MBart and MBart-50
Last updated
Last updated
DISCLAIMER: If you see something strange, file a Github Issue and assign @patrickvonplaten
The MBart model was presented in Multilingual Denoising Pre-training for Neural Machine Translation by Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey Edunov Marjan Ghazvininejad, Mike Lewis, Luke Zettlemoyer.
According to the abstract, MBART is a sequence-to-sequence denoising auto-encoder pretrained on large-scale monolingual corpora in many languages using the BART objective. mBART is one of the first methods for pretraining a complete sequence-to-sequence model by denoising full texts in multiple languages, while previous approaches have focused only on the encoder, decoder, or reconstructing parts of the text.
This model was contributed by valhalla. The Authors’ code can be found here
MBart is a multilingual encoder-decoder (sequence-to-sequence) model primarily intended for translation task. As the model is multilingual it expects the sequences in a different format. A special language id token is added in both the source and target text. The source text format is X [eos, src_lang_code]
where X
is the source text. The target text format is [tgt_lang_code] X [eos]
. bos
is never used.
The regular call() will encode source text format passed as first argument or with the text
keyword, and target text format passed with the text_label
keyword argument.
Supervised training
Copied
Generation
While generating the target text set the decoder_start_token_id
to the target language id. The following example shows how to translate English to Romanian using the facebook/mbart-large-en-ro model.
Copied
MBart-50 was introduced in the Multilingual Translation with Extensible Multilingual Pretraining and Finetuning paper by Yuqing Tang, Chau Tran, Xian Li, Peng-Jen Chen, Naman Goyal, Vishrav Chaudhary, Jiatao Gu, Angela Fan. MBart-50 is created using the original mbart-large-cc25 checkpoint by extendeding its embedding layers with randomly initialized vectors for an extra set of 25 language tokens and then pretrained on 50 languages.
According to the abstract
Multilingual translation models can be created through multilingual finetuning. Instead of finetuning on one direction, a pretrained model is finetuned on many directions at the same time. It demonstrates that pretrained models can be extended to incorporate additional languages without loss of performance. Multilingual finetuning improves on average 1 BLEU over the strongest baselines (being either multilingual from scratch or bilingual finetuning) while improving 9.3 BLEU on average over bilingual baselines from scratch.
The text format for MBart-50 is slightly different from mBART. For MBart-50 the language id token is used as a prefix for both source and target text i.e the text format is [lang_code] X [eos]
, where lang_code
is source language id for source text and target language id for target text, with X
being the source or target text respectively.
MBart-50 has its own tokenizer MBart50Tokenizer.
Supervised training
Copied
Generation
To generate using the mBART-50 multilingual translation models, eos_token_id
is used as the decoder_start_token_id
and the target language id is forced as the first generated token. To force the target language id as the first generated token, pass the forced_bos_token_id parameter to the generate method. The following example shows how to translate between Hindi to French and Arabic to English using the facebook/mbart-50-large-many-to-many checkpoint.
Copied
( vocab_size = 50265max_position_embeddings = 1024encoder_layers = 12encoder_ffn_dim = 4096encoder_attention_heads = 16decoder_layers = 12decoder_ffn_dim = 4096decoder_attention_heads = 16encoder_layerdrop = 0.0decoder_layerdrop = 0.0use_cache = Trueis_encoder_decoder = Trueactivation_function = 'gelu'd_model = 1024dropout = 0.1attention_dropout = 0.0activation_dropout = 0.0init_std = 0.02classifier_dropout = 0.0scale_embedding = Falsepad_token_id = 1bos_token_id = 0eos_token_id = 2forced_eos_token_id = 2**kwargs )
Parameters
vocab_size (int
, optional, defaults to 50265) — Vocabulary size of the MBART model. Defines the number of different tokens that can be represented by the inputs_ids
passed when calling MBartModel or TFMBartModel.
d_model (int
, optional, defaults to 1024) — Dimensionality of the layers and the pooler layer.
encoder_layers (int
, optional, defaults to 12) — Number of encoder layers.
decoder_layers (int
, optional, defaults to 12) — Number of decoder layers.
encoder_attention_heads (int
, optional, defaults to 16) — Number of attention heads for each attention layer in the Transformer encoder.
decoder_attention_heads (int
, optional, defaults to 16) — Number of attention heads for each attention layer in the Transformer decoder.
decoder_ffn_dim (int
, optional, defaults to 4096) — Dimensionality of the “intermediate” (often named feed-forward) layer in decoder.
encoder_ffn_dim (int
, optional, defaults to 4096) — Dimensionality of the “intermediate” (often named feed-forward) layer in decoder.
activation_function (str
or function
, optional, defaults to "gelu"
) — The non-linear activation function (function or string) in the encoder and pooler. If string, "gelu"
, "relu"
, "silu"
and "gelu_new"
are supported.
dropout (float
, optional, defaults to 0.1) — The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_dropout (float
, optional, defaults to 0.0) — The dropout ratio for the attention probabilities.
activation_dropout (float
, optional, defaults to 0.0) — The dropout ratio for activations inside the fully connected layer.
classifier_dropout (float
, optional, defaults to 0.0) — The dropout ratio for classifier.
max_position_embeddings (int
, optional, defaults to 1024) — The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048).
init_std (float
, optional, defaults to 0.02) — The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
encoder_layerdrop (float
, optional, defaults to 0.0) — The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) for more details.
decoder_layerdrop (float
, optional, defaults to 0.0) — The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) for more details.
scale_embedding (bool
, optional, defaults to False
) — Scale embeddings by diving by sqrt(d_model).
use_cache (bool
, optional, defaults to True
) — Whether or not the model should return the last key/values attentions (not used by all models)
forced_eos_token_id (int
, optional, defaults to 2) — The id of the token to force as the last generated token when max_length
is reached. Usually set to eos_token_id
.
This is the configuration class to store the configuration of a MBartModel. It is used to instantiate an MBART model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the MBART facebook/mbart-large-cc25 architecture.
Configuration objects inherit from PretrainedConfig and can be used to control the model outputs. Read the documentation from PretrainedConfig for more information.
Example:
Copied
( vocab_filebos_token = '<s>'eos_token = '</s>'sep_token = '</s>'cls_token = '<s>'unk_token = '<unk>'pad_token = '<pad>'mask_token = '<mask>'tokenizer_file = Nonesrc_lang = Nonetgt_lang = Nonesp_model_kwargs: typing.Union[typing.Dict[str, typing.Any], NoneType] = Noneadditional_special_tokens = None**kwargs )
Construct an MBART tokenizer.
Adapted from RobertaTokenizer and XLNetTokenizer. Based on SentencePiece.
The tokenization method is <tokens> <eos> <language code>
for source language documents, and `<language code>
<tokens> <eos>` for target language documents.
Examples:
Copied
build_inputs_with_special_tokens
( token_ids_0: typing.List[int]token_ids_1: typing.Optional[typing.List[int]] = None ) → List[int]
Parameters
token_ids_0 (List[int]
) — List of IDs to which the special tokens will be added.
token_ids_1 (List[int]
, optional) — Optional second list of IDs for sequence pairs.
Returns
List[int]
List of input IDs with the appropriate special tokens.
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. An MBART sequence has the following format, where X
represents the sequence:
input_ids
(for encoder) X [eos, src_lang_code]
decoder_input_ids
: (for decoder) X [eos, tgt_lang_code]
BOS is never used. Pairs of sequences are not the expected use case, but they will be handled without a separator.
( vocab_file = Nonetokenizer_file = Nonebos_token = '<s>'eos_token = '</s>'sep_token = '</s>'cls_token = '<s>'unk_token = '<unk>'pad_token = '<pad>'mask_token = '<mask>'src_lang = Nonetgt_lang = Noneadditional_special_tokens = None**kwargs )
Construct a “fast” MBART tokenizer (backed by BOINCAI’s tokenizers library). Based on BPE.
This tokenizer inherits from PreTrainedTokenizerFast which contains most of the main methods. Users should refer to this superclass for more information regarding those methods.
The tokenization method is <tokens> <eos> <language code>
for source language documents, and `<language code>
<tokens> <eos>` for target language documents.
Examples:
Copied
build_inputs_with_special_tokens
( token_ids_0: typing.List[int]token_ids_1: typing.Optional[typing.List[int]] = None ) → List[int]
Parameters
token_ids_0 (List[int]
) — List of IDs to which the special tokens will be added.
token_ids_1 (List[int]
, optional) — Optional second list of IDs for sequence pairs.
Returns
List[int]
list of input IDs with the appropriate special tokens.
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. The special tokens depend on calling set_lang.
An MBART sequence has the following format, where X
represents the sequence:
input_ids
(for encoder) X [eos, src_lang_code]
decoder_input_ids
: (for decoder) X [eos, tgt_lang_code]
BOS is never used. Pairs of sequences are not the expected use case, but they will be handled without a separator.
create_token_type_ids_from_sequences
( token_ids_0: typing.List[int]token_ids_1: typing.Optional[typing.List[int]] = None ) → List[int]
Parameters
token_ids_0 (List[int]
) — List of IDs.
token_ids_1 (List[int]
, optional) — Optional second list of IDs for sequence pairs.
Returns
List[int]
List of zeros.
Create a mask from the two sequences passed to be used in a sequence-pair classification task. mBART does not make use of token type ids, therefore a list of zeros is returned.
set_src_lang_special_tokens
( src_lang )
Reset the special tokens to the source lang setting. No prefix and suffix=[eos, src_lang_code].
set_tgt_lang_special_tokens
( lang: str )
Reset the special tokens to the target language setting. No prefix and suffix=[eos, tgt_lang_code].
( vocab_filesrc_lang = Nonetgt_lang = Noneeos_token = '</s>'sep_token = '</s>'cls_token = '<s>'unk_token = '<unk>'pad_token = '<pad>'mask_token = '<mask>'sp_model_kwargs: typing.Union[typing.Dict[str, typing.Any], NoneType] = None**kwargs )
Parameters
vocab_file (str
) — Path to the vocabulary file.
src_lang (str
, optional) — A string representing the source language.
tgt_lang (str
, optional) — A string representing the target language.
eos_token (str
, optional, defaults to "</s>"
) — The end of sequence token.
sep_token (str
, optional, defaults to "</s>"
) — The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens.
cls_token (str
, optional, defaults to "<s>"
) — The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens.
unk_token (str
, optional, defaults to "<unk>"
) — The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead.
pad_token (str
, optional, defaults to "<pad>"
) — The token used for padding, for example when batching sequences of different lengths.
mask_token (str
, optional, defaults to "<mask>"
) — The token used for masking values. This is the token used when training this model with masked language modeling. This is the token which the model will try to predict.
sp_model_kwargs (dict
, optional) — Will be passed to the SentencePieceProcessor.__init__()
method. The Python wrapper for SentencePiece can be used, among other things, to set:
enable_sampling
: Enable subword regularization.
nbest_size
: Sampling parameters for unigram. Invalid for BPE-Dropout.
nbest_size = {0,1}
: No sampling is performed.
nbest_size > 1
: samples from the nbest_size results.
nbest_size < 0
: assuming that nbest_size is infinite and samples from the all hypothesis (lattice) using forward-filtering-and-backward-sampling algorithm.
alpha
: Smoothing parameter for unigram sampling, and dropout probability of merge operations for BPE-dropout.
Construct a MBart50 tokenizer. Based on SentencePiece.
This tokenizer inherits from PreTrainedTokenizer which contains most of the main methods. Users should refer to this superclass for more information regarding those methods.
Examples:
Copied
build_inputs_with_special_tokens
( token_ids_0: typing.List[int]token_ids_1: typing.Optional[typing.List[int]] = None ) → List[int]
Parameters
token_ids_0 (List[int]
) — List of IDs to which the special tokens will be added.
token_ids_1 (List[int]
, optional) — Optional second list of IDs for sequence pairs.
Returns
List[int]
List of input IDs with the appropriate special tokens.
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. An MBART-50 sequence has the following format, where X
represents the sequence:
input_ids
(for encoder) [src_lang_code] X [eos]
labels
: (for decoder) [tgt_lang_code] X [eos]
BOS is never used. Pairs of sequences are not the expected use case, but they will be handled without a separator.
convert_tokens_to_string
( tokens )
Converts a sequence of tokens (string) in a single string.
get_special_tokens_mask
( token_ids_0: typing.List[int]token_ids_1: typing.Optional[typing.List[int]] = Nonealready_has_special_tokens: bool = False ) → List[int]
Parameters
token_ids_0 (List[int]
) — List of IDs.
token_ids_1 (List[int]
, optional) — Optional second list of IDs for sequence pairs.
already_has_special_tokens (bool
, optional, defaults to False
) — Whether or not the token list is already formatted with special tokens for the model.
Returns
List[int]
A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer prepare_for_model
method.
set_src_lang_special_tokens
( src_lang: str )
Reset the special tokens to the source lang setting. prefix=[src_lang_code] and suffix=[eos].
set_tgt_lang_special_tokens
( tgt_lang: str )
Reset the special tokens to the target language setting. prefix=[tgt_lang_code] and suffix=[eos].
