Transformers
  • 🌍GET STARTED
    • Transformers
    • Quick tour
    • Installation
  • 🌍TUTORIALS
    • Run inference with pipelines
    • Write portable code with AutoClass
    • Preprocess data
    • Fine-tune a pretrained model
    • Train with a script
    • Set up distributed training with BOINC AI Accelerate
    • Load and train adapters with BOINC AI PEFT
    • Share your model
    • Agents
    • Generation with LLMs
  • 🌍TASK GUIDES
    • 🌍NATURAL LANGUAGE PROCESSING
      • Text classification
      • Token classification
      • Question answering
      • Causal language modeling
      • Masked language modeling
      • Translation
      • Summarization
      • Multiple choice
    • 🌍AUDIO
      • Audio classification
      • Automatic speech recognition
    • 🌍COMPUTER VISION
      • Image classification
      • Semantic segmentation
      • Video classification
      • Object detection
      • Zero-shot object detection
      • Zero-shot image classification
      • Depth estimation
    • 🌍MULTIMODAL
      • Image captioning
      • Document Question Answering
      • Visual Question Answering
      • Text to speech
    • 🌍GENERATION
      • Customize the generation strategy
    • 🌍PROMPTING
      • Image tasks with IDEFICS
  • 🌍DEVELOPER GUIDES
    • Use fast tokenizers from BOINC AI Tokenizers
    • Run inference with multilingual models
    • Use model-specific APIs
    • Share a custom model
    • Templates for chat models
    • Run training on Amazon SageMaker
    • Export to ONNX
    • Export to TFLite
    • Export to TorchScript
    • Benchmarks
    • Notebooks with examples
    • Community resources
    • Custom Tools and Prompts
    • Troubleshoot
  • 🌍PERFORMANCE AND SCALABILITY
    • Overview
    • 🌍EFFICIENT TRAINING TECHNIQUES
      • Methods and tools for efficient training on a single GPU
      • Multiple GPUs and parallelism
      • Efficient training on CPU
      • Distributed CPU training
      • Training on TPUs
      • Training on TPU with TensorFlow
      • Training on Specialized Hardware
      • Custom hardware for training
      • Hyperparameter Search using Trainer API
    • 🌍OPTIMIZING INFERENCE
      • Inference on CPU
      • Inference on one GPU
      • Inference on many GPUs
      • Inference on Specialized Hardware
    • Instantiating a big model
    • Troubleshooting
    • XLA Integration for TensorFlow Models
    • Optimize inference using `torch.compile()`
  • 🌍CONTRIBUTE
    • How to contribute to transformers?
    • How to add a model to BOINC AI Transformers?
    • How to convert a BOINC AI Transformers model to TensorFlow?
    • How to add a pipeline to BOINC AI Transformers?
    • Testing
    • Checks on a Pull Request
  • 🌍CONCEPTUAL GUIDES
    • Philosophy
    • Glossary
    • What BOINC AI Transformers can do
    • How BOINC AI Transformers solve tasks
    • The Transformer model family
    • Summary of the tokenizers
    • Attention mechanisms
    • Padding and truncation
    • BERTology
    • Perplexity of fixed-length models
    • Pipelines for webserver inference
    • Model training anatomy
  • 🌍API
    • 🌍MAIN CLASSES
      • Agents and Tools
      • 🌍Auto Classes
        • Extending the Auto Classes
        • AutoConfig
        • AutoTokenizer
        • AutoFeatureExtractor
        • AutoImageProcessor
        • AutoProcessor
        • Generic model classes
          • AutoModel
          • TFAutoModel
          • FlaxAutoModel
        • Generic pretraining classes
          • AutoModelForPreTraining
          • TFAutoModelForPreTraining
          • FlaxAutoModelForPreTraining
        • Natural Language Processing
          • AutoModelForCausalLM
          • TFAutoModelForCausalLM
          • FlaxAutoModelForCausalLM
          • AutoModelForMaskedLM
          • TFAutoModelForMaskedLM
          • FlaxAutoModelForMaskedLM
          • AutoModelForMaskGenerationge
          • TFAutoModelForMaskGeneration
          • AutoModelForSeq2SeqLM
          • TFAutoModelForSeq2SeqLM
          • FlaxAutoModelForSeq2SeqLM
          • AutoModelForSequenceClassification
          • TFAutoModelForSequenceClassification
