DeiT
Last updated
Last updated
This is a recently introduced model so the API hasn’t been tested extensively. There may be some bugs or slight breaking changes to fix it in the future. If you see something strange, file a .
The DeiT model was proposed in by Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, Hervé Jégou. The introduced in has shown that one can match or even outperform existing convolutional neural networks using a Transformer encoder (BERT-like). However, the ViT models introduced in that paper required training on expensive infrastructure for multiple weeks, using external data. DeiT (data-efficient image transformers) are more efficiently trained transformers for image classification, requiring far less data and far less computing resources compared to the original ViT models.
The abstract from the paper is the following:
Recently, neural networks purely based on attention were shown to address image understanding tasks such as image classification. However, these visual transformers are pre-trained with hundreds of millions of images using an expensive infrastructure, thereby limiting their adoption. In this work, we produce a competitive convolution-free transformer by training on Imagenet only. We train them on a single computer in less than 3 days. Our reference vision transformer (86M parameters) achieves top-1 accuracy of 83.1% (single-crop evaluation) on ImageNet with no external data. More importantly, we introduce a teacher-student strategy specific to transformers. It relies on a distillation token ensuring that the student learns from the teacher through attention. We show the interest of this token-based distillation, especially when using a convnet as a teacher. This leads us to report results competitive with convnets for both Imagenet (where we obtain up to 85.2% accuracy) and when transferring to other tasks. We share our code and models.
Tips:
Compared to ViT, DeiT models use a so-called distillation token to effectively learn from a teacher (which, in the DeiT paper, is a ResNet like-model). The distillation token is learned through backpropagation, by interacting with the class ([CLS]) and patch tokens through the self-attention layers.
There are 2 ways to fine-tune distilled models, either (1) in a classic way, by only placing a prediction head on top of the final hidden state of the class token and not using the distillation signal, or (2) by placing both a prediction head on top of the class token and on top of the distillation token. In that case, the [CLS] prediction head is trained using regular cross-entropy between the prediction of the head and the ground-truth label, while the distillation prediction head is trained using hard distillation (cross-entropy between the prediction of the distillation head and the label predicted by the teacher). At inference time, one takes the average prediction between both heads as final prediction. (2) is also called “fine-tuning with distillation”, because one relies on a teacher that has already been fine-tuned on the downstream dataset. In terms of models, (1) corresponds to and (2) corresponds to .
Note that the authors also did try soft distillation for (2) (in which case the distillation prediction head is trained using KL divergence to match the softmax output of the teacher), but hard distillation gave the best results.
All released checkpoints were pre-trained and fine-tuned on ImageNet-1k only. No external data was used. This is in contrast with the original ViT model, which used external data like the JFT-300M dataset/Imagenet-21k for pre-training.
The authors of DeiT also released more efficiently trained ViT models, which you can directly plug into or . Techniques like data augmentation, optimization, and regularization were used in order to simulate training on a much larger dataset (while only using ImageNet-1k for pre-training). There are 4 variants available (in 3 different sizes): facebook/deit-tiny-patch16-224, facebook/deit-small-patch16-224, facebook/deit-base-patch16-224 and facebook/deit-base-patch16-384. Note that one should use in order to prepare images for the model.
This model was contributed by . The TensorFlow version of this model was added by .
A list of official BOINC AI and community (indicated by 🌎) resources to help you get started with DeiT.
Image Classification
Besides that:
If you’re interested in submitting a resource to be included here, please feel free to open a Pull Request and we’ll review it! The resource should ideally demonstrate something new instead of duplicating an existing resource.