( vocab_file = Nonesrc_lang = Nonetgt_lang = Nonetokenizer_file = Noneeos_token = '</s>'sep_token = '</s>'cls_token = '<s>'unk_token = '<unk>'pad_token = '<pad>'mask_token = '<mask>'**kwargs )
Parameters
vocab_file (str
) — Path to the vocabulary file.
src_lang (str
, optional) — A string representing the source language.
tgt_lang (str
, optional) — A string representing the target language.
eos_token (str
, optional, defaults to "</s>"
) — The end of sequence token.
sep_token (str
, optional, defaults to "</s>"
) — The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens.
cls_token (str
, optional, defaults to "<s>"
) — The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens.
unk_token (str
, optional, defaults to "<unk>"
) — The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead.
pad_token (str
, optional, defaults to "<pad>"
) — The token used for padding, for example when batching sequences of different lengths.
mask_token (str
, optional, defaults to "<mask>"
) — The token used for masking values. This is the token used when training this model with masked language modeling. This is the token which the model will try to predict.
Construct a “fast” MBART tokenizer for mBART-50 (backed by BOINCAI’s tokenizers library). Based on BPE.
This tokenizer inherits from PreTrainedTokenizerFast which contains most of the main methods. Users should refer to this superclass for more information regarding those methods.
Examples:
Copied
build_inputs_with_special_tokens
( token_ids_0: typing.List[int]token_ids_1: typing.Optional[typing.List[int]] = None ) → List[int]
Parameters
token_ids_0 (List[int]
) — List of IDs to which the special tokens will be added.
token_ids_1 (List[int]
, optional) — Optional second list of IDs for sequence pairs.
Returns
List[int]
list of input IDs with the appropriate special tokens.
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. The special tokens depend on calling set_lang.
An MBART-50 sequence has the following format, where X
represents the sequence:
input_ids
(for encoder) [src_lang_code] X [eos]
labels
: (for decoder) [tgt_lang_code] X [eos]
BOS is never used. Pairs of sequences are not the expected use case, but they will be handled without a separator.
set_src_lang_special_tokens
( src_lang: str )
Reset the special tokens to the source lang setting. prefix=[src_lang_code] and suffix=[eos].
set_tgt_lang_special_tokens
( tgt_lang: str )
Reset the special tokens to the target language setting. prefix=[src_lang_code] and suffix=[eos].
( config: MBartConfig )
Parameters
config (MBartConfig) — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.
The bare MBART Model outputting raw hidden-states without any specific head on top. This model inherits from PreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)
This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
forward
( input_ids: LongTensor = Noneattention_mask: typing.Optional[torch.Tensor] = Nonedecoder_input_ids: typing.Optional[torch.LongTensor] = Nonedecoder_attention_mask: typing.Optional[torch.LongTensor] = Nonehead_mask: typing.Optional[torch.Tensor] = Nonedecoder_head_mask: typing.Optional[torch.Tensor] = Nonecross_attn_head_mask: typing.Optional[torch.Tensor] = Noneencoder_outputs: typing.Optional[typing.Tuple[typing.Tuple[torch.FloatTensor]]] = Nonepast_key_values: typing.Optional[typing.Tuple[typing.Tuple[torch.FloatTensor]]] = Noneinputs_embeds: typing.Optional[torch.FloatTensor] = Nonedecoder_inputs_embeds: typing.Optional[torch.FloatTensor] = Noneuse_cache: typing.Optional[bool] = Noneoutput_attentions: typing.Optional[bool] = Noneoutput_hidden_states: typing.Optional[bool] = Nonereturn_dict: typing.Optional[bool] = None ) → transformers.modeling_outputs.Seq2SeqModelOutput or tuple(torch.FloatTensor)
Parameters
input_ids (torch.LongTensor
of shape (batch_size, sequence_length)
) — Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it.
Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
attention_mask (torch.Tensor
of shape (batch_size, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]
:
1 for tokens that are not masked,
0 for tokens that are masked.
decoder_input_ids (torch.LongTensor
of shape (batch_size, target_sequence_length)
, optional) — Indices of decoder input sequence tokens in the vocabulary.
Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
MBart uses a specific language id token as the starting token for decoder_input_ids
generation that varies according to source and target language, e.g. 25004 for en_XX, and 25003 for de_DE. If past_key_values
is used, optionally only the last decoder_input_ids
have to be input (see past_key_values
).
For translation and summarization training, decoder_input_ids
should be provided. If no decoder_input_ids
is provided, the model will create this tensor by shifting the input_ids
to the right for denoising pre-training following the paper.
decoder_attention_mask (torch.LongTensor
of shape (batch_size, target_sequence_length)
, optional) — Default behavior: generate a tensor that ignores pad tokens in decoder_input_ids
. Causal mask will also be used by default.
head_mask (torch.Tensor
of shape (encoder_layers, encoder_attention_heads)
, optional) — Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in [0, 1]
:
1 indicates the head is not masked,
0 indicates the head is masked.
decoder_head_mask (torch.Tensor
of shape (decoder_layers, decoder_attention_heads)
, optional) — Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in [0, 1]
:
1 indicates the head is not masked,
0 indicates the head is masked.
cross_attn_head_mask (torch.Tensor
of shape (decoder_layers, decoder_attention_heads)
, optional) — Mask to nullify selected heads of the cross-attention modules in the decoder. Mask values selected in [0, 1]
:
1 indicates the head is not masked,
0 indicates the head is masked.
encoder_outputs (tuple(tuple(torch.FloatTensor)
, optional) — Tuple consists of (last_hidden_state
, optional: hidden_states
, optional: attentions
) last_hidden_state
of shape (batch_size, sequence_length, hidden_size)
, optional) is a sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.
past_key_values (tuple(tuple(torch.FloatTensor))
, optional, returned when use_cache=True
is passed or when config.use_cache=True
) — Tuple of tuple(torch.FloatTensor)
of length config.n_layers
, with each tuple having 2 tensors of shape (batch_size, num_heads, sequence_length, embed_size_per_head)
) and 2 additional tensors of shape (batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used (see past_key_values
input) to speed up sequential decoding.
If past_key_values
are used, the user can optionally input only the last decoder_input_ids
(those that don’t have their past key value states given to this model) of shape (batch_size, 1)
instead of all decoder_input_ids
of shape (batch_size, sequence_length)
. inputs_embeds (torch.FloatTensor
of shape (batch_size, sequence_length, hidden_size)
, optional): Optionally, instead of passing input_ids
you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids
indices into associated vectors than the model’s internal embedding lookup matrix.
decoder_inputs_embeds (torch.FloatTensor
of shape (batch_size, target_sequence_length, hidden_size)
, optional) — Optionally, instead of passing decoder_input_ids
you can choose to directly pass an embedded representation. If past_key_values
is used, optionally only the last decoder_inputs_embeds
have to be input (see past_key_values
). This is useful if you want more control over how to convert decoder_input_ids
indices into associated vectors than the model’s internal embedding lookup matrix.
If decoder_input_ids
and decoder_inputs_embeds
are both unset, decoder_inputs_embeds
takes the value of inputs_embeds
.
use_cache (bool
, optional) — If set to True
, past_key_values
key value states are returned and can be used to speed up decoding (see past_key_values
).
output_attentions (bool
, optional) — Whether or not to return the attentions tensors of all attention layers. See attentions
under returned tensors for more detail.
output_hidden_states (bool
, optional) — Whether or not to return the hidden states of all layers. See hidden_states
under returned tensors for more detail.
return_dict (bool
, optional) — Whether or not to return a ModelOutput instead of a plain tuple.
Returns
transformers.modeling_outputs.Seq2SeqModelOutput or tuple(torch.FloatTensor)
A transformers.modeling_outputs.Seq2SeqModelOutput or a tuple of torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various elements depending on the configuration (MBartConfig) and inputs.
last_hidden_state (torch.FloatTensor
of shape (batch_size, sequence_length, hidden_size)
) — Sequence of hidden-states at the output of the last layer of the decoder of the model.
If past_key_values
is used only the last hidden-state of the sequences of shape (batch_size, 1, hidden_size)
is output.
past_key_values (tuple(tuple(torch.FloatTensor))
, optional, returned when use_cache=True
is passed or when config.use_cache=True
) — Tuple of tuple(torch.FloatTensor)
of length config.n_layers
, with each tuple having 2 tensors of shape (batch_size, num_heads, sequence_length, embed_size_per_head)
) and 2 additional tensors of shape (batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used (see past_key_values
input) to speed up sequential decoding.
decoder_hidden_states (tuple(torch.FloatTensor)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of torch.FloatTensor
(one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size)
.
Hidden-states of the decoder at the output of each layer plus the optional initial embedding outputs.
decoder_attentions (tuple(torch.FloatTensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of torch.FloatTensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
cross_attentions (tuple(torch.FloatTensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of torch.FloatTensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the decoder’s cross-attention layer, after the attention softmax, used to compute the weighted average in the cross-attention heads.
encoder_last_hidden_state (torch.FloatTensor
of shape (batch_size, sequence_length, hidden_size)
, optional) — Sequence of hidden-states at the output of the last layer of the encoder of the model.
encoder_hidden_states (tuple(torch.FloatTensor)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of torch.FloatTensor
(one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size)
.
Hidden-states of the encoder at the output of each layer plus the optional initial embedding outputs.
encoder_attentions (tuple(torch.FloatTensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of torch.FloatTensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
The MBartModel forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.
Example:
Copied
( config: MBartConfig )
Parameters
config (MBartConfig) — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.
The MBART Model with a language modeling head. Can be used for summarization, after fine-tuning the pretrained models. This model inherits from PreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)
This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
forward
( input_ids: LongTensor = Noneattention_mask: typing.Optional[torch.Tensor] = Nonedecoder_input_ids: typing.Optional[torch.LongTensor] = Nonedecoder_attention_mask: typing.Optional[torch.LongTensor] = Nonehead_mask: typing.Optional[torch.Tensor] = Nonedecoder_head_mask: typing.Optional[torch.Tensor] = Nonecross_attn_head_mask: typing.Optional[torch.Tensor] = Noneencoder_outputs: typing.Optional[typing.Tuple[typing.Tuple[torch.FloatTensor]]] = Nonepast_key_values: typing.Optional[typing.Tuple[typing.Tuple[torch.FloatTensor]]] = Noneinputs_embeds: typing.Optional[torch.FloatTensor] = Nonedecoder_inputs_embeds: typing.Optional[torch.FloatTensor] = Nonelabels: typing.Optional[torch.LongTensor] = Noneuse_cache: typing.Optional[bool] = Noneoutput_attentions: typing.Optional[bool] = Noneoutput_hidden_states: typing.Optional[bool] = Nonereturn_dict: typing.Optional[bool] = None ) → transformers.modeling_outputs.Seq2SeqLMOutput or tuple(torch.FloatTensor)
Parameters
input_ids (torch.LongTensor
of shape (batch_size, sequence_length)
) — Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it.
Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
attention_mask (torch.Tensor
of shape (batch_size, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]
:
1 for tokens that are not masked,
0 for tokens that are masked.
decoder_input_ids (torch.LongTensor
of shape (batch_size, target_sequence_length)
, optional) — Indices of decoder input sequence tokens in the vocabulary.
Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
MBart uses a specific language id token as the starting token for decoder_input_ids
generation that varies according to source and target language, e.g. 25004 for en_XX, and 25003 for de_DE. If past_key_values
is used, optionally only the last decoder_input_ids
have to be input (see past_key_values
).
For translation and summarization training, decoder_input_ids
should be provided. If no decoder_input_ids
is provided, the model will create this tensor by shifting the input_ids
to the right for denoising pre-training following the paper.
decoder_attention_mask (torch.LongTensor
of shape (batch_size, target_sequence_length)
, optional) — Default behavior: generate a tensor that ignores pad tokens in decoder_input_ids
. Causal mask will also be used by default.
head_mask (torch.Tensor
of shape (encoder_layers, encoder_attention_heads)
, optional) — Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in [0, 1]
:
1 indicates the head is not masked,
0 indicates the head is masked.
decoder_head_mask (torch.Tensor
of shape (decoder_layers, decoder_attention_heads)
, optional) — Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in [0, 1]
:
1 indicates the head is not masked,
0 indicates the head is masked.
cross_attn_head_mask (torch.Tensor
of shape (decoder_layers, decoder_attention_heads)
, optional) — Mask to nullify selected heads of the cross-attention modules in the decoder. Mask values selected in [0, 1]
:
1 indicates the head is not masked,
0 indicates the head is masked.
encoder_outputs (tuple(tuple(torch.FloatTensor)
, optional) — Tuple consists of (last_hidden_state
, optional: hidden_states
, optional: attentions
) last_hidden_state
of shape (batch_size, sequence_length, hidden_size)
, optional) is a sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.
past_key_values (tuple(tuple(torch.FloatTensor))
, optional, returned when use_cache=True
is passed or when config.use_cache=True
) — Tuple of tuple(torch.FloatTensor)
of length config.n_layers
, with each tuple having 2 tensors of shape (batch_size, num_heads, sequence_length, embed_size_per_head)
) and 2 additional tensors of shape (batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used (see past_key_values
input) to speed up sequential decoding.
If past_key_values
are used, the user can optionally input only the last decoder_input_ids
(those that don’t have their past key value states given to this model) of shape (batch_size, 1)
instead of all decoder_input_ids
of shape (batch_size, sequence_length)
. inputs_embeds (torch.FloatTensor
of shape (batch_size, sequence_length, hidden_size)
, optional): Optionally, instead of passing input_ids
you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids
indices into associated vectors than the model’s internal embedding lookup matrix.
decoder_inputs_embeds (torch.FloatTensor
of shape (batch_size, target_sequence_length, hidden_size)
, optional) — Optionally, instead of passing decoder_input_ids
you can choose to directly pass an embedded representation. If past_key_values
is used, optionally only the last decoder_inputs_embeds
have to be input (see past_key_values
). This is useful if you want more control over how to convert decoder_input_ids
indices into associated vectors than the model’s internal embedding lookup matrix.