          • FlaxAutoModelForSequenceClassification
          • AutoModelForMultipleChoice
          • TFAutoModelForMultipleChoice
          • FlaxAutoModelForMultipleChoice
          • AutoModelForNextSentencePrediction
          • TFAutoModelForNextSentencePrediction
          • FlaxAutoModelForNextSentencePrediction
          • AutoModelForTokenClassification
          • TFAutoModelForTokenClassification
          • FlaxAutoModelForTokenClassification
          • AutoModelForQuestionAnswering
          • TFAutoModelForQuestionAnswering
          • FlaxAutoModelForQuestionAnswering
          • AutoModelForTextEncoding
          • TFAutoModelForTextEncoding
        • Computer vision
          • AutoModelForDepthEstimation
          • AutoModelForImageClassification
          • TFAutoModelForImageClassification
          • FlaxAutoModelForImageClassification
          • AutoModelForVideoClassification
          • AutoModelForMaskedImageModeling
          • TFAutoModelForMaskedImageModeling
          • AutoModelForObjectDetection
          • AutoModelForImageSegmentation
          • AutoModelForImageToImage
          • AutoModelForSemanticSegmentation
          • TFAutoModelForSemanticSegmentation
          • AutoModelForInstanceSegmentation
          • AutoModelForUniversalSegmentation
          • AutoModelForZeroShotImageClassification
          • TFAutoModelForZeroShotImageClassification
          • AutoModelForZeroShotObjectDetection
        • Audio
          • AutoModelForAudioClassification
          • AutoModelForAudioFrameClassification
          • TFAutoModelForAudioFrameClassification
          • AutoModelForCTC
          • AutoModelForSpeechSeq2Seq
          • TFAutoModelForSpeechSeq2Seq
          • FlaxAutoModelForSpeechSeq2Seq
          • AutoModelForAudioXVector
          • AutoModelForTextToSpectrogram
          • AutoModelForTextToWaveform
        • Multimodal
          • AutoModelForTableQuestionAnswering
          • TFAutoModelForTableQuestionAnswering
          • AutoModelForDocumentQuestionAnswering
          • TFAutoModelForDocumentQuestionAnswering
          • AutoModelForVisualQuestionAnswering
          • AutoModelForVision2Seq
          • TFAutoModelForVision2Seq
          • FlaxAutoModelForVision2Seq
      • Callbacks
      • Configuration
      • Data Collator
      • Keras callbacks
      • Logging
      • Models
      • Text Generation
      • ONNX
      • Optimization
      • Model outputs
      • Pipelines
      • Processors
      • Quantization
      • Tokenizer
      • Trainer
      • DeepSpeed Integration
      • Feature Extractor
      • Image Processor
    • 🌍MODELS
      • 🌍TEXT MODELS
        • ALBERT
        • BART
        • BARThez
        • BARTpho
        • BERT
        • BertGeneration
        • BertJapanese
        • Bertweet
        • BigBird
        • BigBirdPegasus
        • BioGpt
        • Blenderbot
        • Blenderbot Small
        • BLOOM
        • BORT
        • ByT5
        • CamemBERT
        • CANINE
        • CodeGen
        • CodeLlama
        • ConvBERT
        • CPM
        • CPMANT
        • CTRL
        • DeBERTa
        • DeBERTa-v2
        • DialoGPT
        • DistilBERT
        • DPR
        • ELECTRA
        • Encoder Decoder Models
        • ERNIE
        • ErnieM
        • ESM
        • Falcon
        • FLAN-T5
        • FLAN-UL2
        • FlauBERT
        • FNet
        • FSMT
        • Funnel Transformer
        • GPT
        • GPT Neo
        • GPT NeoX
        • GPT NeoX Japanese
        • GPT-J
        • GPT2
        • GPTBigCode
        • GPTSAN Japanese
        • GPTSw3
        • HerBERT
        • I-BERT
        • Jukebox
        • LED
        • LLaMA
        • LLama2
        • Longformer
        • LongT5
        • LUKE
        • M2M100
        • MarianMT
        • MarkupLM
        • MBart and MBart-50
        • MEGA
        • MegatronBERT
        • MegatronGPT2
        • Mistral
        • mLUKE
        • MobileBERT
        • MPNet
        • MPT
        • MRA
        • MT5
        • MVP
        • NEZHA
        • NLLB
        • NLLB-MoE
        • Nyströmformer
        • Open-Llama
        • OPT
        • Pegasus
        • PEGASUS-X