( hidden_size = 768num_hidden_layers = 12num_attention_heads = 12intermediate_size = 3072hidden_act = 'gelu'hidden_dropout_prob = 0.0attention_probs_dropout_prob = 0.0initializer_range = 0.02layer_norm_eps = 1e-12image_size = 224patch_size = 16num_channels = 3qkv_bias = Trueencoder_stride = 16**kwargs )
Parameters
hidden_size (int
, optional, defaults to 768) — Dimensionality of the encoder layers and the pooler layer.
num_hidden_layers (int
, optional, defaults to 12) — Number of hidden layers in the Transformer encoder.
num_attention_heads (int
, optional, defaults to 12) — Number of attention heads for each attention layer in the Transformer encoder.
intermediate_size (int
, optional, defaults to 3072) — Dimensionality of the “intermediate” (i.e., feed-forward) layer in the Transformer encoder.
hidden_act (str
or function
, optional, defaults to "gelu"
) — The non-linear activation function (function or string) in the encoder and pooler. If string, "gelu"
, "relu"
, "selu"
and "gelu_new"
are supported.
hidden_dropout_prob (float
, optional, defaults to 0.1) — The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler.
attention_probs_dropout_prob (float
, optional, defaults to 0.1) — The dropout ratio for the attention probabilities.
initializer_range (float
, optional, defaults to 0.02) — The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (float
, optional, defaults to 1e-12) — The epsilon used by the layer normalization layers.
image_size (int
, optional, defaults to 224
) — The size (resolution) of each image.
patch_size (int
, optional, defaults to 16
) — The size (resolution) of each patch.
num_channels (int
, optional, defaults to 3
) — The number of input channels.
qkv_bias (bool
, optional, defaults to True
) — Whether to add a bias to the queries, keys and values.
encoder_stride (int
, optional
, defaults to 16) — Factor to increase the spatial resolution by in the decoder head for masked image modeling.
Example:
Copied
( *args**kwargs )
__call__
( images**kwargs )
Preprocess an image or a batch of images.
( do_resize: bool = Truesize: typing.Dict[str, int] = Noneresample: Resampling = 3do_center_crop: bool = Truecrop_size: typing.Dict[str, int] = Nonerescale_factor: typing.Union[int, float] = 0.00392156862745098do_rescale: bool = Truedo_normalize: bool = Trueimage_mean: typing.Union[float, typing.List[float], NoneType] = Noneimage_std: typing.Union[float, typing.List[float], NoneType] = None**kwargs )
Parameters
do_resize (bool
, optional, defaults to True
) — Whether to resize the image’s (height, width) dimensions to the specified size
. Can be overridden by do_resize
in preprocess
.
size (Dict[str, int]
optional, defaults to {"height" -- 256, "width": 256}
): Size of the image after resize
. Can be overridden by size
in preprocess
.
resample (PILImageResampling
filter, optional, defaults to PILImageResampling.BICUBIC
) — Resampling filter to use if resizing the image. Can be overridden by resample
in preprocess
.
do_center_crop (bool
, optional, defaults to True
) — Whether to center crop the image. If the input size is smaller than crop_size
along any edge, the image is padded with 0’s and then center cropped. Can be overridden by do_center_crop
in preprocess
.
crop_size (Dict[str, int]
, optional, defaults to {"height" -- 224, "width": 224}
): Desired output size when applying center-cropping. Can be overridden by crop_size
in preprocess
.
do_rescale (bool
, optional, defaults to True
) — Whether to rescale the image by the specified scale rescale_factor
. Can be overridden by the do_rescale
parameter in the preprocess
method.
rescale_factor (int
or float
, optional, defaults to 1/255
) — Scale factor to use if rescaling the image. Can be overridden by the rescale_factor
parameter in the preprocess
method.
do_normalize (bool
, optional, defaults to True
) — Whether to normalize the image. Can be overridden by the do_normalize
parameter in the preprocess
method.
image_mean (float
or List[float]
, optional, defaults to IMAGENET_STANDARD_MEAN
) — Mean to use if normalizing the image. This is a float or list of floats the length of the number of channels in the image. Can be overridden by the image_mean
parameter in the preprocess
method.
image_std (float
or List[float]
, optional, defaults to IMAGENET_STANDARD_STD
) — Standard deviation to use if normalizing the image. This is a float or list of floats the length of the number of channels in the image. Can be overridden by the image_std
parameter in the preprocess
method.