If decoder_input_ids
and decoder_inputs_embeds
are both unset, decoder_inputs_embeds
takes the value of inputs_embeds
.
use_cache (bool
, optional) — If set to True
, past_key_values
key value states are returned and can be used to speed up decoding (see past_key_values
).
output_attentions (bool
, optional) — Whether or not to return the attentions tensors of all attention layers. See attentions
under returned tensors for more detail.
output_hidden_states (bool
, optional) — Whether or not to return the hidden states of all layers. See hidden_states
under returned tensors for more detail.
return_dict (bool
, optional) — Whether or not to return a ModelOutput instead of a plain tuple.
labels (torch.LongTensor
of shape (batch_size, sequence_length)
, optional) — Labels for computing the masked language modeling loss. Indices should either be in [0, ..., config.vocab_size]
or -100 (see input_ids
docstring). Tokens with indices set to -100
are ignored (masked), the loss is only computed for the tokens with labels in [0, ..., config.vocab_size]
.
Returns
transformers.modeling_outputs.Seq2SeqLMOutput or tuple(torch.FloatTensor)
A transformers.modeling_outputs.Seq2SeqLMOutput or a tuple of torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various elements depending on the configuration (MBartConfig) and inputs.
loss (torch.FloatTensor
of shape (1,)
, optional, returned when labels
is provided) — Language modeling loss.
logits (torch.FloatTensor
of shape (batch_size, sequence_length, config.vocab_size)
) — Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
past_key_values (tuple(tuple(torch.FloatTensor))
, optional, returned when use_cache=True
is passed or when config.use_cache=True
) — Tuple of tuple(torch.FloatTensor)
of length config.n_layers
, with each tuple having 2 tensors of shape (batch_size, num_heads, sequence_length, embed_size_per_head)
) and 2 additional tensors of shape (batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used (see past_key_values
input) to speed up sequential decoding.
decoder_hidden_states (tuple(torch.FloatTensor)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of torch.FloatTensor
(one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size)
.
Hidden-states of the decoder at the output of each layer plus the initial embedding outputs.
decoder_attentions (tuple(torch.FloatTensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of torch.FloatTensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
cross_attentions (tuple(torch.FloatTensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of torch.FloatTensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the decoder’s cross-attention layer, after the attention softmax, used to compute the weighted average in the cross-attention heads.
encoder_last_hidden_state (torch.FloatTensor
of shape (batch_size, sequence_length, hidden_size)
, optional) — Sequence of hidden-states at the output of the last layer of the encoder of the model.
encoder_hidden_states (tuple(torch.FloatTensor)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of torch.FloatTensor
(one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size)
.
Hidden-states of the encoder at the output of each layer plus the initial embedding outputs.
encoder_attentions (tuple(torch.FloatTensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of torch.FloatTensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
The MBartForConditionalGeneration forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.
Translation example:
Copied
Mask filling example:
Copied
( config )
Parameters
config (MBartConfig) — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.
MBART Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layer on top of the hidden-states output to compute span start logits
and span end logits
).
This model inherits from PreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)
This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
forward
( input_ids: Tensor = Noneattention_mask: typing.Optional[torch.Tensor] = Nonedecoder_input_ids: typing.Optional[torch.LongTensor] = Nonedecoder_attention_mask: typing.Optional[torch.LongTensor] = Nonehead_mask: typing.Optional[torch.Tensor] = Nonedecoder_head_mask: typing.Optional[torch.Tensor] = Nonecross_attn_head_mask: typing.Optional[torch.Tensor] = Noneencoder_outputs: typing.Optional[typing.List[torch.FloatTensor]] = Nonestart_positions: typing.Optional[torch.LongTensor] = Noneend_positions: typing.Optional[torch.LongTensor] = Noneinputs_embeds: typing.Optional[torch.FloatTensor] = Nonedecoder_inputs_embeds: typing.Optional[torch.FloatTensor] = Noneuse_cache: typing.Optional[bool] = Noneoutput_attentions: typing.Optional[bool] = Noneoutput_hidden_states: typing.Optional[bool] = Nonereturn_dict: typing.Optional[bool] = None ) → transformers.modeling_outputs.Seq2SeqQuestionAnsweringModelOutput or tuple(torch.FloatTensor)
Parameters
input_ids (torch.LongTensor
of shape (batch_size, sequence_length)
) — Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it.
Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
attention_mask (torch.Tensor
of shape (batch_size, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]
:
1 for tokens that are not masked,
0 for tokens that are masked.
decoder_input_ids (torch.LongTensor
of shape (batch_size, target_sequence_length)
, optional) — Indices of decoder input sequence tokens in the vocabulary.
Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
MBart uses a specific language id token as the starting token for decoder_input_ids
generation that varies according to source and target language, e.g. 25004 for en_XX, and 25003 for de_DE. If past_key_values
is used, optionally only the last decoder_input_ids
have to be input (see past_key_values
).
For translation and summarization training, decoder_input_ids
should be provided. If no decoder_input_ids
is provided, the model will create this tensor by shifting the input_ids
to the right for denoising pre-training following the paper.
decoder_attention_mask (torch.LongTensor
of shape (batch_size, target_sequence_length)
, optional) — Default behavior: generate a tensor that ignores pad tokens in decoder_input_ids
. Causal mask will also be used by default.
head_mask (torch.Tensor
of shape (encoder_layers, encoder_attention_heads)
, optional) — Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in [0, 1]
:
1 indicates the head is not masked,
0 indicates the head is masked.
decoder_head_mask (torch.Tensor
of shape (decoder_layers, decoder_attention_heads)
, optional) — Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in [0, 1]
:
1 indicates the head is not masked,
0 indicates the head is masked.
cross_attn_head_mask (torch.Tensor
of shape (decoder_layers, decoder_attention_heads)
, optional) — Mask to nullify selected heads of the cross-attention modules in the decoder. Mask values selected in [0, 1]
:
1 indicates the head is not masked,
0 indicates the head is masked.
encoder_outputs (tuple(tuple(torch.FloatTensor)
, optional) — Tuple consists of (last_hidden_state
, optional: hidden_states
, optional: attentions
) last_hidden_state
of shape (batch_size, sequence_length, hidden_size)
, optional) is a sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.
past_key_values (tuple(tuple(torch.FloatTensor))
, optional, returned when use_cache=True
is passed or when config.use_cache=True
) — Tuple of tuple(torch.FloatTensor)
of length config.n_layers
, with each tuple having 2 tensors of shape (batch_size, num_heads, sequence_length, embed_size_per_head)
) and 2 additional tensors of shape (batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used (see past_key_values
input) to speed up sequential decoding.
If past_key_values
are used, the user can optionally input only the last decoder_input_ids
(those that don’t have their past key value states given to this model) of shape (batch_size, 1)
instead of all decoder_input_ids
of shape (batch_size, sequence_length)
. inputs_embeds (torch.FloatTensor
of shape (batch_size, sequence_length, hidden_size)
, optional): Optionally, instead of passing input_ids
you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids
indices into associated vectors than the model’s internal embedding lookup matrix.
decoder_inputs_embeds (torch.FloatTensor
of shape (batch_size, target_sequence_length, hidden_size)
, optional) — Optionally, instead of passing decoder_input_ids
you can choose to directly pass an embedded representation. If past_key_values
is used, optionally only the last decoder_inputs_embeds
have to be input (see past_key_values
). This is useful if you want more control over how to convert decoder_input_ids
indices into associated vectors than the model’s internal embedding lookup matrix.
If decoder_input_ids
and decoder_inputs_embeds
are both unset, decoder_inputs_embeds
takes the value of inputs_embeds
.
use_cache (bool
, optional) — If set to True
, past_key_values
key value states are returned and can be used to speed up decoding (see past_key_values
).
output_attentions (bool
, optional) — Whether or not to return the attentions tensors of all attention layers. See attentions
under returned tensors for more detail.
output_hidden_states (bool
, optional) — Whether or not to return the hidden states of all layers. See hidden_states
under returned tensors for more detail.
return_dict (bool
, optional) — Whether or not to return a ModelOutput instead of a plain tuple.
start_positions (torch.LongTensor
of shape (batch_size,)
, optional) — Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (sequence_length). Position outside of the sequence are not taken into account for computing the loss.
end_positions (torch.LongTensor
of shape (batch_size,)
, optional) — Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (sequence_length). Position outside of the sequence are not taken into account for computing the loss.
Returns
transformers.modeling_outputs.Seq2SeqQuestionAnsweringModelOutput or tuple(torch.FloatTensor)
A transformers.modeling_outputs.Seq2SeqQuestionAnsweringModelOutput or a tuple of torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various elements depending on the configuration (MBartConfig) and inputs.
loss (torch.FloatTensor
of shape (1,)
, optional, returned when labels
is provided) — Total span extraction loss is the sum of a Cross-Entropy for the start and end positions.
start_logits (torch.FloatTensor
of shape (batch_size, sequence_length)
) — Span-start scores (before SoftMax).
end_logits (torch.FloatTensor
of shape (batch_size, sequence_length)
) — Span-end scores (before SoftMax).
past_key_values (tuple(tuple(torch.FloatTensor))
, optional, returned when use_cache=True
is passed or when config.use_cache=True
) — Tuple of tuple(torch.FloatTensor)
of length config.n_layers
, with each tuple having 2 tensors of shape (batch_size, num_heads, sequence_length, embed_size_per_head)
) and 2 additional tensors of shape (batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used (see past_key_values
input) to speed up sequential decoding.
decoder_hidden_states (tuple(torch.FloatTensor)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of torch.FloatTensor
(one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size)
.
Hidden-states of the decoder at the output of each layer plus the initial embedding outputs.
decoder_attentions (tuple(torch.FloatTensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of torch.FloatTensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
cross_attentions (tuple(torch.FloatTensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of torch.FloatTensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the decoder’s cross-attention layer, after the attention softmax, used to compute the weighted average in the cross-attention heads.
encoder_last_hidden_state (torch.FloatTensor
of shape (batch_size, sequence_length, hidden_size)
, optional) — Sequence of hidden-states at the output of the last layer of the encoder of the model.
encoder_hidden_states (tuple(torch.FloatTensor)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of torch.FloatTensor
(one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size)
.
Hidden-states of the encoder at the output of each layer plus the initial embedding outputs.
encoder_attentions (tuple(torch.FloatTensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of torch.FloatTensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
The MBartForQuestionAnswering forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.
Example:
Copied
( config: MBartConfig**kwargs )
Parameters
config (MBartConfig) — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.
MBart model with a sequence classification/head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks.
This model inherits from PreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)
This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
forward
( input_ids: LongTensor = Noneattention_mask: typing.Optional[torch.Tensor] = Nonedecoder_input_ids: typing.Optional[torch.LongTensor] = Nonedecoder_attention_mask: typing.Optional[torch.LongTensor] = Nonehead_mask: typing.Optional[torch.Tensor] = Nonedecoder_head_mask: typing.Optional[torch.Tensor] = Nonecross_attn_head_mask: typing.Optional[torch.Tensor] = Noneencoder_outputs: typing.Optional[typing.List[torch.FloatTensor]] = Noneinputs_embeds: typing.Optional[torch.FloatTensor] = Nonedecoder_inputs_embeds: typing.Optional[torch.FloatTensor] = Nonelabels: typing.Optional[torch.LongTensor] = Noneuse_cache: typing.Optional[bool] = Noneoutput_attentions: typing.Optional[bool] = Noneoutput_hidden_states: typing.Optional[bool] = Nonereturn_dict: typing.Optional[bool] = None ) → transformers.modeling_outputs.Seq2SeqSequenceClassifierOutput or tuple(torch.FloatTensor)
Parameters
input_ids (torch.LongTensor
of shape (batch_size, sequence_length)
) — Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it.
Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
attention_mask (torch.Tensor
of shape (batch_size, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]
:
1 for tokens that are not masked,
0 for tokens that are masked.
decoder_input_ids (torch.LongTensor
of shape (batch_size, target_sequence_length)
, optional) — Indices of decoder input sequence tokens in the vocabulary.
Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
MBart uses a specific language id token as the starting token for decoder_input_ids
generation that varies according to source and target language, e.g. 25004 for en_XX, and 25003 for de_DE. If past_key_values
is used, optionally only the last decoder_input_ids
have to be input (see past_key_values
).
For translation and summarization training, decoder_input_ids
should be provided. If no decoder_input_ids
is provided, the model will create this tensor by shifting the input_ids
to the right for denoising pre-training following the paper.
decoder_attention_mask (torch.LongTensor
of shape (batch_size, target_sequence_length)
, optional) — Default behavior: generate a tensor that ignores pad tokens in decoder_input_ids
. Causal mask will also be used by default.
head_mask (torch.Tensor
of shape (encoder_layers, encoder_attention_heads)
, optional) — Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in [0, 1]
:
1 indicates the head is not masked,
0 indicates the head is masked.
decoder_head_mask (torch.Tensor
of shape (decoder_layers, decoder_attention_heads)
, optional) — Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in [0, 1]
:
1 indicates the head is not masked,
0 indicates the head is masked.
cross_attn_head_mask (torch.Tensor
of shape (decoder_layers, decoder_attention_heads)
, optional) — Mask to nullify selected heads of the cross-attention modules in the decoder. Mask values selected in [0, 1]
:
1 indicates the head is not masked,
0 indicates the head is masked.
encoder_outputs (tuple(tuple(torch.FloatTensor)
, optional) — Tuple consists of (last_hidden_state
, optional: hidden_states
, optional: attentions
) last_hidden_state
of shape (batch_size, sequence_length, hidden_size)
, optional) is a sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.
past_key_values (tuple(tuple(torch.FloatTensor))
, optional, returned when use_cache=True
is passed or when config.use_cache=True
) — Tuple of tuple(torch.FloatTensor)
of length config.n_layers
, with each tuple having 2 tensors of shape (batch_size, num_heads, sequence_length, embed_size_per_head)
) and 2 additional tensors of shape (batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used (see past_key_values
input) to speed up sequential decoding.