        • Persimmon
        • PhoBERT
        • PLBart
        • ProphetNet
        • QDQBert
        • RAG
        • REALM
        • Reformer
        • RemBERT
        • RetriBERT
        • RoBERTa
        • RoBERTa-PreLayerNorm
        • RoCBert
        • RoFormer
        • RWKV
        • Splinter
        • SqueezeBERT
        • SwitchTransformers
        • T5
        • T5v1.1
        • TAPEX
        • Transformer XL
        • UL2
        • UMT5
        • X-MOD
        • XGLM
        • XLM
        • XLM-ProphetNet
        • XLM-RoBERTa
        • XLM-RoBERTa-XL
        • XLM-V
        • XLNet
        • YOSO
      • 🌍VISION MODELS
        • BEiT
        • BiT
        • Conditional DETR
        • ConvNeXT
        • ConvNeXTV2
        • CvT
        • Deformable DETR
        • DeiT
        • DETA
        • DETR
        • DiNAT
        • DINO V2
        • DiT
        • DPT
        • EfficientFormer
        • EfficientNet
        • FocalNet
        • GLPN
        • ImageGPT
        • LeViT
        • Mask2Former
        • MaskFormer
        • MobileNetV1
        • MobileNetV2
        • MobileViT
        • MobileViTV2
        • NAT
        • PoolFormer
        • Pyramid Vision Transformer (PVT)
        • RegNet
        • ResNet
        • SegFormer
        • SwiftFormer
        • Swin Transformer
        • Swin Transformer V2
        • Swin2SR
        • Table Transformer
        • TimeSformer
        • UperNet
        • VAN
        • VideoMAE
        • Vision Transformer (ViT)
        • ViT Hybrid
        • ViTDet
        • ViTMAE
        • ViTMatte
        • ViTMSN
        • ViViT
        • YOLOS
      • 🌍AUDIO MODELS
        • Audio Spectrogram Transformer
        • Bark
        • CLAP
        • EnCodec
        • Hubert
        • MCTCT
        • MMS
        • MusicGen
        • Pop2Piano
        • SEW
        • SEW-D
        • Speech2Text
        • Speech2Text2
        • SpeechT5
        • UniSpeech
        • UniSpeech-SAT
        • VITS
        • Wav2Vec2
        • Wav2Vec2-Conformer
        • Wav2Vec2Phoneme
        • WavLM
        • Whisper
        • XLS-R
        • XLSR-Wav2Vec2
      • 🌍MULTIMODAL MODELS
        • ALIGN
        • AltCLIP
        • BLIP
        • BLIP-2
        • BridgeTower
        • BROS
        • Chinese-CLIP
        • CLIP
        • CLIPSeg
        • Data2Vec
        • DePlot
        • Donut
        • FLAVA
        • GIT
        • GroupViT
        • IDEFICS
        • InstructBLIP
        • LayoutLM
        • LayoutLMV2
        • LayoutLMV3
        • LayoutXLM
        • LiLT
        • LXMERT
        • MatCha
        • MGP-STR
        • Nougat
        • OneFormer
        • OWL-ViT
        • Perceiver
        • Pix2Struct
        • Segment Anything
        • Speech Encoder Decoder Models
        • TAPAS
        • TrOCR
        • TVLT
        • ViLT
        • Vision Encoder Decoder Models
        • Vision Text Dual Encoder
        • VisualBERT
        • X-CLIP
      • 🌍REINFORCEMENT LEARNING MODELS
        • Decision Transformer
        • Trajectory Transformer
      • 🌍TIME SERIES MODELS
        • Autoformer
        • Informer
        • Time Series Transformer
      • 🌍GRAPH MODELS
        • Graphormer
  • 🌍INTERNAL HELPERS
    • Custom Layers and Utilities
    • Utilities for pipelines
    • Utilities for Tokenizers
    • Utilities for Trainer
    • Utilities for Generation
    • Utilities for Image Processors
    • Utilities for Audio processing
    • General Utilities
    • Utilities for Time Series
Powered by GitBook
On this page
  • Funnel Transformer
  • Overview
  • Documentation resources
  • FunnelConfig
  • FunnelTokenizer
  • FunnelTokenizerFast
  • Funnel specific outputs
  • FunnelBaseModel
  • FunnelModel
  • FunnelModelForPreTraining
  • FunnelForMaskedLM
  • FunnelForSequenceClassification
  • FunnelForMultipleChoice
  • FunnelForTokenClassification
  • FunnelForQuestionAnswering
  • TFFunnelBaseModel
  • TFFunnelModel
  • TFFunnelModelForPreTraining
  • TFFunnelForMaskedLM
  • TFFunnelForSequenceClassification
  • TFFunnelForMultipleChoice
  • TFFunnelForTokenClassification
  • TFFunnelForQuestionAnswering
  1. API
  2. MODELS
  3. TEXT MODELS