Constructs a DeiT image processor.
preprocess
( images: typing.Union[ForwardRef('PIL.Image.Image'), numpy.ndarray, ForwardRef('torch.Tensor'), typing.List[ForwardRef('PIL.Image.Image')], typing.List[numpy.ndarray], typing.List[ForwardRef('torch.Tensor')]]do_resize: bool = Nonesize: typing.Dict[str, int] = Noneresample = Nonedo_center_crop: bool = Nonecrop_size: typing.Dict[str, int] = Nonedo_rescale: bool = Nonerescale_factor: float = Nonedo_normalize: bool = Noneimage_mean: typing.Union[float, typing.List[float], NoneType] = Noneimage_std: typing.Union[float, typing.List[float], NoneType] = Nonereturn_tensors: typing.Union[str, transformers.utils.generic.TensorType, NoneType] = Nonedata_format: ChannelDimension = <ChannelDimension.FIRST: 'channels_first'>input_data_format: typing.Union[str, transformers.image_utils.ChannelDimension, NoneType] = None**kwargs )
Parameters
images (ImageInput
) — Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If passing in images with pixel values between 0 and 1, set do_rescale=False
.
do_resize (bool
, optional, defaults to self.do_resize
) — Whether to resize the image.
size (Dict[str, int]
, optional, defaults to self.size
) — Size of the image after resize
.
resample (PILImageResampling
, optional, defaults to self.resample
) — PILImageResampling filter to use if resizing the image Only has an effect if do_resize
is set to True
.
do_center_crop (bool
, optional, defaults to self.do_center_crop
) — Whether to center crop the image.
crop_size (Dict[str, int]
, optional, defaults to self.crop_size
) — Size of the image after center crop. If one edge the image is smaller than crop_size
, it will be padded with zeros and then cropped
do_rescale (bool
, optional, defaults to self.do_rescale
) — Whether to rescale the image values between [0 - 1].
rescale_factor (float
, optional, defaults to self.rescale_factor
) — Rescale factor to rescale the image by if do_rescale
is set to True
.
do_normalize (bool
, optional, defaults to self.do_normalize
) — Whether to normalize the image.
image_mean (float
or List[float]
, optional, defaults to self.image_mean
) — Image mean.
image_std (float
or List[float]
, optional, defaults to self.image_std
) — Image standard deviation.
return_tensors (str
or TensorType
, optional) — The type of tensors to return. Can be one of:
None
: Return a list of np.ndarray
.
TensorType.TENSORFLOW
or 'tf'
: Return a batch of type tf.Tensor
.
TensorType.PYTORCH
or 'pt'
: Return a batch of type torch.Tensor
.
TensorType.NUMPY
or 'np'
: Return a batch of type np.ndarray
.
TensorType.JAX
or 'jax'
: Return a batch of type jax.numpy.ndarray
.
data_format (ChannelDimension
or str
, optional, defaults to ChannelDimension.FIRST
) — The channel dimension format for the output image. Can be one of:
ChannelDimension.FIRST
: image in (num_channels, height, width) format.
ChannelDimension.LAST
: image in (height, width, num_channels) format.
input_data_format (ChannelDimension
or str
, optional) — The channel dimension format for the input image. If unset, the channel dimension format is inferred from the input image. Can be one of:
"channels_first"
or ChannelDimension.FIRST
: image in (num_channels, height, width) format.
"channels_last"
or ChannelDimension.LAST
: image in (height, width, num_channels) format.
"none"
or ChannelDimension.NONE
: image in (height, width) format.
Preprocess an image or batch of images.
( config: DeiTConfigadd_pooling_layer: bool = Trueuse_mask_token: bool = False )
Parameters
forward
Parameters
head_mask (torch.FloatTensor
of shape (num_heads,)
or (num_layers, num_heads)
, optional) — Mask to nullify selected heads of the self-attention modules. Mask values selected in [0, 1]
:
1 indicates the head is not masked,
0 indicates the head is masked.
output_attentions (bool
, optional) — Whether or not to return the attentions tensors of all attention layers. See attentions
under returned tensors for more detail.
output_hidden_states (bool
, optional) — Whether or not to return the hidden states of all layers. See hidden_states
under returned tensors for more detail.
bool_masked_pos (torch.BoolTensor
of shape (batch_size, num_patches)
, optional) — Boolean masked positions. Indicates which patches are masked (1) and which aren’t (0).