If past_key_values
are used, the user can optionally input only the last decoder_input_ids
(those that don’t have their past key value states given to this model) of shape (batch_size, 1)
instead of all decoder_input_ids
of shape (batch_size, sequence_length)
. inputs_embeds (torch.FloatTensor
of shape (batch_size, sequence_length, hidden_size)
, optional): Optionally, instead of passing input_ids
you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids
indices into associated vectors than the model’s internal embedding lookup matrix.
decoder_inputs_embeds (torch.FloatTensor
of shape (batch_size, target_sequence_length, hidden_size)
, optional) — Optionally, instead of passing decoder_input_ids
you can choose to directly pass an embedded representation. If past_key_values
is used, optionally only the last decoder_inputs_embeds
have to be input (see past_key_values
). This is useful if you want more control over how to convert decoder_input_ids
indices into associated vectors than the model’s internal embedding lookup matrix.
If decoder_input_ids
and decoder_inputs_embeds
are both unset, decoder_inputs_embeds
takes the value of inputs_embeds
.
use_cache (bool
, optional) — If set to True
, past_key_values
key value states are returned and can be used to speed up decoding (see past_key_values
).
output_attentions (bool
, optional) — Whether or not to return the attentions tensors of all attention layers. See attentions
under returned tensors for more detail.
output_hidden_states (bool
, optional) — Whether or not to return the hidden states of all layers. See hidden_states
under returned tensors for more detail.
return_dict (bool
, optional) — Whether or not to return a ModelOutput instead of a plain tuple.
labels (torch.LongTensor
of shape (batch_size,)
, optional) — Labels for computing the sequence classification/regression loss. Indices should be in [0, ..., config.num_labels - 1]
. If config.num_labels > 1
a classification loss is computed (Cross-Entropy).
Returns
transformers.modeling_outputs.Seq2SeqSequenceClassifierOutput or tuple(torch.FloatTensor)
A transformers.modeling_outputs.Seq2SeqSequenceClassifierOutput or a tuple of torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various elements depending on the configuration (MBartConfig) and inputs.
loss (torch.FloatTensor
of shape (1,)
, optional, returned when label
is provided) — Classification (or regression if config.num_labels==1) loss.
logits (torch.FloatTensor
of shape (batch_size, config.num_labels)
) — Classification (or regression if config.num_labels==1) scores (before SoftMax).
past_key_values (tuple(tuple(torch.FloatTensor))
, optional, returned when use_cache=True
is passed or when config.use_cache=True
) — Tuple of tuple(torch.FloatTensor)
of length config.n_layers
, with each tuple having 2 tensors of shape (batch_size, num_heads, sequence_length, embed_size_per_head)
) and 2 additional tensors of shape (batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used (see past_key_values
input) to speed up sequential decoding.
decoder_hidden_states (tuple(torch.FloatTensor)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of torch.FloatTensor
(one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size)
.
Hidden-states of the decoder at the output of each layer plus the initial embedding outputs.
decoder_attentions (tuple(torch.FloatTensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of torch.FloatTensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
cross_attentions (tuple(torch.FloatTensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of torch.FloatTensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the decoder’s cross-attention layer, after the attention softmax, used to compute the weighted average in the cross-attention heads.
encoder_last_hidden_state (torch.FloatTensor
of shape (batch_size, sequence_length, hidden_size)
, optional) — Sequence of hidden-states at the output of the last layer of the encoder of the model.
encoder_hidden_states (tuple(torch.FloatTensor)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of torch.FloatTensor
(one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size)
.
Hidden-states of the encoder at the output of each layer plus the initial embedding outputs.
encoder_attentions (tuple(torch.FloatTensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of torch.FloatTensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
The MBartForSequenceClassification forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.
Example of single-label classification:
Copied
Example of multi-label classification:
Copied
( config )
forward
( input_ids: LongTensor = Noneattention_mask: typing.Optional[torch.Tensor] = Noneencoder_hidden_states: typing.Optional[torch.FloatTensor] = Noneencoder_attention_mask: typing.Optional[torch.FloatTensor] = Nonehead_mask: typing.Optional[torch.Tensor] = Nonecross_attn_head_mask: typing.Optional[torch.Tensor] = Nonepast_key_values: typing.Optional[typing.List[torch.FloatTensor]] = Noneinputs_embeds: typing.Optional[torch.FloatTensor] = Nonelabels: typing.Optional[torch.LongTensor] = Noneuse_cache: typing.Optional[bool] = Noneoutput_attentions: typing.Optional[bool] = Noneoutput_hidden_states: typing.Optional[bool] = Nonereturn_dict: typing.Optional[bool] = None ) → transformers.modeling_outputs.CausalLMOutputWithCrossAttentions or tuple(torch.FloatTensor)
Parameters
input_ids (torch.LongTensor
of shape (batch_size, sequence_length)
) — Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it.
Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
attention_mask (torch.Tensor
of shape (batch_size, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]
:
1 for tokens that are not masked,
0 for tokens that are masked.
encoder_hidden_states (torch.FloatTensor
of shape (batch_size, sequence_length, hidden_size)
, optional) — Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder.
encoder_attention_mask (torch.FloatTensor
of shape (batch_size, sequence_length)
, optional) — Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in [0, 1]
:
head_mask (torch.Tensor
of shape (decoder_layers, decoder_attention_heads)
, optional) — Mask to nullify selected heads of the attention modules. Mask values selected in [0, 1]
:
1 indicates the head is not masked,
0 indicates the head is masked.
cross_attn_head_mask (torch.Tensor
of shape (decoder_layers, decoder_attention_heads)
, optional) — Mask to nullify selected heads of the cross-attention modules. Mask values selected in [0, 1]
:
1 indicates the head is not masked,
0 indicates the head is masked.
past_key_values (tuple(tuple(torch.FloatTensor))
, optional, returned when use_cache=True
is passed or when config.use_cache=True
) — Tuple of tuple(torch.FloatTensor)
of length config.n_layers
, with each tuple having 2 tensors of shape (batch_size, num_heads, sequence_length, embed_size_per_head)
) and 2 additional tensors of shape (batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
. The two additional tensors are only required when the model is used as a decoder in a Sequence to Sequence model.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used (see past_key_values
input) to speed up sequential decoding.
If past_key_values
are used, the user can optionally input only the last decoder_input_ids
(those that don’t have their past key value states given to this model) of shape (batch_size, 1)
instead of all decoder_input_ids
of shape (batch_size, sequence_length)
.
labels (torch.LongTensor
of shape (batch_size, sequence_length)
, optional) — Labels for computing the masked language modeling loss. Indices should either be in [0, ..., config.vocab_size]
or -100 (see input_ids
docstring). Tokens with indices set to -100
are ignored (masked), the loss is only computed for the tokens with labels in [0, ..., config.vocab_size]
.
use_cache (bool
, optional) — If set to True
, past_key_values
key value states are returned and can be used to speed up decoding (see past_key_values
).
1 for tokens that are not masked,
0 for tokens that are masked.
output_attentions (bool
, optional) — Whether or not to return the attentions tensors of all attention layers. See attentions
under returned tensors for more detail.
output_hidden_states (bool
, optional) — Whether or not to return the hidden states of all layers. See hidden_states
under returned tensors for more detail.
return_dict (bool
, optional) — Whether or not to return a ModelOutput instead of a plain tuple.
Returns
transformers.modeling_outputs.CausalLMOutputWithCrossAttentions or tuple(torch.FloatTensor)
A transformers.modeling_outputs.CausalLMOutputWithCrossAttentions or a tuple of torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various elements depending on the configuration (MBartConfig) and inputs.
loss (torch.FloatTensor
of shape (1,)
, optional, returned when labels
is provided) — Language modeling loss (for next-token prediction).
logits (torch.FloatTensor
of shape (batch_size, sequence_length, config.vocab_size)
) — Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
hidden_states (tuple(torch.FloatTensor)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of torch.FloatTensor
(one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size)
.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (tuple(torch.FloatTensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of torch.FloatTensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
cross_attentions (tuple(torch.FloatTensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of torch.FloatTensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Cross attentions weights after the attention softmax, used to compute the weighted average in the cross-attention heads.
past_key_values (tuple(tuple(torch.FloatTensor))
, optional, returned when use_cache=True
is passed or when config.use_cache=True
) — Tuple of torch.FloatTensor
tuples of length config.n_layers
, with each tuple containing the cached key, value states of the self-attention and the cross-attention layers if model is used in encoder-decoder setting. Only relevant if config.is_decoder = True
.
Contains pre-computed hidden-states (key and values in the attention blocks) that can be used (see past_key_values
input) to speed up sequential decoding.
Example:
Copied
( *args**kwargs )
Parameters
config (MBartConfig) — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.
The bare MBART Model outputting raw hidden-states without any specific head on top. This model inherits from TFPreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)
This model is also a tf.keras.Model subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior.
TensorFlow models and layers in transformers
accept two formats as input:
having all inputs as keyword arguments (like PyTorch models), or
having all inputs as a list, tuple or dict in the first positional argument.
The reason the second format is supported is that Keras methods prefer this format when passing inputs to models and layers. Because of this support, when using methods like model.fit()
things should “just work” for you - just pass your inputs and labels in any format that model.fit()
supports! If, however, you want to use the second format outside of Keras methods like fit()
and predict()
, such as when creating your own layers or models with the Keras Functional
API, there are three possibilities you can use to gather all the input Tensors in the first positional argument:
a single Tensor with input_ids
only and nothing else: model(input_ids)
a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: model([input_ids, attention_mask])
or model([input_ids, attention_mask, token_type_ids])
a dictionary with one or several input Tensors associated to the input names given in the docstring: model({"input_ids": input_ids, "token_type_ids": token_type_ids})
Note that when creating models and layers with subclassing then you don’t need to worry about any of this, as you can just pass inputs like you would to any other Python function!
call
( input_ids: TFModelInputType = Noneattention_mask: tf.Tensor | None = Nonedecoder_input_ids: tf.Tensor | None = Nonedecoder_attention_mask: tf.Tensor | None = Nonedecoder_position_ids: tf.Tensor | None = Nonehead_mask: tf.Tensor | None = Nonedecoder_head_mask: tf.Tensor | None = Nonecross_attn_head_mask: tf.Tensor | None = Noneencoder_outputs: Optional[Union[Tuple, TFBaseModelOutput]] = Nonepast_key_values: Tuple[Tuple[tf.Tensor]] | None = Noneinputs_embeds: tf.Tensor | None = Nonedecoder_inputs_embeds: tf.Tensor | None = Noneuse_cache: Optional[bool] = Noneoutput_attentions: Optional[bool] = Noneoutput_hidden_states: Optional[bool] = Nonereturn_dict: Optional[bool] = Nonetraining: Optional[bool] = False**kwargs ) → transformers.modeling_tf_outputs.TFSeq2SeqModelOutput or tuple(tf.Tensor)
Parameters
input_ids (tf.Tensor
of shape (batch_size, sequence_length)
) — Indices of input sequence tokens in the vocabulary.
Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
attention_mask (tf.Tensor
of shape (batch_size, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]
:
1 for tokens that are not masked,
0 for tokens that are masked.
decoder_input_ids (tf.Tensor
of shape (batch_size, target_sequence_length)
, optional) — Indices of decoder input sequence tokens in the vocabulary.
Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
MBart uses a specific language id token as the starting token for decoder_input_ids
generation that varies according to source and target language, e.g. 25004 for en_XX, and 25003 for de_DE. If past_key_values
is used, optionally only the last decoder_input_ids
have to be input (see past_key_values
).
For translation and summarization training, decoder_input_ids
should be provided. If no decoder_input_ids
is provided, the model will create this tensor by shifting the input_ids
to the right for denoising pre-training following the paper.
decoder_attention_mask (tf.Tensor
of shape (batch_size, target_sequence_length)
, optional) — will be made by default and ignore pad tokens. It is not recommended to set this for most use cases.
decoder_position_ids (tf.Tensor
of shape (batch_size, sequence_length)
, optional) — Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1]
.
head_mask (tf.Tensor
of shape (encoder_layers, encoder_attention_heads)
, optional) — Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in [0, 1]
:
1 indicates the head is not masked,
0 indicates the head is masked.
decoder_head_mask (tf.Tensor
of shape (decoder_layers, decoder_attention_heads)
, optional) — Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in [0, 1]
:
1 indicates the head is not masked,
0 indicates the head is masked.
cross_attn_head_mask (tf.Tensor
of shape (decoder_layers, decoder_attention_heads)
, optional) — Mask to nullify selected heads of the cross-attention modules. Mask values selected in [0, 1]
:
1 indicates the head is not masked,
0 indicates the head is masked.
encoder_outputs (tf.FloatTensor
, optional) — hidden states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. of shape (batch_size, sequence_length, hidden_size)
is a sequence of
past_key_values (Tuple[Tuple[tf.Tensor]]
of length config.n_layers
) — contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If past_key_values
are used, the user can optionally input only the last decoder_input_ids
(those that don’t have their past key value states given to this model) of shape (batch_size, 1)
instead of all decoder_input_ids
of shape (batch_size, sequence_length)
.
use_cache (bool
, optional, defaults to True
) — If set to True
, past_key_values
key value states are returned and can be used to speed up decoding (see past_key_values
). Set to False
during training, True
during generation
output_attentions (bool
, optional) — Whether or not to return the attentions tensors of all attention layers. See attentions
under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead.
output_hidden_states (bool
, optional) — Whether or not to return the hidden states of all layers. See hidden_states
under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead.
return_dict (bool
, optional) — Whether or not to return a ModelOutput instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True.
training (bool
, optional, defaults to False
) — Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation).