Funnel Transformer

PreviousFSMTNextGPT

Last updated 1 year ago

Funnel Transformer

Overview

The Funnel Transformer model was proposed in the paper . It is a bidirectional transformer model, like BERT, but with a pooling operation after each block of layers, a bit like in traditional convolutional neural networks (CNN) in computer vision.

The abstract from the paper is the following:

With the success of language pretraining, it is highly desirable to develop more efficient architectures of good scalability that can exploit the abundant unlabeled data at a lower cost. To improve the efficiency, we examine the much-overlooked redundancy in maintaining a full-length token-level presentation, especially for tasks that only require a single-vector presentation of the sequence. With this intuition, we propose Funnel-Transformer which gradually compresses the sequence of hidden states to a shorter one and hence reduces the computation cost. More importantly, by re-investing the saved FLOPs from length reduction in constructing a deeper or wider model, we further improve the model capacity. In addition, to perform token-level predictions as required by common pretraining objectives, Funnel-Transformer is able to recover a deep representation for each token from the reduced hidden sequence via a decoder. Empirically, with comparable or fewer FLOPs, Funnel-Transformer outperforms the standard Transformer on a wide variety of sequence-level prediction tasks, including text classification, language understanding, and reading comprehension.

Tips:

  • Since Funnel Transformer uses pooling, the sequence length of the hidden states changes after each block of layers. This way, their length is divided by 2, which speeds up the computation of the next hidden states. The base model therefore has a final sequence length that is a quarter of the original one. This model can be used directly for tasks that just require a sentence summary (like sequence classification or multiple choice). For other tasks, the full model is used; this full model has a decoder that upsamples the final hidden states to the same sequence length as the input.

  • For tasks such as classification, this is not a problem, but for tasks like masked language modeling or token classification, we need a hidden state with the same sequence length as the original input. In those cases, the final hidden states are upsampled to the input sequence length and go through two additional layers. That’s why there are two versions of each checkpoint. The version suffixed with “-base” contains only the three blocks, while the version without that suffix contains the three blocks and the upsampling head with its additional layers.

  • The Funnel Transformer checkpoints are all available with a full version and a base version. The first ones should be used for , , , and . The second ones should be used for , and .

This model was contributed by . The original code can be found .

Documentation resources

FunnelConfig

class transformers.FunnelConfig

( vocab_size = 30522block_sizes = [4, 4, 4]block_repeats = Nonenum_decoder_layers = 2d_model = 768n_head = 12d_head = 64d_inner = 3072hidden_act = 'gelu_new'hidden_dropout = 0.1attention_dropout = 0.1activation_dropout = 0.0initializer_range = 0.1initializer_std = Nonelayer_norm_eps = 1e-09pooling_type = 'mean'attention_type = 'relative_shift'separate_cls = Truetruncate_seq = Truepool_q_only = True**kwargs )

Parameters

  • block_sizes (List[int], optional, defaults to [4, 4, 4]) — The sizes of the blocks used in the model.

  • block_repeats (List[int], optional) — If passed along, each layer of each block is repeated the number of times indicated.

  • num_decoder_layers (int, optional, defaults to 2) — The number of layers in the decoder (when not using the base model).

  • d_model (int, optional, defaults to 768) — Dimensionality of the model’s hidden states.

  • n_head (int, optional, defaults to 12) — Number of attention heads for each attention layer in the Transformer encoder.

  • d_head (int, optional, defaults to 64) — Dimensionality of the model’s heads.

  • d_inner (int, optional, defaults to 3072) — Inner dimension in the feed-forward blocks.

  • hidden_act (str or callable, optional, defaults to "gelu_new") — The non-linear activation function (function or string) in the encoder and pooler. If string, "gelu", "relu", "silu" and "gelu_new" are supported.

  • hidden_dropout (float, optional, defaults to 0.1) — The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.

  • attention_dropout (float, optional, defaults to 0.1) — The dropout probability for the attention probabilities.

  • activation_dropout (float, optional, defaults to 0.0) — The dropout probability used between the two layers of the feed-forward blocks.

  • initializer_range (float, optional, defaults to 0.1) — The upper bound of the uniform initializer for initializing all weight matrices in attention layers.

  • initializer_std (float, optional) — The standard deviation of the normal initializer for initializing the embedding matrix and the weight of linear layers. Will default to 1 for the embedding matrix and the value given by Xavier initialization for linear layers.

  • layer_norm_eps (float, optional, defaults to 1e-9) — The epsilon used by the layer normalization layers.

  • pooling_type (str, optional, defaults to "mean") — Possible values are "mean" or "max". The way pooling is performed at the beginning of each block.

  • attention_type (str, optional, defaults to "relative_shift") — Possible values are "relative_shift" or "factorized". The former is faster on CPU/GPU while the latter is faster on TPU.

  • separate_cls (bool, optional, defaults to True) — Whether or not to separate the cls token when applying pooling.

  • truncate_seq (bool, optional, defaults to False) — When using separate_cls, whether or not to truncate the last token when pooling, to avoid getting a sequence length that is not a multiple of 2.