Returns
last_hidden_state (torch.FloatTensor
of shape (batch_size, sequence_length, hidden_size)
) — Sequence of hidden-states at the output of the last layer of the model.
pooler_output (torch.FloatTensor
of shape (batch_size, hidden_size)
) — Last layer hidden-state of the first token of the sequence (classification token) after further processing through the layers used for the auxiliary pretraining task. E.g. for BERT-family of models, this returns the classification token after processing through a linear layer and a tanh activation function. The linear layer weights are trained from the next sentence prediction (classification) objective during pretraining.
hidden_states (tuple(torch.FloatTensor)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of torch.FloatTensor
(one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size)
.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (tuple(torch.FloatTensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of torch.FloatTensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.
Example:
Copied
( config: DeiTConfig )
Parameters
forward
( pixel_values: typing.Optional[torch.Tensor] = Nonebool_masked_pos: typing.Optional[torch.BoolTensor] = Nonehead_mask: typing.Optional[torch.Tensor] = Noneoutput_attentions: typing.Optional[bool] = Noneoutput_hidden_states: typing.Optional[bool] = Nonereturn_dict: typing.Optional[bool] = None ) → transformers.modeling_outputs.MaskedImageModelingOutput
or tuple(torch.FloatTensor)
Parameters
head_mask (torch.FloatTensor
of shape (num_heads,)
or (num_layers, num_heads)
, optional) — Mask to nullify selected heads of the self-attention modules. Mask values selected in [0, 1]
:
1 indicates the head is not masked,
0 indicates the head is masked.
output_attentions (bool
, optional) — Whether or not to return the attentions tensors of all attention layers. See attentions
under returned tensors for more detail.
output_hidden_states (bool
, optional) — Whether or not to return the hidden states of all layers. See hidden_states
under returned tensors for more detail.
bool_masked_pos (torch.BoolTensor
of shape (batch_size, num_patches)
) — Boolean masked positions. Indicates which patches are masked (1) and which aren’t (0).
Returns
transformers.modeling_outputs.MaskedImageModelingOutput
or tuple(torch.FloatTensor)
loss (torch.FloatTensor
of shape (1,)
, optional, returned when bool_masked_pos
is provided) — Reconstruction loss.
reconstruction (torch.FloatTensor
of shape (batch_size, num_channels, height, width)
) — Reconstructed / completed images.
hidden_states (tuple(torch.FloatTensor)
, optional, returned when output_hidden_states=True
is passed or
when config.output_hidden_states=True
) — Tuple of torch.FloatTensor
(one for the output of the embeddings, if the model has an embedding layer, + one for the output of each stage) of shape (batch_size, sequence_length, hidden_size)
. Hidden-states (also called feature maps) of the model at the output of each stage.
attentions (tuple(torch.FloatTensor)
, optional, returned when output_attentions=True
is passed or when
config.output_attentions=True
): Tuple of torch.FloatTensor
(one for each layer) of shape (batch_size, num_heads, patch_size, sequence_length)
. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.
Examples:
Copied
( config: DeiTConfig )
Parameters
DeiT Model transformer with an image classification head on top (a linear layer on top of the final hidden state of the [CLS] token) e.g. for ImageNet.
forward
Parameters
head_mask (torch.FloatTensor
of shape (num_heads,)
or (num_layers, num_heads)
, optional) — Mask to nullify selected heads of the self-attention modules. Mask values selected in [0, 1]
:
1 indicates the head is not masked,
0 indicates the head is masked.
output_attentions (bool
, optional) — Whether or not to return the attentions tensors of all attention layers. See attentions
under returned tensors for more detail.
output_hidden_states (bool
, optional) — Whether or not to return the hidden states of all layers. See hidden_states
under returned tensors for more detail.
labels (torch.LongTensor
of shape (batch_size,)
, optional) — Labels for computing the image classification/regression loss. Indices should be in [0, ..., config.num_labels - 1]
. If config.num_labels == 1
a regression loss is computed (Mean-Square loss), If config.num_labels > 1
a classification loss is computed (Cross-Entropy).