Returns
transformers.modeling_tf_outputs.TFSeq2SeqModelOutput or tuple(tf.Tensor)
A transformers.modeling_tf_outputs.TFSeq2SeqModelOutput or a tuple of tf.Tensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various elements depending on the configuration (MBartConfig) and inputs.
last_hidden_state (tf.Tensor
of shape (batch_size, sequence_length, hidden_size)
) — Sequence of hidden-states at the output of the last layer of the decoder of the model.
If past_key_values
is used only the last hidden-state of the sequences of shape (batch_size, 1, hidden_size)
is output.
past_key_values (List[tf.Tensor]
, optional, returned when use_cache=True
is passed or when config.use_cache=True
) — List of tf.Tensor
of length config.n_layers
, with each tensor of shape (2, batch_size, num_heads, sequence_length, embed_size_per_head)
).
Contains pre-computed hidden-states (key and values in the attention blocks) of the decoder that can be used (see past_key_values
input) to speed up sequential decoding.
decoder_hidden_states (tuple(tf.Tensor)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of tf.Tensor
(one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size)
.
Hidden-states of the decoder at the output of each layer plus the initial embedding outputs.
decoder_attentions (tuple(tf.Tensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of tf.Tensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
cross_attentions (tuple(tf.Tensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of tf.Tensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the decoder’s cross-attention layer, after the attention softmax, used to compute the weighted average in the cross-attention heads.
encoder_last_hidden_state (tf.Tensor
of shape (batch_size, sequence_length, hidden_size)
, optional) — Sequence of hidden-states at the output of the last layer of the encoder of the model.
encoder_hidden_states (tuple(tf.Tensor)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of tf.Tensor
(one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size)
.
Hidden-states of the encoder at the output of each layer plus the initial embedding outputs.
encoder_attentions (tuple(tf.Tensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of tf.Tensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
The TFMBartModel forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.
Example:
Copied
( *args**kwargs )
Parameters
config (MBartConfig) — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.
The MBART Model with a language modeling head. Can be used for summarization, after fine-tuning the pretrained models. This model inherits from TFPreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)
This model is also a tf.keras.Model subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior.
TensorFlow models and layers in transformers
accept two formats as input:
having all inputs as keyword arguments (like PyTorch models), or
having all inputs as a list, tuple or dict in the first positional argument.
The reason the second format is supported is that Keras methods prefer this format when passing inputs to models and layers. Because of this support, when using methods like model.fit()
things should “just work” for you - just pass your inputs and labels in any format that model.fit()
supports! If, however, you want to use the second format outside of Keras methods like fit()
and predict()
, such as when creating your own layers or models with the Keras Functional
API, there are three possibilities you can use to gather all the input Tensors in the first positional argument:
a single Tensor with input_ids
only and nothing else: model(input_ids)
a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: model([input_ids, attention_mask])
or model([input_ids, attention_mask, token_type_ids])
a dictionary with one or several input Tensors associated to the input names given in the docstring: model({"input_ids": input_ids, "token_type_ids": token_type_ids})
Note that when creating models and layers with subclassing then you don’t need to worry about any of this, as you can just pass inputs like you would to any other Python function!
call
( input_ids: TFModelInputType = Noneattention_mask: tf.Tensor | None = Nonedecoder_input_ids: tf.Tensor | None = Nonedecoder_attention_mask: tf.Tensor | None = Nonedecoder_position_ids: tf.Tensor | None = Nonehead_mask: tf.Tensor | None = Nonedecoder_head_mask: tf.Tensor | None = Nonecross_attn_head_mask: tf.Tensor | None = Noneencoder_outputs: Optional[TFBaseModelOutput] = Nonepast_key_values: Tuple[Tuple[tf.Tensor]] = Noneinputs_embeds: tf.Tensor | None = Nonedecoder_inputs_embeds: tf.Tensor | None = Noneuse_cache: Optional[bool] = Noneoutput_attentions: Optional[bool] = Noneoutput_hidden_states: Optional[bool] = Nonereturn_dict: Optional[bool] = Nonelabels: tf.Tensor | None = Nonetraining: Optional[bool] = False ) → transformers.modeling_tf_outputs.TFSeq2SeqLMOutput or tuple(tf.Tensor)
Parameters
input_ids (tf.Tensor
of shape ({0})
) — Indices of input sequence tokens in the vocabulary.
Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
attention_mask (tf.Tensor
of shape ({0})
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]
:
1 for tokens that are not masked,
0 for tokens that are masked.
decoder_input_ids (tf.Tensor
of shape (batch_size, target_sequence_length)
, optional) — Indices of decoder input sequence tokens in the vocabulary.
Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
MBart uses a specific language id token as the starting token for decoder_input_ids
generation that varies according to source and target language, e.g. 25004 for en_XX, and 25003 for de_DE. If past_key_values
is used, optionally only the last decoder_input_ids
have to be input (see past_key_values
).
For translation and summarization training, decoder_input_ids
should be provided. If no decoder_input_ids
is provided, the model will create this tensor by shifting the input_ids
to the right for denoising pre-training following the paper.
decoder_attention_mask (tf.Tensor
of shape (batch_size, target_sequence_length)
, optional) — will be made by default and ignore pad tokens. It is not recommended to set this for most use cases.
decoder_position_ids (tf.Tensor
of shape (batch_size, sequence_length)
, optional) — Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1]
.
head_mask (tf.Tensor
of shape (encoder_layers, encoder_attention_heads)
, optional) — Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in [0, 1]
:
1 indicates the head is not masked,
0 indicates the head is masked.
decoder_head_mask (tf.Tensor
of shape (decoder_layers, decoder_attention_heads)
, optional) — Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in [0, 1]
:
1 indicates the head is not masked,
0 indicates the head is masked.
cross_attn_head_mask (tf.Tensor
of shape (decoder_layers, decoder_attention_heads)
, optional) — Mask to nullify selected heads of the cross-attention modules. Mask values selected in [0, 1]
:
1 indicates the head is not masked,
0 indicates the head is masked.
encoder_outputs (tf.FloatTensor
, optional) — hidden states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. of shape (batch_size, sequence_length, hidden_size)
is a sequence of
past_key_values (Tuple[Tuple[tf.Tensor]]
of length config.n_layers
) — contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If past_key_values
are used, the user can optionally input only the last decoder_input_ids
(those that don’t have their past key value states given to this model) of shape (batch_size, 1)
instead of all decoder_input_ids
of shape (batch_size, sequence_length)
.
use_cache (bool
, optional, defaults to True
) — If set to True
, past_key_values
key value states are returned and can be used to speed up decoding (see past_key_values
). Set to False
during training, True
during generation
output_attentions (bool
, optional) — Whether or not to return the attentions tensors of all attention layers. See attentions
under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead.
output_hidden_states (bool
, optional) — Whether or not to return the hidden states of all layers. See hidden_states
under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead.
return_dict (bool
, optional) — Whether or not to return a ModelOutput instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True.
training (bool
, optional, defaults to False
) — Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation).
labels (tf.Tensor
of shape (batch_size, sequence_length)
, optional) — Labels for computing the masked language modeling loss. Indices should either be in [0, ..., config.vocab_size]
or -100 (see input_ids
docstring). Tokens with indices set to -100
are ignored (masked), the loss is only computed for the tokens with labels in [0, ..., config.vocab_size]
.
Returns
transformers.modeling_tf_outputs.TFSeq2SeqLMOutput or tuple(tf.Tensor)
A transformers.modeling_tf_outputs.TFSeq2SeqLMOutput or a tuple of tf.Tensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various elements depending on the configuration (MBartConfig) and inputs.
loss (tf.Tensor
of shape (n,)
, optional, where n is the number of non-masked labels, returned when labels
is provided) — Language modeling loss.
logits (tf.Tensor
of shape (batch_size, sequence_length, config.vocab_size)
) — Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
past_key_values (List[tf.Tensor]
, optional, returned when use_cache=True
is passed or when config.use_cache=True
) — List of tf.Tensor
of length config.n_layers
, with each tensor of shape (2, batch_size, num_heads, sequence_length, embed_size_per_head)
).
Contains pre-computed hidden-states (key and values in the attention blocks) of the decoder that can be used (see past_key_values
input) to speed up sequential decoding.
decoder_hidden_states (tuple(tf.Tensor)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of tf.Tensor
(one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size)
.
Hidden-states of the decoder at the output of each layer plus the initial embedding outputs.
decoder_attentions (tuple(tf.Tensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of tf.Tensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
cross_attentions (tuple(tf.Tensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of tf.Tensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the decoder’s cross-attention layer, after the attention softmax, used to compute the weighted average in the cross-attention heads.
encoder_last_hidden_state (tf.Tensor
of shape (batch_size, sequence_length, hidden_size)
, optional) — Sequence of hidden-states at the output of the last layer of the encoder of the model.
encoder_hidden_states (tuple(tf.Tensor)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of tf.Tensor
(one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size)
.
Hidden-states of the encoder at the output of each layer plus the initial embedding outputs.
encoder_attentions (tuple(tf.Tensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of tf.Tensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
The TFMBartForConditionalGeneration forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.
Translation example:
Copied
Mask filling example:
Copied
( config: MBartConfiginput_shape: typing.Tuple[int] = (1, 1)seed: int = 0dtype: dtype = <class 'jax.numpy.float32'>_do_init: bool = True**kwargs )
Parameters
config (MBartConfig) — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.
dtype (jax.numpy.dtype
, optional, defaults to jax.numpy.float32
) — The data type of the computation. Can be one of jax.numpy.float32
, jax.numpy.float16
(on GPUs) and jax.numpy.bfloat16
(on TPUs).
This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If specified all the computation will be performed with the given dtype
.
Note that this only specifies the dtype of the computation and does not influence the dtype of model parameters.
If you wish to change the dtype of the model parameters, see to_fp16() and to_bf16().
The bare MBart Model transformer outputting raw hidden-states without any specific head on top. This model inherits from FlaxPreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)
This model is also a Flax Linen flax.nn.Module subclass. Use it as a regular Flax Module and refer to the Flax documentation for all matter related to general usage and behavior.
Finally, this model supports inherent JAX features such as:
__call__
( input_ids: Arrayattention_mask: typing.Optional[jax.Array] = Nonedecoder_input_ids: typing.Optional[jax.Array] = Nonedecoder_attention_mask: typing.Optional[jax.Array] = Noneposition_ids: typing.Optional[jax.Array] = Nonedecoder_position_ids: typing.Optional[jax.Array] = Noneoutput_attentions: typing.Optional[bool] = Noneoutput_hidden_states: typing.Optional[bool] = Nonereturn_dict: typing.Optional[bool] = Nonetrain: bool = Falseparams: dict = Nonedropout_rng: PRNGKey = None ) → transformers.modeling_flax_outputs.FlaxSeq2SeqModelOutput or tuple(torch.FloatTensor)
Parameters
input_ids (jnp.ndarray
of shape (batch_size, sequence_length)
) — Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it.
Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
attention_mask (jnp.ndarray
of shape (batch_size, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]
:
1 for tokens that are not masked,
0 for tokens that are masked.
decoder_input_ids (jnp.ndarray
of shape (batch_size, target_sequence_length)
, optional) — Indices of decoder input sequence tokens in the vocabulary.
Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
For translation and summarization training, decoder_input_ids
should be provided. If no decoder_input_ids
is provided, the model will create this tensor by shifting the input_ids
to the right for denoising pre-training following the paper.
decoder_attention_mask (jnp.ndarray
of shape (batch_size, target_sequence_length)
, optional) — Default behavior: generate a tensor that ignores pad tokens in decoder_input_ids
. Causal mask will also be used by default.
If you want to change padding behavior, you should modify to your needs. See diagram 1 in the paper for more information on the default strategy.
position_ids (numpy.ndarray
of shape (batch_size, sequence_length)
, optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1]
.
decoder_position_ids (numpy.ndarray
of shape (batch_size, sequence_length)
, optional) — Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1]
.
output_attentions (bool
, optional) — Whether or not to return the attentions tensors of all attention layers. See attentions
under returned tensors for more detail.
output_hidden_states (bool
, optional) — Whether or not to return the hidden states of all layers. See hidden_states
under returned tensors for more detail.
return_dict (bool
, optional) — Whether or not to return a ModelOutput instead of a plain tuple.
Returns
transformers.modeling_flax_outputs.FlaxSeq2SeqModelOutput or tuple(torch.FloatTensor)
A transformers.modeling_flax_outputs.FlaxSeq2SeqModelOutput or a tuple of torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various elements depending on the configuration (MBartConfig) and inputs.
last_hidden_state (jnp.ndarray
of shape (batch_size, sequence_length, hidden_size)
) — Sequence of hidden-states at the output of the last layer of the decoder of the model.