  • pool_q_only (bool, optional, defaults to False) — Whether or not to apply the pooling only to the query or to query, key and values for the attention layers.

FunnelTokenizer

class transformers.FunnelTokenizer

( vocab_filedo_lower_case = Truedo_basic_tokenize = Truenever_split = Noneunk_token = '<unk>'sep_token = '<sep>'pad_token = '<pad>'cls_token = '<cls>'mask_token = '<mask>'bos_token = '<s>'eos_token = '</s>'tokenize_chinese_chars = Truestrip_accents = None**kwargs )

Parameters

  • vocab_file (str) — File containing the vocabulary.

  • do_lower_case (bool, optional, defaults to True) — Whether or not to lowercase the input when tokenizing.

  • do_basic_tokenize (bool, optional, defaults to True) — Whether or not to do basic tokenization before WordPiece.

  • never_split (Iterable, optional) — Collection of tokens which will never be split during tokenization. Only has an effect when do_basic_tokenize=True

  • unk_token (str, optional, defaults to "<unk>") — The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead.

  • sep_token (str, optional, defaults to "<sep>") — The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens.

  • pad_token (str, optional, defaults to "<pad>") — The token used for padding, for example when batching sequences of different lengths.

  • cls_token (str, optional, defaults to "<cls>") — The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens.

  • mask_token (str, optional, defaults to "<mask>") — The token used for masking values. This is the token used when training this model with masked language modeling. This is the token which the model will try to predict.

  • bos_token (str, optional, defaults to "<s>") — The beginning of sentence token.

  • eos_token (str, optional, defaults to "</s>") — The end of sentence token.

  • tokenize_chinese_chars (bool, optional, defaults to True) — Whether or not to tokenize Chinese characters.

  • strip_accents (bool, optional) — Whether or not to strip all accents. If this option is not specified, then it will be determined by the value for lowercase (as in the original BERT).

Construct a Funnel Transformer tokenizer. Based on WordPiece.

build_inputs_with_special_tokens

( token_ids_0: typing.List[int]token_ids_1: typing.Optional[typing.List[int]] = None ) → List[int]

Parameters

  • token_ids_0 (List[int]) — List of IDs to which the special tokens will be added.

  • token_ids_1 (List[int], optional) — Optional second list of IDs for sequence pairs.

Returns

List[int]

Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. A BERT sequence has the following format:

  • single sequence: [CLS] X [SEP]

  • pair of sequences: [CLS] A [SEP] B [SEP]

get_special_tokens_mask

( token_ids_0: typing.List[int]token_ids_1: typing.Optional[typing.List[int]] = Nonealready_has_special_tokens: bool = False ) → List[int]

Parameters

  • token_ids_0 (List[int]) — List of IDs.

  • token_ids_1 (List[int], optional) — Optional second list of IDs for sequence pairs.

  • already_has_special_tokens (bool, optional, defaults to False) — Whether or not the token list is already formatted with special tokens for the model.

Returns

List[int]

A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.

Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer prepare_for_model method.

create_token_type_ids_from_sequences

( token_ids_0: typing.List[int]token_ids_1: typing.Optional[typing.List[int]] = None ) → List[int]

Parameters

  • token_ids_0 (List[int]) — List of IDs.

  • token_ids_1 (List[int], optional) — Optional second list of IDs for sequence pairs.

Returns

List[int]

Create a mask from the two sequences passed to be used in a sequence-pair classification task. A Funnel

Transformer sequence pair mask has the following format:

Copied

2 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
| first sequence    | second sequence |

If token_ids_1 is None, this method only returns the first portion of the mask (0s).

save_vocabulary

( save_directory: strfilename_prefix: typing.Optional[str] = None )

FunnelTokenizerFast

class transformers.FunnelTokenizerFast

( vocab_file = Nonetokenizer_file = Nonedo_lower_case = Trueunk_token = '<unk>'sep_token = '<sep>'pad_token = '<pad>'cls_token = '<cls>'mask_token = '<mask>'bos_token = '<s>'eos_token = '</s>'clean_text = Truetokenize_chinese_chars = Truestrip_accents = Nonewordpieces_prefix = '##'**kwargs )

Parameters

  • vocab_file (str) — File containing the vocabulary.

  • do_lower_case (bool, optional, defaults to True) — Whether or not to lowercase the input when tokenizing.

  • unk_token (str, optional, defaults to "<unk>") — The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead.

  • sep_token (str, optional, defaults to "<sep>") — The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens.

  • pad_token (str, optional, defaults to "<pad>") — The token used for padding, for example when batching sequences of different lengths.

  • cls_token (str, optional, defaults to "<cls>") — The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens.