Returns
loss (torch.FloatTensor
of shape (1,)
, optional, returned when labels
is provided) — Classification (or regression if config.num_labels==1) loss.
logits (torch.FloatTensor
of shape (batch_size, config.num_labels)
) — Classification (or regression if config.num_labels==1) scores (before SoftMax).
hidden_states (tuple(torch.FloatTensor)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of torch.FloatTensor
(one for the output of the embeddings, if the model has an embedding layer, + one for the output of each stage) of shape (batch_size, sequence_length, hidden_size)
. Hidden-states (also called feature maps) of the model at the output of each stage.
attentions (tuple(torch.FloatTensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of torch.FloatTensor
(one for each layer) of shape (batch_size, num_heads, patch_size, sequence_length)
.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.
Examples:
Copied
( config: DeiTConfig )
Parameters
DeiT Model transformer with image classification heads on top (a linear layer on top of the final hidden state of the [CLS] token and a linear layer on top of the final hidden state of the distillation token) e.g. for ImageNet.
.. warning::
This model supports inference-only. Fine-tuning with distillation (i.e. with a teacher) is not yet supported.
forward
( pixel_values: typing.Optional[torch.Tensor] = Nonehead_mask: typing.Optional[torch.Tensor] = Noneoutput_attentions: typing.Optional[bool] = Noneoutput_hidden_states: typing.Optional[bool] = Nonereturn_dict: typing.Optional[bool] = None ) → transformers.models.deit.modeling_deit.DeiTForImageClassificationWithTeacherOutput
or tuple(torch.FloatTensor)
Parameters
head_mask (torch.FloatTensor
of shape (num_heads,)
or (num_layers, num_heads)
, optional) — Mask to nullify selected heads of the self-attention modules. Mask values selected in [0, 1]
:
1 indicates the head is not masked,
0 indicates the head is masked.
output_attentions (bool
, optional) — Whether or not to return the attentions tensors of all attention layers. See attentions
under returned tensors for more detail.
output_hidden_states (bool
, optional) — Whether or not to return the hidden states of all layers. See hidden_states
under returned tensors for more detail.
Returns
transformers.models.deit.modeling_deit.DeiTForImageClassificationWithTeacherOutput
or tuple(torch.FloatTensor)
logits (torch.FloatTensor
of shape (batch_size, config.num_labels)
) — Prediction scores as the average of the cls_logits and distillation logits.
cls_logits (torch.FloatTensor
of shape (batch_size, config.num_labels)
) — Prediction scores of the classification head (i.e. the linear layer on top of the final hidden state of the class token).
distillation_logits (torch.FloatTensor
of shape (batch_size, config.num_labels)
) — Prediction scores of the distillation head (i.e. the linear layer on top of the final hidden state of the distillation token).
hidden_states (tuple(torch.FloatTensor)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of torch.FloatTensor
(one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size)
. Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (tuple(torch.FloatTensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of torch.FloatTensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.
Example:
Copied
( *args**kwargs )
Parameters
call
Parameters
head_mask (tf.Tensor
of shape (num_heads,)
or (num_layers, num_heads)
, optional) — Mask to nullify selected heads of the self-attention modules. Mask values selected in [0, 1]
:
1 indicates the head is not masked,
0 indicates the head is masked.
output_attentions (bool
, optional) — Whether or not to return the attentions tensors of all attention layers. See attentions
under returned tensors for more detail.
output_hidden_states (bool
, optional) — Whether or not to return the hidden states of all layers. See hidden_states
under returned tensors for more detail.
Returns
last_hidden_state (tf.Tensor
of shape (batch_size, sequence_length, hidden_size)
) — Sequence of hidden-states at the output of the last layer of the model.
pooler_output (tf.Tensor
of shape (batch_size, hidden_size)
) — Last layer hidden-state of the first token of the sequence (classification token) further processed by a Linear layer and a Tanh activation function. The Linear layer weights are trained from the next sentence prediction (classification) objective during pretraining.
This output is usually not a good summary of the semantic content of the input, you’re often better with averaging or pooling the sequence of hidden-states for the whole input sequence.
hidden_states (tuple(tf.Tensor)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of tf.Tensor
(one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size)
.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (tuple(tf.Tensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of tf.Tensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.