If past_key_values
is used only the last hidden-state of the sequences of shape (batch_size, 1, hidden_size)
is output.
past_key_values (tuple(tuple(jnp.ndarray))
, optional, returned when use_cache=True
is passed or when config.use_cache=True
) — Tuple of tuple(jnp.ndarray)
of length config.n_layers
, with each tuple having 2 tensors of shape (batch_size, num_heads, sequence_length, embed_size_per_head)
) and 2 additional tensors of shape (batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used (see past_key_values
input) to speed up sequential decoding.
decoder_hidden_states (tuple(jnp.ndarray)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of jnp.ndarray
(one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size)
.
Hidden-states of the decoder at the output of each layer plus the initial embedding outputs.
decoder_attentions (tuple(jnp.ndarray)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of jnp.ndarray
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
cross_attentions (tuple(jnp.ndarray)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of jnp.ndarray
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the decoder’s cross-attention layer, after the attention softmax, used to compute the weighted average in the cross-attention heads.
encoder_last_hidden_state (jnp.ndarray
of shape (batch_size, sequence_length, hidden_size)
, optional) — Sequence of hidden-states at the output of the last layer of the encoder of the model.
encoder_hidden_states (tuple(jnp.ndarray)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of jnp.ndarray
(one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size)
.
Hidden-states of the encoder at the output of each layer plus the initial embedding outputs.
encoder_attentions (tuple(jnp.ndarray)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of jnp.ndarray
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
The FlaxMBartPreTrainedModel
forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.
Example:
Copied
encode
( input_ids: Arrayattention_mask: typing.Optional[jax.Array] = Noneposition_ids: typing.Optional[jax.Array] = Noneoutput_attentions: typing.Optional[bool] = Noneoutput_hidden_states: typing.Optional[bool] = Nonereturn_dict: typing.Optional[bool] = Nonetrain: bool = Falseparams: dict = Nonedropout_rng: PRNGKey = None ) → transformers.modeling_flax_outputs.FlaxBaseModelOutput or tuple(torch.FloatTensor)
Parameters
input_ids (jnp.ndarray
of shape (batch_size, sequence_length)
) — Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it.
Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
attention_mask (jnp.ndarray
of shape (batch_size, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]
:
1 for tokens that are not masked,
0 for tokens that are masked.
position_ids (numpy.ndarray
of shape (batch_size, sequence_length)
, optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1]
.
output_attentions (bool
, optional) — Whether or not to return the attentions tensors of all attention layers. See attentions
under returned tensors for more detail.
output_hidden_states (bool
, optional) — Whether or not to return the hidden states of all layers. See hidden_states
under returned tensors for more detail.
return_dict (bool
, optional) — Whether or not to return a ModelOutput instead of a plain tuple.
Returns
transformers.modeling_flax_outputs.FlaxBaseModelOutput or tuple(torch.FloatTensor)
A transformers.modeling_flax_outputs.FlaxBaseModelOutput or a tuple of torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various elements depending on the configuration (<class 'transformers.models.mbart.configuration_mbart.MBartConfig'>
) and inputs.
last_hidden_state (jnp.ndarray
of shape (batch_size, sequence_length, hidden_size)
) — Sequence of hidden-states at the output of the last layer of the model.
hidden_states (tuple(jnp.ndarray)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of jnp.ndarray
(one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size)
.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (tuple(jnp.ndarray)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of jnp.ndarray
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
Example:
Copied
decode
( decoder_input_idsencoder_outputsencoder_attention_mask: typing.Optional[jax.Array] = Nonedecoder_attention_mask: typing.Optional[jax.Array] = Nonedecoder_position_ids: typing.Optional[jax.Array] = Nonepast_key_values: dict = Noneoutput_attentions: typing.Optional[bool] = Noneoutput_hidden_states: typing.Optional[bool] = Nonereturn_dict: typing.Optional[bool] = Nonetrain: bool = Falseparams: dict = Nonedropout_rng: PRNGKey = None ) → transformers.modeling_flax_outputs.FlaxBaseModelOutputWithPastAndCrossAttentions or tuple(torch.FloatTensor)
Parameters
decoder_input_ids (jnp.ndarray
of shape (batch_size, target_sequence_length)
) — Indices of decoder input sequence tokens in the vocabulary.
Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
For translation and summarization training, decoder_input_ids
should be provided. If no decoder_input_ids
is provided, the model will create this tensor by shifting the input_ids
to the right for denoising pre-training following the paper.
encoder_outputs (tuple(tuple(jnp.ndarray)
) — Tuple consists of (last_hidden_state
, optional: hidden_states
, optional: attentions
) last_hidden_state
of shape (batch_size, sequence_length, hidden_size)
, optional) is a sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.
encoder_attention_mask (jnp.ndarray
of shape (batch_size, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]
:
1 for tokens that are not masked,
0 for tokens that are masked.
decoder_attention_mask (jnp.ndarray
of shape (batch_size, target_sequence_length)
, optional) — Default behavior: generate a tensor that ignores pad tokens in decoder_input_ids
. Causal mask will also be used by default.
If you want to change padding behavior, you should modify to your needs. See diagram 1 in the paper for more information on the default strategy.
decoder_position_ids (numpy.ndarray
of shape (batch_size, sequence_length)
, optional) — Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1]
.
past_key_values (Dict[str, np.ndarray]
, optional, returned by init_cache
or when passing previous past_key_values
) — Dictionary of pre-computed hidden-states (key and values in the attention blocks) that can be used for fast auto-regressive decoding. Pre-computed key and value hidden-states are of shape [batch_size, max_length].
output_attentions (bool
, optional) — Whether or not to return the attentions tensors of all attention layers. See attentions
under returned tensors for more detail.
output_hidden_states (bool
, optional) — Whether or not to return the hidden states of all layers. See hidden_states
under returned tensors for more detail.
return_dict (bool
, optional) — Whether or not to return a ModelOutput instead of a plain tuple.
Returns
transformers.modeling_flax_outputs.FlaxBaseModelOutputWithPastAndCrossAttentions or tuple(torch.FloatTensor)
A transformers.modeling_flax_outputs.FlaxBaseModelOutputWithPastAndCrossAttentions or a tuple of torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various elements depending on the configuration (<class 'transformers.models.mbart.configuration_mbart.MBartConfig'>
) and inputs.
last_hidden_state (jnp.ndarray
of shape (batch_size, sequence_length, hidden_size)
) — Sequence of hidden-states at the output of the last layer of the model.
If past_key_values
is used only the last hidden-state of the sequences of shape (batch_size, 1, hidden_size)
is output.
past_key_values (tuple(tuple(jnp.ndarray))
, optional, returned when use_cache=True
is passed or when config.use_cache=True
) — Tuple of tuple(jnp.ndarray)
of length config.n_layers
, with each tuple having 2 tensors of shape (batch_size, num_heads, sequence_length, embed_size_per_head)
) and optionally if config.is_encoder_decoder=True
2 additional tensors of shape (batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
.
Contains pre-computed hidden-states (key and values in the self-attention blocks and optionally if config.is_encoder_decoder=True
in the cross-attention blocks) that can be used (see past_key_values
input) to speed up sequential decoding.
hidden_states (tuple(jnp.ndarray)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of jnp.ndarray
(one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size)
.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (tuple(jnp.ndarray)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of jnp.ndarray
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
cross_attentions (tuple(jnp.ndarray)
, optional, returned when output_attentions=True
and config.add_cross_attention=True
is passed or when config.output_attentions=True
) — Tuple of jnp.ndarray
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the decoder’s cross-attention layer, after the attention softmax, used to compute the weighted average in the cross-attention heads.
Example:
Copied
( config: MBartConfiginput_shape: typing.Tuple[int] = (1, 1)seed: int = 0dtype: dtype = <class 'jax.numpy.float32'>_do_init: bool = True**kwargs )
Parameters
config (MBartConfig) — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.
dtype (jax.numpy.dtype
, optional, defaults to jax.numpy.float32
) — The data type of the computation. Can be one of jax.numpy.float32
, jax.numpy.float16
(on GPUs) and jax.numpy.bfloat16
(on TPUs).
This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If specified all the computation will be performed with the given dtype
.
Note that this only specifies the dtype of the computation and does not influence the dtype of model parameters.
If you wish to change the dtype of the model parameters, see to_fp16() and to_bf16().
The MMBart Model with a language modeling head. Can be used for summarization. This model inherits from FlaxPreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)
This model is also a Flax Linen flax.nn.Module subclass. Use it as a regular Flax Module and refer to the Flax documentation for all matter related to general usage and behavior.
Finally, this model supports inherent JAX features such as:
__call__
( input_ids: Arrayattention_mask: typing.Optional[jax.Array] = Nonedecoder_input_ids: typing.Optional[jax.Array] = Nonedecoder_attention_mask: typing.Optional[jax.Array] = Noneposition_ids: typing.Optional[jax.Array] = Nonedecoder_position_ids: typing.Optional[jax.Array] = Noneoutput_attentions: typing.Optional[bool] = Noneoutput_hidden_states: typing.Optional[bool] = Nonereturn_dict: typing.Optional[bool] = Nonetrain: bool = Falseparams: dict = Nonedropout_rng: PRNGKey = None ) → transformers.modeling_flax_outputs.FlaxSeq2SeqLMOutput or tuple(torch.FloatTensor)
Parameters
input_ids (jnp.ndarray
of shape (batch_size, sequence_length)
) — Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it.
Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
attention_mask (jnp.ndarray
of shape (batch_size, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]
:
1 for tokens that are not masked,
0 for tokens that are masked.
decoder_input_ids (jnp.ndarray
of shape (batch_size, target_sequence_length)
, optional) — Indices of decoder input sequence tokens in the vocabulary.
Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
For translation and summarization training, decoder_input_ids
should be provided. If no decoder_input_ids
is provided, the model will create this tensor by shifting the input_ids
to the right for denoising pre-training following the paper.
decoder_attention_mask (jnp.ndarray
of shape (batch_size, target_sequence_length)
, optional) — Default behavior: generate a tensor that ignores pad tokens in decoder_input_ids
. Causal mask will also be used by default.
If you want to change padding behavior, you should modify to your needs. See diagram 1 in the paper for more information on the default strategy.
position_ids (numpy.ndarray
of shape (batch_size, sequence_length)
, optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1]
.
decoder_position_ids (numpy.ndarray
of shape (batch_size, sequence_length)
, optional) — Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1]
.
output_attentions (bool
, optional) — Whether or not to return the attentions tensors of all attention layers. See attentions
under returned tensors for more detail.
output_hidden_states (bool
, optional) — Whether or not to return the hidden states of all layers. See hidden_states
under returned tensors for more detail.
return_dict (bool
, optional) — Whether or not to return a ModelOutput instead of a plain tuple.
Returns
transformers.modeling_flax_outputs.FlaxSeq2SeqLMOutput or tuple(torch.FloatTensor)
A transformers.modeling_flax_outputs.FlaxSeq2SeqLMOutput or a tuple of torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various elements depending on the configuration (MBartConfig) and inputs.
logits (jnp.ndarray
of shape (batch_size, sequence_length, config.vocab_size)
) — Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
past_key_values (tuple(tuple(jnp.ndarray))
, optional, returned when use_cache=True
is passed or when config.use_cache=True
) — Tuple of tuple(jnp.ndarray)
of length config.n_layers
, with each tuple having 2 tensors of shape (batch_size, num_heads, sequence_length, embed_size_per_head)
) and 2 additional tensors of shape (batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used (see past_key_values
input) to speed up sequential decoding.
decoder_hidden_states (tuple(jnp.ndarray)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of jnp.ndarray
(one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size)
.
Hidden-states of the decoder at the output of each layer plus the initial embedding outputs.
decoder_attentions (tuple(jnp.ndarray)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of jnp.ndarray
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
cross_attentions (tuple(jnp.ndarray)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of jnp.ndarray
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the decoder’s cross-attention layer, after the attention softmax, used to compute the weighted average in the cross-attention heads.
encoder_last_hidden_state (jnp.ndarray
of shape (batch_size, sequence_length, hidden_size)
, optional) — Sequence of hidden-states at the output of the last layer of the encoder of the model.
encoder_hidden_states (tuple(jnp.ndarray)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of jnp.ndarray
(one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size)
.
Hidden-states of the encoder at the output of each layer plus the initial embedding outputs.
encoder_attentions (tuple(jnp.ndarray)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of jnp.ndarray
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
The FlaxMBartPreTrainedModel
forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.
Summarization example:
Copied
Mask filling example:
Copied
encode
( input_ids: Arrayattention_mask: typing.Optional[jax.Array] = Noneposition_ids: typing.Optional[jax.Array] = Noneoutput_attentions: typing.Optional[bool] = Noneoutput_hidden_states: typing.Optional[bool] = Nonereturn_dict: typing.Optional[bool] = Nonetrain: bool = Falseparams: dict = Nonedropout_rng: PRNGKey = None ) → transformers.modeling_flax_outputs.FlaxBaseModelOutput or tuple(torch.FloatTensor)
Parameters
input_ids (jnp.ndarray
of shape (batch_size, sequence_length)
) — Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it.
Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
attention_mask (jnp.ndarray
of shape (batch_size, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]
:
1 for tokens that are not masked,
0 for tokens that are masked.
position_ids (numpy.ndarray
of shape (batch_size, sequence_length)
, optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1]
.
output_attentions (bool
, optional) — Whether or not to return the attentions tensors of all attention layers. See attentions
under returned tensors for more detail.
output_hidden_states (bool
, optional) — Whether or not to return the hidden states of all layers. See hidden_states
under returned tensors for more detail.
return_dict (bool
, optional) — Whether or not to return a ModelOutput instead of a plain tuple.