  • mask_token (str, optional, defaults to "<mask>") — The token used for masking values. This is the token used when training this model with masked language modeling. This is the token which the model will try to predict.

  • clean_text (bool, optional, defaults to True) — Whether or not to clean the text before tokenization by removing any control characters and replacing all whitespaces by the classic one.

  • bos_token (str, optional, defaults to "<s>") — The beginning of sentence token.

  • eos_token (str, optional, defaults to "</s>") — The end of sentence token.

  • strip_accents (bool, optional) — Whether or not to strip all accents. If this option is not specified, then it will be determined by the value for lowercase (as in the original BERT).

  • wordpieces_prefix (str, optional, defaults to "##") — The prefix for subwords.

Construct a “fast” Funnel Transformer tokenizer (backed by BOINCAI’s tokenizers library). Based on WordPiece.

build_inputs_with_special_tokens

( token_ids_0token_ids_1 = None ) → List[int]

Parameters

  • token_ids_0 (List[int]) — List of IDs to which the special tokens will be added.

  • token_ids_1 (List[int], optional) — Optional second list of IDs for sequence pairs.

Returns

List[int]

Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. A Funnel sequence has the following format:

  • single sequence: [CLS] X [SEP]

  • pair of sequences: [CLS] A [SEP] B [SEP]

create_token_type_ids_from_sequences

( token_ids_0: typing.List[int]token_ids_1: typing.Optional[typing.List[int]] = None ) → List[int]

Parameters

  • token_ids_0 (List[int]) — List of IDs.

  • token_ids_1 (List[int], optional) — Optional second list of IDs for sequence pairs.

Returns

List[int]

Create a mask from the two sequences passed to be used in a sequence-pair classification task. A Funnel

Transformer sequence pair mask has the following format:

Copied

2 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
| first sequence    | second sequence |

If token_ids_1 is None, this method only returns the first portion of the mask (0s).

Funnel specific outputs

class transformers.models.funnel.modeling_funnel.FunnelForPreTrainingOutput

( loss: typing.Optional[torch.FloatTensor] = Nonelogits: FloatTensor = Nonehidden_states: typing.Optional[typing.Tuple[torch.FloatTensor]] = Noneattentions: typing.Optional[typing.Tuple[torch.FloatTensor]] = None )

Parameters

  • loss (optional, returned when labels is provided, torch.FloatTensor of shape (1,)) — Total loss of the ELECTRA-style objective.

  • logits (torch.FloatTensor of shape (batch_size, sequence_length)) — Prediction scores of the head (scores for each token before SoftMax).

  • hidden_states (tuple(torch.FloatTensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) — Tuple of torch.FloatTensor (one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the model at the output of each layer plus the initial embedding outputs.

  • attentions (tuple(torch.FloatTensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) — Tuple of torch.FloatTensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

class transformers.models.funnel.modeling_tf_funnel.TFFunnelForPreTrainingOutput

( logits: tf.Tensor = Nonehidden_states: Tuple[tf.Tensor] | None = Noneattentions: Tuple[tf.Tensor] | None = None )

Parameters

  • logits (tf.Tensor of shape (batch_size, sequence_length)) — Prediction scores of the head (scores for each token before SoftMax).

  • hidden_states (tuple(tf.Tensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) — Tuple of tf.Tensor (one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the model at the output of each layer plus the initial embedding outputs.

  • attentions (tuple(tf.Tensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) — Tuple of tf.Tensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

FunnelBaseModel

class transformers.FunnelBaseModel

( config: FunnelConfig )

Parameters

The base Funnel Transformer Model transformer outputting raw hidden-states without upsampling head (also called decoder) or any task-specific head on top.

forward

Parameters

  • input_ids (torch.LongTensor of shape (batch_size, sequence_length)) — Indices of input sequence tokens in the vocabulary.

  • attention_mask (torch.FloatTensor of shape (batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:

    • 1 for tokens that are not masked,

    • 0 for tokens that are masked.

  • token_type_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]:

    • 0 corresponds to a sentence A token,

    • 1 corresponds to a sentence B token.

  • inputs_embeds (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) — Optionally, instead of passing input_ids you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids indices into associated vectors than the model’s internal embedding lookup matrix.

  • output_attentions (bool, optional) — Whether or not to return the attentions tensors of all attention layers. See attentions under returned tensors for more detail.

  • output_hidden_states (bool, optional) — Whether or not to return the hidden states of all layers. See hidden_states under returned tensors for more detail.

Returns

  • last_hidden_state (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size)) — Sequence of hidden-states at the output of the last layer of the model.

  • hidden_states (tuple(torch.FloatTensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) — Tuple of torch.FloatTensor (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.