Example:
Copied
( *args**kwargs )
Parameters
call
( pixel_values: tf.Tensor | None = Nonebool_masked_pos: tf.Tensor | None = Nonehead_mask: tf.Tensor | None = Noneoutput_attentions: Optional[bool] = Noneoutput_hidden_states: Optional[bool] = Nonereturn_dict: Optional[bool] = Nonetraining: bool = False ) → transformers.modeling_tf_outputs.TFMaskedImageModelingOutput
or tuple(tf.Tensor)
Parameters
head_mask (tf.Tensor
of shape (num_heads,)
or (num_layers, num_heads)
, optional) — Mask to nullify selected heads of the self-attention modules. Mask values selected in [0, 1]
:
1 indicates the head is not masked,
0 indicates the head is masked.
output_attentions (bool
, optional) — Whether or not to return the attentions tensors of all attention layers. See attentions
under returned tensors for more detail.
output_hidden_states (bool
, optional) — Whether or not to return the hidden states of all layers. See hidden_states
under returned tensors for more detail.
bool_masked_pos (tf.Tensor
of type bool and shape (batch_size, num_patches)
) — Boolean masked positions. Indicates which patches are masked (1) and which aren’t (0).
Returns
transformers.modeling_tf_outputs.TFMaskedImageModelingOutput
or tuple(tf.Tensor)
loss (tf.Tensor
of shape (1,)
, optional, returned when bool_masked_pos
is provided) — Reconstruction loss.
reconstruction (tf.Tensor
of shape (batch_size, num_channels, height, width)
) — Reconstructed / completed images.
hidden_states (tuple(tf.Tensor)
, optional, returned when output_hidden_states=True
is passed or when
config.output_hidden_states=True
): Tuple of tf.Tensor
(one for the output of the embeddings, if the model has an embedding layer, + one for the output of each stage) of shape (batch_size, sequence_length, hidden_size)
. Hidden-states (also called feature maps) of the model at the output of each stage.
attentions (tuple(tf.Tensor)
, optional, returned when output_attentions=True
is passed or when
config.output_attentions=True
): Tuple of tf.Tensor
(one for each layer) of shape (batch_size, num_heads, patch_size, sequence_length)
. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.
Examples:
Copied
( *args**kwargs )
Parameters
DeiT Model transformer with an image classification head on top (a linear layer on top of the final hidden state of the [CLS] token) e.g. for ImageNet.
call
( pixel_values: tf.Tensor | None = Nonehead_mask: tf.Tensor | None = Nonelabels: tf.Tensor | None = Noneoutput_attentions: Optional[bool] = Noneoutput_hidden_states: Optional[bool] = Nonereturn_dict: Optional[bool] = Nonetraining: bool = False ) → transformers.modeling_tf_outputs.TFImageClassifierOutput
or tuple(tf.Tensor)
Parameters
head_mask (tf.Tensor
of shape (num_heads,)
or (num_layers, num_heads)
, optional) — Mask to nullify selected heads of the self-attention modules. Mask values selected in [0, 1]
:
1 indicates the head is not masked,
0 indicates the head is masked.
output_attentions (bool
, optional) — Whether or not to return the attentions tensors of all attention layers. See attentions
under returned tensors for more detail.
output_hidden_states (bool
, optional) — Whether or not to return the hidden states of all layers. See hidden_states
under returned tensors for more detail.
labels (tf.Tensor
of shape (batch_size,)
, optional) — Labels for computing the image classification/regression loss. Indices should be in [0, ..., config.num_labels - 1]
. If config.num_labels == 1
a regression loss is computed (Mean-Square loss), If config.num_labels > 1
a classification loss is computed (Cross-Entropy).
Returns
transformers.modeling_tf_outputs.TFImageClassifierOutput
or tuple(tf.Tensor)
loss (tf.Tensor
of shape (1,)
, optional, returned when labels
is provided) — Classification (or regression if config.num_labels==1) loss.
logits (tf.Tensor
of shape (batch_size, config.num_labels)
) — Classification (or regression if config.num_labels==1) scores (before SoftMax).
hidden_states (tuple(tf.Tensor)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of tf.Tensor
(one for the output of the embeddings, if the model has an embedding layer, + one for the output of each stage) of shape (batch_size, sequence_length, hidden_size)
. Hidden-states (also called feature maps) of the model at the output of each stage.
attentions (tuple(tf.Tensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of tf.Tensor
(one for each layer) of shape (batch_size, num_heads, patch_size, sequence_length)
.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.