Returns
transformers.modeling_flax_outputs.FlaxBaseModelOutput or tuple(torch.FloatTensor)
A transformers.modeling_flax_outputs.FlaxBaseModelOutput or a tuple of torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various elements depending on the configuration (<class 'transformers.models.mbart.configuration_mbart.MBartConfig'>
) and inputs.
last_hidden_state (jnp.ndarray
of shape (batch_size, sequence_length, hidden_size)
) — Sequence of hidden-states at the output of the last layer of the model.
hidden_states (tuple(jnp.ndarray)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of jnp.ndarray
(one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size)
.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (tuple(jnp.ndarray)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of jnp.ndarray
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
Example:
Copied
decode
( decoder_input_idsencoder_outputsencoder_attention_mask: typing.Optional[jax.Array] = Nonedecoder_attention_mask: typing.Optional[jax.Array] = Nonedecoder_position_ids: typing.Optional[jax.Array] = Nonepast_key_values: dict = Noneoutput_attentions: typing.Optional[bool] = Noneoutput_hidden_states: typing.Optional[bool] = Nonereturn_dict: typing.Optional[bool] = Nonetrain: bool = Falseparams: dict = Nonedropout_rng: PRNGKey = None ) → transformers.modeling_flax_outputs.FlaxCausalLMOutputWithCrossAttentions or tuple(torch.FloatTensor)
Parameters
decoder_input_ids (jnp.ndarray
of shape (batch_size, target_sequence_length)
) — Indices of decoder input sequence tokens in the vocabulary.
Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
For translation and summarization training, decoder_input_ids
should be provided. If no decoder_input_ids
is provided, the model will create this tensor by shifting the input_ids
to the right for denoising pre-training following the paper.
encoder_outputs (tuple(tuple(jnp.ndarray)
) — Tuple consists of (last_hidden_state
, optional: hidden_states
, optional: attentions
) last_hidden_state
of shape (batch_size, sequence_length, hidden_size)
, optional) is a sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.
encoder_attention_mask (jnp.ndarray
of shape (batch_size, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]
:
1 for tokens that are not masked,
0 for tokens that are masked.
decoder_attention_mask (jnp.ndarray
of shape (batch_size, target_sequence_length)
, optional) — Default behavior: generate a tensor that ignores pad tokens in decoder_input_ids
. Causal mask will also be used by default.
If you want to change padding behavior, you should modify to your needs. See diagram 1 in the paper for more information on the default strategy.
decoder_position_ids (numpy.ndarray
of shape (batch_size, sequence_length)
, optional) — Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1]
.
past_key_values (Dict[str, np.ndarray]
, optional, returned by init_cache
or when passing previous past_key_values
) — Dictionary of pre-computed hidden-states (key and values in the attention blocks) that can be used for fast auto-regressive decoding. Pre-computed key and value hidden-states are of shape [batch_size, max_length].
output_attentions (bool
, optional) — Whether or not to return the attentions tensors of all attention layers. See attentions
under returned tensors for more detail.
output_hidden_states (bool
, optional) — Whether or not to return the hidden states of all layers. See hidden_states
under returned tensors for more detail.
return_dict (bool
, optional) — Whether or not to return a ModelOutput instead of a plain tuple.
Returns
transformers.modeling_flax_outputs.FlaxCausalLMOutputWithCrossAttentions or tuple(torch.FloatTensor)
A transformers.modeling_flax_outputs.FlaxCausalLMOutputWithCrossAttentions or a tuple of torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various elements depending on the configuration (<class 'transformers.models.mbart.configuration_mbart.MBartConfig'>
) and inputs.
logits (jnp.ndarray
of shape (batch_size, sequence_length, config.vocab_size)
) — Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
hidden_states (tuple(jnp.ndarray)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of jnp.ndarray
(one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size)
.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (tuple(jnp.ndarray)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of jnp.ndarray
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
cross_attentions (tuple(jnp.ndarray)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of jnp.ndarray
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Cross attentions weights after the attention softmax, used to compute the weighted average in the cross-attention heads.
past_key_values (tuple(tuple(jnp.ndarray))
, optional, returned when use_cache=True
is passed or when config.use_cache=True
) — Tuple of jnp.ndarray
tuples of length config.n_layers
, with each tuple containing the cached key, value states of the self-attention and the cross-attention layers if model is used in encoder-decoder setting. Only relevant if config.is_decoder = True
.
Contains pre-computed hidden-states (key and values in the attention blocks) that can be used (see past_key_values
input) to speed up sequential decoding.
Example:
Copied
( config: MBartConfiginput_shape: typing.Tuple[int] = (1, 1)seed: int = 0dtype: dtype = <class 'jax.numpy.float32'>_do_init: bool = True**kwargs )
Parameters
config (MBartConfig) — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.
dtype (jax.numpy.dtype
, optional, defaults to jax.numpy.float32
) — The data type of the computation. Can be one of jax.numpy.float32
, jax.numpy.float16
(on GPUs) and jax.numpy.bfloat16
(on TPUs).
This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If specified all the computation will be performed with the given dtype
.
Note that this only specifies the dtype of the computation and does not influence the dtype of model parameters.
If you wish to change the dtype of the model parameters, see to_fp16() and to_bf16().
MBart model with a sequence classification/head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks.
This model inherits from FlaxPreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)
This model is also a Flax Linen flax.nn.Module subclass. Use it as a regular Flax Module and refer to the Flax documentation for all matter related to general usage and behavior.
Finally, this model supports inherent JAX features such as:
__call__
( input_ids: Arrayattention_mask: typing.Optional[jax.Array] = Nonedecoder_input_ids: typing.Optional[jax.Array] = Nonedecoder_attention_mask: typing.Optional[jax.Array] = Noneposition_ids: typing.Optional[jax.Array] = Nonedecoder_position_ids: typing.Optional[jax.Array] = Noneoutput_attentions: typing.Optional[bool] = Noneoutput_hidden_states: typing.Optional[bool] = Nonereturn_dict: typing.Optional[bool] = Nonetrain: bool = Falseparams: dict = Nonedropout_rng: PRNGKey = None ) → transformers.modeling_flax_outputs.FlaxSeq2SeqSequenceClassifierOutput or tuple(torch.FloatTensor)
Parameters
input_ids (jnp.ndarray
of shape (batch_size, sequence_length)
) — Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it.
Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
attention_mask (jnp.ndarray
of shape (batch_size, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]
:
1 for tokens that are not masked,
0 for tokens that are masked.
decoder_input_ids (jnp.ndarray
of shape (batch_size, target_sequence_length)
, optional) — Indices of decoder input sequence tokens in the vocabulary.
Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
For translation and summarization training, decoder_input_ids
should be provided. If no decoder_input_ids
is provided, the model will create this tensor by shifting the input_ids
to the right for denoising pre-training following the paper.
decoder_attention_mask (jnp.ndarray
of shape (batch_size, target_sequence_length)
, optional) — Default behavior: generate a tensor that ignores pad tokens in decoder_input_ids
. Causal mask will also be used by default.
If you want to change padding behavior, you should modify to your needs. See diagram 1 in the paper for more information on the default strategy.
position_ids (numpy.ndarray
of shape (batch_size, sequence_length)
, optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1]
.
decoder_position_ids (numpy.ndarray
of shape (batch_size, sequence_length)
, optional) — Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1]
.
output_attentions (bool
, optional) — Whether or not to return the attentions tensors of all attention layers. See attentions
under returned tensors for more detail.
output_hidden_states (bool
, optional) — Whether or not to return the hidden states of all layers. See hidden_states
under returned tensors for more detail.
return_dict (bool
, optional) — Whether or not to return a ModelOutput instead of a plain tuple.
Returns
transformers.modeling_flax_outputs.FlaxSeq2SeqSequenceClassifierOutput or tuple(torch.FloatTensor)
A transformers.modeling_flax_outputs.FlaxSeq2SeqSequenceClassifierOutput or a tuple of torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various elements depending on the configuration (MBartConfig) and inputs.
logits (jnp.ndarray
of shape (batch_size, config.num_labels)
) — Classification (or regression if config.num_labels==1) scores (before SoftMax).
past_key_values (tuple(tuple(jnp.ndarray))
, optional, returned when use_cache=True
is passed or when config.use_cache=True
) — Tuple of tuple(jnp.ndarray)
of length config.n_layers
, with each tuple having 2 tensors of shape (batch_size, num_heads, sequence_length, embed_size_per_head)
) and 2 additional tensors of shape (batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used (see past_key_values
input) to speed up sequential decoding.
decoder_hidden_states (tuple(jnp.ndarray)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of jnp.ndarray
(one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size)
.
Hidden-states of the decoder at the output of each layer plus the initial embedding outputs.
decoder_attentions (tuple(jnp.ndarray)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of jnp.ndarray
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
cross_attentions (tuple(jnp.ndarray)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of jnp.ndarray
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the decoder’s cross-attention layer, after the attention softmax, used to compute the weighted average in the cross-attention heads.
encoder_last_hidden_state (jnp.ndarray
of shape (batch_size, sequence_length, hidden_size)
, optional) — Sequence of hidden-states at the output of the last layer of the encoder of the model.
encoder_hidden_states (tuple(jnp.ndarray)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of jnp.ndarray
(one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size)
.
Hidden-states of the encoder at the output of each layer plus the initial embedding outputs.
encoder_attentions (tuple(jnp.ndarray)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of jnp.ndarray
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
The FlaxMBartPreTrainedModel
forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.
Example:
Copied
encode
( input_ids: Arrayattention_mask: typing.Optional[jax.Array] = Noneposition_ids: typing.Optional[jax.Array] = Noneoutput_attentions: typing.Optional[bool] = Noneoutput_hidden_states: typing.Optional[bool] = Nonereturn_dict: typing.Optional[bool] = Nonetrain: bool = Falseparams: dict = Nonedropout_rng: PRNGKey = None ) → transformers.modeling_flax_outputs.FlaxBaseModelOutput or tuple(torch.FloatTensor)
Parameters
input_ids (jnp.ndarray
of shape (batch_size, sequence_length)
) — Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it.
Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
attention_mask (jnp.ndarray
of shape (batch_size, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]
:
1 for tokens that are not masked,
0 for tokens that are masked.
position_ids (numpy.ndarray
of shape (batch_size, sequence_length)
, optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1]
.
output_attentions (bool
, optional) — Whether or not to return the attentions tensors of all attention layers. See attentions
under returned tensors for more detail.
output_hidden_states (bool
, optional) — Whether or not to return the hidden states of all layers. See hidden_states
under returned tensors for more detail.
return_dict (bool
, optional) — Whether or not to return a ModelOutput instead of a plain tuple.
Returns
transformers.modeling_flax_outputs.FlaxBaseModelOutput or tuple(torch.FloatTensor)
A transformers.modeling_flax_outputs.FlaxBaseModelOutput or a tuple of torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various elements depending on the configuration (<class 'transformers.models.mbart.configuration_mbart.MBartConfig'>
) and inputs.
last_hidden_state (jnp.ndarray
of shape (batch_size, sequence_length, hidden_size)
) — Sequence of hidden-states at the output of the last layer of the model.
hidden_states (tuple(jnp.ndarray)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of jnp.ndarray
(one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size)
.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (tuple(jnp.ndarray)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of jnp.ndarray
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
Example:
Copied
decode
( decoder_input_idsencoder_outputsencoder_attention_mask: typing.Optional[jax.Array] = Nonedecoder_attention_mask: typing.Optional[jax.Array] = Nonedecoder_position_ids: typing.Optional[jax.Array] = Nonepast_key_values: dict = Noneoutput_attentions: typing.Optional[bool] = Noneoutput_hidden_states: typing.Optional[bool] = Nonereturn_dict: typing.Optional[bool] = Nonetrain: bool = Falseparams: dict = Nonedropout_rng: PRNGKey = None ) → transformers.modeling_flax_outputs.FlaxBaseModelOutputWithPastAndCrossAttentions or tuple(torch.FloatTensor)
Parameters
decoder_input_ids (jnp.ndarray
of shape (batch_size, target_sequence_length)
) — Indices of decoder input sequence tokens in the vocabulary.
Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
For translation and summarization training, decoder_input_ids
should be provided. If no decoder_input_ids
is provided, the model will create this tensor by shifting the input_ids
to the right for denoising pre-training following the paper.
encoder_outputs (tuple(tuple(jnp.ndarray)
) — Tuple consists of (last_hidden_state
, optional: hidden_states
, optional: attentions
) last_hidden_state
of shape (batch_size, sequence_length, hidden_size)
, optional) is a sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.
encoder_attention_mask (jnp.ndarray
of shape (batch_size, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]
:
1 for tokens that are not masked,
0 for tokens that are masked.
decoder_attention_mask (jnp.ndarray
of shape (batch_size, target_sequence_length)
, optional) — Default behavior: generate a tensor that ignores pad tokens in decoder_input_ids
. Causal mask will also be used by default.