  • attentions (tuple(torch.FloatTensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) — Tuple of torch.FloatTensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Example:

Copied

>>> from transformers import AutoTokenizer, FunnelBaseModel
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("funnel-transformer/small-base")
>>> model = FunnelBaseModel.from_pretrained("funnel-transformer/small-base")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)

>>> last_hidden_states = outputs.last_hidden_state

FunnelModel

class transformers.FunnelModel

( config: FunnelConfig )

Parameters

The bare Funnel Transformer Model transformer outputting raw hidden-states without any specific head on top.

forward

Parameters

  • input_ids (torch.LongTensor of shape (batch_size, sequence_length)) — Indices of input sequence tokens in the vocabulary.

  • attention_mask (torch.FloatTensor of shape (batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:

    • 1 for tokens that are not masked,

    • 0 for tokens that are masked.

  • token_type_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]:

    • 0 corresponds to a sentence A token,

    • 1 corresponds to a sentence B token.

  • inputs_embeds (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) — Optionally, instead of passing input_ids you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids indices into associated vectors than the model’s internal embedding lookup matrix.

  • output_attentions (bool, optional) — Whether or not to return the attentions tensors of all attention layers. See attentions under returned tensors for more detail.

  • output_hidden_states (bool, optional) — Whether or not to return the hidden states of all layers. See hidden_states under returned tensors for more detail.

Returns

  • last_hidden_state (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size)) — Sequence of hidden-states at the output of the last layer of the model.

  • hidden_states (tuple(torch.FloatTensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) — Tuple of torch.FloatTensor (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.

  • attentions (tuple(torch.FloatTensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) — Tuple of torch.FloatTensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Example:

Copied

>>> from transformers import AutoTokenizer, FunnelModel
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("funnel-transformer/small")
>>> model = FunnelModel.from_pretrained("funnel-transformer/small")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)

>>> last_hidden_states = outputs.last_hidden_state

FunnelModelForPreTraining

class transformers.FunnelForPreTraining

( config: FunnelConfig )

forward

Parameters

  • input_ids (torch.LongTensor of shape (batch_size, sequence_length)) — Indices of input sequence tokens in the vocabulary.

  • attention_mask (torch.FloatTensor of shape (batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:

    • 1 for tokens that are not masked,

    • 0 for tokens that are masked.

  • token_type_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]:

    • 0 corresponds to a sentence A token,

    • 1 corresponds to a sentence B token.

  • inputs_embeds (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) — Optionally, instead of passing input_ids you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids indices into associated vectors than the model’s internal embedding lookup matrix.

  • output_attentions (bool, optional) — Whether or not to return the attentions tensors of all attention layers. See attentions under returned tensors for more detail.

  • output_hidden_states (bool, optional) — Whether or not to return the hidden states of all layers. See hidden_states under returned tensors for more detail.

  • labels (torch.LongTensor of shape (batch_size, sequence_length), optional) — Labels for computing the ELECTRA-style loss. Input should be a sequence of tokens (see input_ids docstring) Indices should be in [0, 1]:

    • 0 indicates the token is an original token,

    • 1 indicates the token was replaced.

Returns

  • loss (optional, returned when labels is provided, torch.FloatTensor of shape (1,)) — Total loss of the ELECTRA-style objective.

  • logits (torch.FloatTensor of shape (batch_size, sequence_length)) — Prediction scores of the head (scores for each token before SoftMax).

  • hidden_states (tuple(torch.FloatTensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) — Tuple of torch.FloatTensor (one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the model at the output of each layer plus the initial embedding outputs.

  • attentions (tuple(torch.FloatTensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) — Tuple of torch.FloatTensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Examples:

Copied

>>> from transformers import AutoTokenizer, FunnelForPreTraining
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("funnel-transformer/small")
>>> model = FunnelForPreTraining.from_pretrained("funnel-transformer/small")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> logits = model(**inputs).logits

FunnelForMaskedLM

class transformers.FunnelForMaskedLM

( config: FunnelConfig )

Parameters

Funnel Transformer Model with a language modeling head on top.

forward

Parameters

  • input_ids (torch.LongTensor of shape (batch_size, sequence_length)) — Indices of input sequence tokens in the vocabulary.

  • attention_mask (torch.FloatTensor of shape (batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:

    • 1 for tokens that are not masked,

    • 0 for tokens that are masked.

  • token_type_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]:

    • 0 corresponds to a sentence A token,

    • 1 corresponds to a sentence B token.

  • inputs_embeds (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) — Optionally, instead of passing input_ids you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids indices into associated vectors than the model’s internal embedding lookup matrix.

