SwiftFormer
Last updated
Last updated
The SwiftFormer model was proposed in by Abdelrahman Shaker, Muhammad Maaz, Hanoona Rasheed, Salman Khan, Ming-Hsuan Yang, Fahad Shahbaz Khan.
The SwiftFormer paper introduces a novel efficient additive attention mechanism that effectively replaces the quadratic matrix multiplication operations in the self-attention computation with linear element-wise multiplications. A series of models called ‘SwiftFormer’ is built based on this, which achieves state-of-the-art performance in terms of both accuracy and mobile inference speed. Even their small variant achieves 78.5% top-1 ImageNet1K accuracy with only 0.8 ms latency on iPhone 14, which is more accurate and 2× faster compared to MobileViT-v2.
The abstract from the paper is the following:
Self-attention has become a defacto choice for capturing global context in various vision applications. However, its quadratic computational complexity with respect to image resolution limits its use in real-time applications, especially for deployment on resource-constrained mobile devices. Although hybrid approaches have been proposed to combine the advantages of convolutions and self-attention for a better speed-accuracy trade-off, the expensive matrix multiplication operations in self-attention remain a bottleneck. In this work, we introduce a novel efficient additive attention mechanism that effectively replaces the quadratic matrix multiplication operations with linear element-wise multiplications. Our design shows that the key-value interaction can be replaced with a linear layer without sacrificing any accuracy. Unlike previous state-of-the-art methods, our efficient formulation of self-attention enables its usage at all stages of the network. Using our proposed efficient additive attention, we build a series of models called “SwiftFormer” which achieves state-of-the-art performance in terms of both accuracy and mobile inference speed. Our small variant achieves 78.5% top-1 ImageNet-1K accuracy with only 0.8 ms latency on iPhone 14, which is more accurate and 2x faster compared to MobileViT-v2.
Tips:
One can use the API to prepare images for the model.
This model was contributed by . The original code can be found .
( num_channels = 3depths = [3, 3, 6, 4]embed_dims = [48, 56, 112, 220]mlp_ratio = 4downsamples = [True, True, True, True]hidden_act = 'gelu'down_patch_size = 3down_stride = 2down_pad = 1drop_path_rate = 0.0use_layer_scale = Truelayer_scale_init_value = 1e-05batch_norm_eps = 1e-05**kwargs )
Parameters
num_channels (int
, optional, defaults to 3) — The number of input channels
depths (List[int]
, optional, defaults to [3, 3, 6, 4]
) — Depth of each stage
embed_dims (List[int]
, optional, defaults to [48, 56, 112, 220]
) — The embedding dimension at each stage
mlp_ratio (int
, optional, defaults to 4) — Ratio of size of the hidden dimensionality of an MLP to the dimensionality of its input.
downsamples (List[bool]
, optional, defaults to [True, True, True, True]
) — Whether or not to downsample inputs between two stages.
hidden_act (str
, optional, defaults to "gelu"
) — The non-linear activation function (string). "gelu"
, "relu"
, "selu"
and "gelu_new"
are supported.
down_patch_size (int
, optional, defaults to 3) — The size of patches in downsampling layers.
down_stride (int
, optional, defaults to 2) — The stride of convolution kernels in downsampling layers.
down_pad (int
, optional, defaults to 1) — Padding in downsampling layers.
drop_path_rate (float
, optional, defaults to 0.) — Rate at which to increase dropout probability in DropPath.
use_layer_scale (bool
, optional, defaults to True
) — Whether to scale outputs from token mixers.
layer_scale_init_value (float
, optional, defaults to 1e-5) — Factor by which outputs from token mixers are scaled.
batch_norm_eps (float
, optional, defaults to 1e-5) — The epsilon used by the batch normalization layers.
Example:
Copied
( config: SwiftFormerConfig )
Parameters
forward
( pixel_values: typing.Optional[torch.Tensor] = Noneoutput_hidden_states: typing.Optional[bool] = Nonereturn_dict: typing.Optional[bool] = None ) → transformers.modeling_outputs.BaseModelOutputWithNoAttention
or tuple(torch.FloatTensor)
Parameters
output_hidden_states (bool
, optional) — Whether or not to return the hidden states of all layers. See hidden_states
under returned tensors for more detail.
Returns
transformers.modeling_outputs.BaseModelOutputWithNoAttention
or tuple(torch.FloatTensor)
last_hidden_state (torch.FloatTensor
of shape (batch_size, num_channels, height, width)
) — Sequence of hidden-states at the output of the last layer of the model.
hidden_states (tuple(torch.FloatTensor)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of torch.FloatTensor
(one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape (batch_size, num_channels, height, width)
.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.
Example:
Copied
( config: SwiftFormerConfig )
Parameters
SwiftFormer Model transformer with an image classification head on top (e.g. for ImageNet).
forward
Parameters
output_hidden_states (bool
, optional) — Whether or not to return the hidden states of all layers. See hidden_states
under returned tensors for more detail.
labels (torch.LongTensor
of shape (batch_size,)
, optional) — Labels for computing the image classification/regression loss. Indices should be in [0, ..., config.num_labels - 1]
. If config.num_labels == 1
a regression loss is computed (Mean-Square loss), If config.num_labels > 1
a classification loss is computed (Cross-Entropy).
Returns
loss (torch.FloatTensor
of shape (1,)
, optional, returned when labels
is provided) — Classification (or regression if config.num_labels==1) loss.
logits (torch.FloatTensor
of shape (batch_size, config.num_labels)
) — Classification (or regression if config.num_labels==1) scores (before SoftMax).
hidden_states (tuple(torch.FloatTensor)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of torch.FloatTensor
(one for the output of the embeddings, if the model has an embedding layer, + one for the output of each stage) of shape (batch_size, num_channels, height, width)
. Hidden-states (also called feature maps) of the model at the output of each stage.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.
Example:
Copied
This is the configuration class to store the configuration of a . It is used to instantiate an SwiftFormer model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the SwiftFormer architecture.
Configuration objects inherit from and can be used to control the model outputs. Read the documentation from for more information.
config () — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the method to load the model weights.
The bare SwiftFormer Model transformer outputting raw hidden-states without any specific head on top. This model is a PyTorch subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
pixel_values (torch.FloatTensor
of shape (batch_size, num_channels, height, width)
) — Pixel values. Pixel values can be obtained using . See for details.
return_dict (bool
, optional) — Whether or not to return a instead of a plain tuple.
A transformers.modeling_outputs.BaseModelOutputWithNoAttention
or a tuple of torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various elements depending on the configuration () and inputs.
The forward method, overrides the __call__
special method.
config () — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the method to load the model weights.
This model is a PyTorch subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
( pixel_values: typing.Optional[torch.Tensor] = Nonelabels: typing.Optional[torch.Tensor] = Noneoutput_hidden_states: typing.Optional[bool] = Nonereturn_dict: typing.Optional[bool] = None ) → or tuple(torch.FloatTensor)
pixel_values (torch.FloatTensor
of shape (batch_size, num_channels, height, width)
) — Pixel values. Pixel values can be obtained using . See for details.
return_dict (bool
, optional) — Whether or not to return a instead of a plain tuple.
or tuple(torch.FloatTensor)
A or a tuple of torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various elements depending on the configuration () and inputs.
The forward method, overrides the __call__
special method.