should modify to your needs. See diagram 1 in the paper for more information on the default strategy.
position_ids (numpy.ndarray
of shape (batch_size, sequence_length)
, optional) β Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1]
.
decoder_position_ids (numpy.ndarray
of shape (batch_size, sequence_length)
, optional) β Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1]
.
output_attentions (bool
, optional) β Whether or not to return the attentions tensors of all attention layers. See attentions
under returned tensors for more detail.
output_hidden_states (bool
, optional) β Whether or not to return the hidden states of all layers. See hidden_states
under returned tensors for more detail.
return_dict (bool
, optional) β Whether or not to return a ModelOutput instead of a plain tuple.
Returns
transformers.modeling_flax_outputs.FlaxSeq2SeqLMOutput or tuple(torch.FloatTensor)
A transformers.modeling_flax_outputs.FlaxSeq2SeqLMOutput or a tuple of torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various elements depending on the configuration (MarianConfig) and inputs.
logits (jnp.ndarray
of shape (batch_size, sequence_length, config.vocab_size)
) β Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
past_key_values (tuple(tuple(jnp.ndarray))
, optional, returned when use_cache=True
is passed or when config.use_cache=True
) β Tuple of tuple(jnp.ndarray)
of length config.n_layers
, with each tuple having 2 tensors of shape (batch_size, num_heads, sequence_length, embed_size_per_head)
) and 2 additional tensors of shape (batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used (see past_key_values
input) to speed up sequential decoding.
decoder_hidden_states (tuple(jnp.ndarray)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) β Tuple of jnp.ndarray
(one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size)
.
Hidden-states of the decoder at the output of each layer plus the initial embedding outputs.
decoder_attentions (tuple(jnp.ndarray)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) β Tuple of jnp.ndarray
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
cross_attentions (tuple(jnp.ndarray)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) β Tuple of jnp.ndarray
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the decoderβs cross-attention layer, after the attention softmax, used to compute the weighted average in the cross-attention heads.
encoder_last_hidden_state (jnp.ndarray
of shape (batch_size, sequence_length, hidden_size)
, optional) β Sequence of hidden-states at the output of the last layer of the encoder of the model.
encoder_hidden_states (tuple(jnp.ndarray)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) β Tuple of jnp.ndarray
(one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size)
.
Hidden-states of the encoder at the output of each layer plus the initial embedding outputs.
encoder_attentions (tuple(jnp.ndarray)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) β Tuple of jnp.ndarray
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
The FlaxMarianPreTrainedModel
forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.
Example:
Copied