Examples:
Copied
( *args**kwargs )
Parameters
DeiT Model transformer with image classification heads on top (a linear layer on top of the final hidden state of the [CLS] token and a linear layer on top of the final hidden state of the distillation token) e.g. for ImageNet.
.. warning::
This model supports inference-only. Fine-tuning with distillation (i.e. with a teacher) is not yet supported.
call
( pixel_values: tf.Tensor | None = Nonehead_mask: tf.Tensor | None = Noneoutput_attentions: Optional[bool] = Noneoutput_hidden_states: Optional[bool] = Nonereturn_dict: Optional[bool] = Nonetraining: bool = False ) → transformers.models.deit.modeling_tf_deit.TFDeiTForImageClassificationWithTeacherOutput
or tuple(tf.Tensor)
Parameters
head_mask (tf.Tensor
of shape (num_heads,)
or (num_layers, num_heads)
, optional) — Mask to nullify selected heads of the self-attention modules. Mask values selected in [0, 1]
:
1 indicates the head is not masked,
0 indicates the head is masked.
output_attentions (bool
, optional) — Whether or not to return the attentions tensors of all attention layers. See attentions
under returned tensors for more detail.
output_hidden_states (bool
, optional) — Whether or not to return the hidden states of all layers. See hidden_states
under returned tensors for more detail.
Returns
transformers.models.deit.modeling_tf_deit.TFDeiTForImageClassificationWithTeacherOutput
or tuple(tf.Tensor)
logits (tf.Tensor
of shape (batch_size, config.num_labels)
) — Prediction scores as the average of the cls_logits and distillation logits.
cls_logits (tf.Tensor
of shape (batch_size, config.num_labels)
) — Prediction scores of the classification head (i.e. the linear layer on top of the final hidden state of the class token).
distillation_logits (tf.Tensor
of shape (batch_size, config.num_labels)
) — Prediction scores of the distillation head (i.e. the linear layer on top of the final hidden state of the distillation token).
hidden_states (tuple(tf.Tensor)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of tf.Tensor
(one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size)
. Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (tuple(tf.Tensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of tf.Tensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.
Example:
Copied
is supported by this and .
See also:
is supported by this .
This is the configuration class to store the configuration of a . It is used to instantiate an DeiT model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the DeiT architecture.
Configuration objects inherit from and can be used to control the model outputs. Read the documentation from for more information.
config () — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the method to load the model weights.
The bare DeiT Model transformer outputting raw hidden-states without any specific head on top. This model is a PyTorch subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
( pixel_values: typing.Optional[torch.Tensor] = Nonebool_masked_pos: typing.Optional[torch.BoolTensor] = Nonehead_mask: typing.Optional[torch.Tensor] = Noneoutput_attentions: typing.Optional[bool] = Noneoutput_hidden_states: typing.Optional[bool] = Nonereturn_dict: typing.Optional[bool] = None ) → or tuple(torch.FloatTensor)
pixel_values (torch.FloatTensor
of shape (batch_size, num_channels, height, width)
) — Pixel values. Pixel values can be obtained using . See for details.
return_dict (bool
, optional) — Whether or not to return a instead of a plain tuple.
or tuple(torch.FloatTensor)
A or a tuple of torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various elements depending on the configuration () and inputs.
The forward method, overrides the __call__
special method.
config () — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the method to load the model weights.
DeiT Model with a decoder on top for masked image modeling, as proposed in .
Note that we provide a script to pre-train this model on custom data in our .
This model is a PyTorch subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
pixel_values (torch.FloatTensor
of shape (batch_size, num_channels, height, width)
) — Pixel values. Pixel values can be obtained using . See for details.
return_dict (bool
, optional) — Whether or not to return a instead of a plain tuple.
A transformers.modeling_outputs.MaskedImageModelingOutput
or a tuple of torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various elements depending on the configuration () and inputs.
The forward method, overrides the __call__
special method.
config () — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the method to load the model weights.