If you want to change padding behavior, you should modify to your needs. See diagram 1 in the paper for more information on the default strategy.
decoder_position_ids (numpy.ndarray
of shape (batch_size, sequence_length)
, optional) — Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1]
.
past_key_values (Dict[str, np.ndarray]
, optional, returned by init_cache
or when passing previous past_key_values
) — Dictionary of pre-computed hidden-states (key and values in the attention blocks) that can be used for fast auto-regressive decoding. Pre-computed key and value hidden-states are of shape [batch_size, max_length].
output_attentions (bool
, optional) — Whether or not to return the attentions tensors of all attention layers. See attentions
under returned tensors for more detail.
output_hidden_states (bool
, optional) — Whether or not to return the hidden states of all layers. See hidden_states
under returned tensors for more detail.
return_dict (bool
, optional) — Whether or not to return a ModelOutput instead of a plain tuple.
Returns
transformers.modeling_flax_outputs.FlaxBaseModelOutputWithPastAndCrossAttentions or tuple(torch.FloatTensor)
A transformers.modeling_flax_outputs.FlaxBaseModelOutputWithPastAndCrossAttentions or a tuple of torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various elements depending on the configuration (<class 'transformers.models.mbart.configuration_mbart.MBartConfig'>
) and inputs.
last_hidden_state (jnp.ndarray
of shape (batch_size, sequence_length, hidden_size)
) — Sequence of hidden-states at the output of the last layer of the model.
If past_key_values
is used only the last hidden-state of the sequences of shape (batch_size, 1, hidden_size)
is output.
past_key_values (tuple(tuple(jnp.ndarray))
, optional, returned when use_cache=True
is passed or when config.use_cache=True
) — Tuple of tuple(jnp.ndarray)
of length config.n_layers
, with each tuple having 2 tensors of shape (batch_size, num_heads, sequence_length, embed_size_per_head)
) and optionally if config.is_encoder_decoder=True
2 additional tensors of shape (batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
.
Contains pre-computed hidden-states (key and values in the self-attention blocks and optionally if config.is_encoder_decoder=True
in the cross-attention blocks) that can be used (see past_key_values
input) to speed up sequential decoding.
hidden_states (tuple(jnp.ndarray)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of jnp.ndarray
(one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size)
.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (tuple(jnp.ndarray)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of jnp.ndarray
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
cross_attentions (tuple(jnp.ndarray)
, optional, returned when output_attentions=True
and config.add_cross_attention=True
is passed or when config.output_attentions=True
) — Tuple of jnp.ndarray
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the decoder’s cross-attention layer, after the attention softmax, used to compute the weighted average in the cross-attention heads.
Example:
Copied
( config: MBartConfiginput_shape: typing.Tuple[int] = (1, 1)seed: int = 0dtype: dtype = <class 'jax.numpy.float32'>_do_init: bool = True**kwargs )
Parameters
config (MBartConfig) — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.
dtype (jax.numpy.dtype
, optional, defaults to jax.numpy.float32
) — The data type of the computation. Can be one of jax.numpy.float32
, jax.numpy.float16
(on GPUs) and jax.numpy.bfloat16
(on TPUs).
This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If specified all the computation will be performed with the given dtype
.
Note that this only specifies the dtype of the computation and does not influence the dtype of model parameters.
If you wish to change the dtype of the model parameters, see to_fp16() and to_bf16().
MBart Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layer on top of the hidden-states output to compute span start logits
and span end logits
).
This model inherits from FlaxPreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)
This model is also a Flax Linen flax.nn.Module subclass. Use it as a regular Flax Module and refer to the Flax documentation for all matter related to general usage and behavior.
Finally, this model supports inherent JAX features such as:
__call__
( input_ids: Arrayattention_mask: typing.Optional[jax.Array] = Nonedecoder_input_ids: typing.Optional[jax.Array] = Nonedecoder_attention_mask: typing.Optional[jax.Array] = Noneposition_ids: typing.Optional[jax.Array] = Nonedecoder_position_ids: typing.Optional[jax.Array] = Noneoutput_attentions: typing.Optional[bool] = Noneoutput_hidden_states: typing.Optional[bool] = Nonereturn_dict: typing.Optional[bool] = Nonetrain: bool = Falseparams: dict = Nonedropout_rng: PRNGKey = None ) → transformers.modeling_flax_outputs.FlaxSeq2SeqQuestionAnsweringModelOutput or tuple(torch.FloatTensor)
Parameters
input_ids (jnp.ndarray
of shape (batch_size, sequence_length)
) — Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it.
Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
attention_mask (jnp.ndarray
of shape (batch_size, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]
:
1 for tokens that are not masked,
0 for tokens that are masked.
decoder_input_ids (jnp.ndarray
of shape (batch_size, target_sequence_length)
, optional) — Indices of decoder input sequence tokens in the vocabulary.
Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
For translation and summarization training, decoder_input_ids
should be provided. If no decoder_input_ids
is provided, the model will create this tensor by shifting the input_ids
to the right for denoising pre-training following the paper.
decoder_attention_mask (jnp.ndarray
of shape (batch_size, target_sequence_length)
, optional) — Default behavior: generate a tensor that ignores pad tokens in decoder_input_ids
. Causal mask will also be used by default.
If you want to change padding behavior, you should modify to your needs. See diagram 1 in the paper for more information on the default strategy.
position_ids (numpy.ndarray
of shape (batch_size, sequence_length)
, optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1]
.
decoder_position_ids (numpy.ndarray
of shape (batch_size, sequence_length)
, optional) — Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1]
.
output_attentions (bool
, optional) — Whether or not to return the attentions tensors of all attention layers. See attentions
under returned tensors for more detail.
output_hidden_states (bool
, optional) — Whether or not to return the hidden states of all layers. See hidden_states
under returned tensors for more detail.
return_dict (bool
, optional) — Whether or not to return a ModelOutput instead of a plain tuple.
Returns
transformers.modeling_flax_outputs.FlaxSeq2SeqQuestionAnsweringModelOutput or tuple(torch.FloatTensor)
A transformers.modeling_flax_outputs.FlaxSeq2SeqQuestionAnsweringModelOutput or a tuple of torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various elements depending on the configuration (MBartConfig) and inputs.
start_logits (jnp.ndarray
of shape (batch_size, sequence_length)
) — Span-start scores (before SoftMax).
end_logits (jnp.ndarray
of shape (batch_size, sequence_length)
) — Span-end scores (before SoftMax).
past_key_values (tuple(tuple(jnp.ndarray))
, optional, returned when use_cache=True
is passed or when config.use_cache=True
) — Tuple of tuple(jnp.ndarray)
of length config.n_layers
, with each tuple having 2 tensors of shape (batch_size, num_heads, sequence_length, embed_size_per_head)
) and 2 additional tensors of shape (batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used (see past_key_values
input) to speed up sequential decoding.
decoder_hidden_states (tuple(jnp.ndarray)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of jnp.ndarray
(one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size)
.
Hidden-states of the decoder at the output of each layer plus the initial embedding outputs.
decoder_attentions (tuple(jnp.ndarray)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of jnp.ndarray
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
cross_attentions (tuple(jnp.ndarray)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of jnp.ndarray
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the decoder’s cross-attention layer, after the attention softmax, used to compute the weighted average in the cross-attention heads.
encoder_last_hidden_state (jnp.ndarray
of shape (batch_size, sequence_length, hidden_size)
, optional) — Sequence of hidden-states at the output of the last layer of the encoder of the model.
encoder_hidden_states (tuple(jnp.ndarray)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of jnp.ndarray
(one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size)
.
Hidden-states of the encoder at the output of each layer plus the initial embedding outputs.
encoder_attentions (tuple(jnp.ndarray)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of jnp.ndarray
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
The FlaxMBartPreTrainedModel
forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.
Example:
Copied
encode
( input_ids: Arrayattention_mask: typing.Optional[jax.Array] = Noneposition_ids: typing.Optional[jax.Array] = Noneoutput_attentions: typing.Optional[bool] = Noneoutput_hidden_states: typing.Optional[bool] = Nonereturn_dict: typing.Optional[bool] = Nonetrain: bool = Falseparams: dict = Nonedropout_rng: PRNGKey = None ) → transformers.modeling_flax_outputs.FlaxBaseModelOutput or tuple(torch.FloatTensor)
Parameters
input_ids (jnp.ndarray
of shape (batch_size, sequence_length)
) — Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it.
Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
attention_mask (jnp.ndarray
of shape (batch_size, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]
:
1 for tokens that are not masked,
0 for tokens that are masked.
position_ids (numpy.ndarray
of shape (batch_size, sequence_length)
, optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1]
.
output_attentions (bool
, optional) — Whether or not to return the attentions tensors of all attention layers. See attentions
under returned tensors for more detail.
output_hidden_states (bool
, optional) — Whether or not to return the hidden states of all layers. See hidden_states
under returned tensors for more detail.
return_dict (bool
, optional) — Whether or not to return a ModelOutput instead of a plain tuple.
Returns
transformers.modeling_flax_outputs.FlaxBaseModelOutput or tuple(torch.FloatTensor)
A transformers.modeling_flax_outputs.FlaxBaseModelOutput or a tuple of torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various elements depending on the configuration (<class 'transformers.models.mbart.configuration_mbart.MBartConfig'>
) and inputs.
last_hidden_state (jnp.ndarray
of shape (batch_size, sequence_length, hidden_size)
) — Sequence of hidden-states at the output of the last layer of the model.
hidden_states (tuple(jnp.ndarray)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of jnp.ndarray
(one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size)
.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (tuple(jnp.ndarray)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of jnp.ndarray
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
Example:
Copied
decode
( decoder_input_idsencoder_outputsencoder_attention_mask: typing.Optional[jax.Array] = Nonedecoder_attention_mask: typing.Optional[jax.Array] = Nonedecoder_position_ids: typing.Optional[jax.Array] = Nonepast_key_values: dict = Noneoutput_attentions: typing.Optional[bool] = Noneoutput_hidden_states: typing.Optional[bool] = Nonereturn_dict: typing.Optional[bool] = Nonetrain: bool = Falseparams: dict = Nonedropout_rng: PRNGKey = None ) → transformers.modeling_flax_outputs.FlaxBaseModelOutputWithPastAndCrossAttentions or tuple(torch.FloatTensor)
Parameters
decoder_input_ids (jnp.ndarray
of shape (batch_size, target_sequence_length)
) — Indices of decoder input sequence tokens in the vocabulary.
Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
For translation and summarization training, decoder_input_ids
should be provided. If no decoder_input_ids
is provided, the model will create this tensor by shifting the input_ids
to the right for denoising pre-training following the paper.
encoder_outputs (tuple(tuple(jnp.ndarray)
) — Tuple consists of (last_hidden_state
, optional: hidden_states
, optional: attentions
) last_hidden_state
of shape (batch_size, sequence_length, hidden_size)
, optional) is a sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.
encoder_attention_mask (jnp.ndarray
of shape (batch_size, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]
:
1 for tokens that are not masked,
0 for tokens that are masked.
decoder_attention_mask (jnp.ndarray
of shape (batch_size, target_sequence_length)
, optional) — Default behavior: generate a tensor that ignores pad tokens in decoder_input_ids
. Causal mask will also be used by default.
If you want to change padding behavior, you should modify to your needs. See diagram 1 in the paper for more information on the default strategy.
decoder_position_ids (numpy.ndarray
of shape (batch_size, sequence_length)
, optional) — Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1]
.
past_key_values (Dict[str, np.ndarray]
, optional, returned by init_cache
or when passing previous past_key_values
) — Dictionary of pre-computed hidden-states (key and values in the attention blocks) that can be used for fast auto-regressive decoding. Pre-computed key and value hidden-states are of shape [batch_size, max_length].
output_attentions (bool
, optional) — Whether or not to return the attentions tensors of all attention layers. See attentions
under returned tensors for more detail.
output_hidden_states (bool
, optional) — Whether or not to return the hidden states of all layers. See hidden_states
under returned tensors for more detail.
return_dict (bool
, optional) — Whether or not to return a ModelOutput instead of a plain tuple.
Returns
transformers.modeling_flax_outputs.FlaxBaseModelOutputWithPastAndCrossAttentions or tuple(torch.FloatTensor)
A transformers.modeling_flax_outputs.FlaxBaseModelOutputWithPastAndCrossAttentions or a tuple of torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various elements depending on the configuration (<class 'transformers.models.mbart.configuration_mbart.MBartConfig'>
) and inputs.
last_hidden_state (jnp.ndarray
of shape (batch_size, sequence_length, hidden_size)
) — Sequence of hidden-states at the output of the last layer of the model.
If past_key_values
is used only the last hidden-state of the sequences of shape (batch_size, 1, hidden_size)
is output.
past_key_values (tuple(tuple(jnp.ndarray))
, optional, returned when use_cache=True
is passed or when config.use_cache=True
) — Tuple of tuple(jnp.ndarray)
of length config.n_layers
, with each tuple having 2 tensors of shape (batch_size, num_heads, sequence_length, embed_size_per_head)
) and optionally if config.is_encoder_decoder=True
2 additional tensors of shape (batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
.
Contains pre-computed hidden-states (key and values in the self-attention blocks and optionally if config.is_encoder_decoder=True
in the cross-attention blocks) that can be used (see past_key_values
input) to speed up sequential decoding.
hidden_states (tuple(jnp.ndarray)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of jnp.ndarray
(one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size)
.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (tuple(jnp.ndarray)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of jnp.ndarray
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
cross_attentions (tuple(jnp.ndarray)
, optional, returned when output_attentions=True
and config.add_cross_attention=True
is passed or when config.output_attentions=True
) — Tuple of jnp.ndarray
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the decoder’s cross-attention layer, after the attention softmax, used to compute the weighted average in the cross-attention heads.
Example:
Copied