This model is a PyTorch subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
( pixel_values: typing.Optional[torch.Tensor] = Nonehead_mask: typing.Optional[torch.Tensor] = Nonelabels: typing.Optional[torch.Tensor] = Noneoutput_attentions: typing.Optional[bool] = Noneoutput_hidden_states: typing.Optional[bool] = Nonereturn_dict: typing.Optional[bool] = None ) → or tuple(torch.FloatTensor)
pixel_values (torch.FloatTensor
of shape (batch_size, num_channels, height, width)
) — Pixel values. Pixel values can be obtained using . See for details.
return_dict (bool
, optional) — Whether or not to return a instead of a plain tuple.
or tuple(torch.FloatTensor)
A or a tuple of torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various elements depending on the configuration () and inputs.
The forward method, overrides the __call__
special method.
config () — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the method to load the model weights.
This model is a PyTorch subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
pixel_values (torch.FloatTensor
of shape (batch_size, num_channels, height, width)
) — Pixel values. Pixel values can be obtained using . See for details.
return_dict (bool
, optional) — Whether or not to return a instead of a plain tuple.
A transformers.models.deit.modeling_deit.DeiTForImageClassificationWithTeacherOutput
or a tuple of torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various elements depending on the configuration () and inputs.
The forward method, overrides the __call__
special method.
config () — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the method to load the model weights.
The bare DeiT Model transformer outputting raw hidden-states without any specific head on top. This model is a TensorFlow . Use it as a regular TensorFlow Module and refer to the TensorFlow documentation for all matter related to general usage and behavior.
( pixel_values: tf.Tensor | None = Nonebool_masked_pos: tf.Tensor | None = Nonehead_mask: tf.Tensor | None = Noneoutput_attentions: Optional[bool] = Noneoutput_hidden_states: Optional[bool] = Nonereturn_dict: Optional[bool] = Nonetraining: bool = False ) → or tuple(tf.Tensor)
pixel_values (tf.Tensor
of shape (batch_size, num_channels, height, width)
) — Pixel values. Pixel values can be obtained using . See for details.
return_dict (bool
, optional) — Whether or not to return a instead of a plain tuple.
or tuple(tf.Tensor)
A or a tuple of tf.Tensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various elements depending on the configuration () and inputs.
The forward method, overrides the __call__
special method.
config () — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the method to load the model weights.
DeiT Model with a decoder on top for masked image modeling, as proposed in . This model is a TensorFlow . Use it as a regular TensorFlow Module and refer to the TensorFlow documentation for all matter related to general usage and behavior.
pixel_values (tf.Tensor
of shape (batch_size, num_channels, height, width)
) — Pixel values. Pixel values can be obtained using . See for details.
return_dict (bool
, optional) — Whether or not to return a instead of a plain tuple.
A transformers.modeling_tf_outputs.TFMaskedImageModelingOutput
or a tuple of tf.Tensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various elements depending on the configuration () and inputs.
The forward method, overrides the __call__
special method.
config () — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the method to load the model weights.
This model is a TensorFlow . Use it as a regular TensorFlow Module and refer to the TensorFlow documentation for all matter related to general usage and behavior.
pixel_values (tf.Tensor
of shape (batch_size, num_channels, height, width)
) — Pixel values. Pixel values can be obtained using . See for details.
return_dict (bool
, optional) — Whether or not to return a instead of a plain tuple.
A transformers.modeling_tf_outputs.TFImageClassifierOutput
or a tuple of tf.Tensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various elements depending on the configuration () and inputs.
The forward method, overrides the __call__
special method.
config () — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the method to load the model weights.
This model is a TensorFlow . Use it as a regular TensorFlow Module and refer to the TensorFlow documentation for all matter related to general usage and behavior.
pixel_values (tf.Tensor
of shape (batch_size, num_channels, height, width)
) — Pixel values. Pixel values can be obtained using . See for details.
return_dict (bool
, optional) — Whether or not to return a instead of a plain tuple.
A transformers.models.deit.modeling_tf_deit.TFDeiTForImageClassificationWithTeacherOutput
or a tuple of tf.Tensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various elements depending on the configuration () and inputs.
The forward method, overrides the __call__
special method.