  • output_attentions (bool, optional) — Whether or not to return the attentions tensors of all attention layers. See attentions under returned tensors for more detail.

  • output_hidden_states (bool, optional) — Whether or not to return the hidden states of all layers. See hidden_states under returned tensors for more detail.

  • labels (torch.LongTensor of shape (batch_size, sequence_length), optional) — Labels for computing the masked language modeling loss. Indices should be in [-100, 0, ..., config.vocab_size] (see input_ids docstring) Tokens with indices set to -100 are ignored (masked), the loss is only computed for the tokens with labels in [0, ..., config.vocab_size]

Returns

  • loss (torch.FloatTensor of shape (1,), optional, returned when labels is provided) — Masked language modeling (MLM) loss.

  • logits (torch.FloatTensor of shape (batch_size, sequence_length, config.vocab_size)) — Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).

  • hidden_states (tuple(torch.FloatTensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) — Tuple of torch.FloatTensor (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.

  • attentions (tuple(torch.FloatTensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) — Tuple of torch.FloatTensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Example:

Copied

>>> from transformers import AutoTokenizer, FunnelForMaskedLM
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("funnel-transformer/small")
>>> model = FunnelForMaskedLM.from_pretrained("funnel-transformer/small")

>>> inputs = tokenizer("The capital of France is <mask>.", return_tensors="pt")

>>> with torch.no_grad():
...     logits = model(**inputs).logits

>>> # retrieve index of <mask>
>>> mask_token_index = (inputs.input_ids == tokenizer.mask_token_id)[0].nonzero(as_tuple=True)[0]

>>> predicted_token_id = logits[0, mask_token_index].argmax(axis=-1)

>>> labels = tokenizer("The capital of France is Paris.", return_tensors="pt")["input_ids"]
>>> # mask labels of non-<mask> tokens
>>> labels = torch.where(inputs.input_ids == tokenizer.mask_token_id, labels, -100)

>>> outputs = model(**inputs, labels=labels)

FunnelForSequenceClassification

class transformers.FunnelForSequenceClassification

( config: FunnelConfig )

Parameters

Funnel Transformer Model with a sequence classification/regression head on top (two linear layer on top of the first timestep of the last hidden state) e.g. for GLUE tasks.

forward

Parameters

  • input_ids (torch.LongTensor of shape (batch_size, sequence_length)) — Indices of input sequence tokens in the vocabulary.

  • attention_mask (torch.FloatTensor of shape (batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:

    • 1 for tokens that are not masked,

    • 0 for tokens that are masked.

  • token_type_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]:

    • 0 corresponds to a sentence A token,

    • 1 corresponds to a sentence B token.

  • inputs_embeds (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) — Optionally, instead of passing input_ids you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids indices into associated vectors than the model’s internal embedding lookup matrix.

  • output_attentions (bool, optional) — Whether or not to return the attentions tensors of all attention layers. See attentions under returned tensors for more detail.

  • output_hidden_states (bool, optional) — Whether or not to return the hidden states of all layers. See hidden_states under returned tensors for more detail.

  • labels (torch.LongTensor of shape (batch_size,), optional) — Labels for computing the sequence classification/regression loss. Indices should be in [0, ..., config.num_labels - 1]. If config.num_labels == 1 a regression loss is computed (Mean-Square loss), If config.num_labels > 1 a classification loss is computed (Cross-Entropy).

Returns

  • loss (torch.FloatTensor of shape (1,), optional, returned when labels is provided) — Classification (or regression if config.num_labels==1) loss.

  • logits (torch.FloatTensor of shape (batch_size, config.num_labels)) — Classification (or regression if config.num_labels==1) scores (before SoftMax).

  • hidden_states (tuple(torch.FloatTensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) — Tuple of torch.FloatTensor (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.

  • attentions (tuple(torch.FloatTensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) — Tuple of torch.FloatTensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Example of single-label classification:

Copied

>>> import torch
>>> from transformers import AutoTokenizer, FunnelForSequenceClassification

>>> tokenizer = AutoTokenizer.from_pretrained("funnel-transformer/small-base")
>>> model = FunnelForSequenceClassification.from_pretrained("funnel-transformer/small-base")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")

>>> with torch.no_grad():
...     logits = model(**inputs).logits

>>> predicted_class_id = logits.argmax().item()

>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = FunnelForSequenceClassification.from_pretrained("funnel-transformer/small-base", num_labels=num_labels)

>>> labels = torch.tensor([1])
>>> loss = model(**inputs, labels=labels).loss

Example of multi-label classification:

Copied

>>> import torch
>>> from transformers import AutoTokenizer, FunnelForSequenceClassification

>>> tokenizer = AutoTokenizer.from_pretrained("funnel-transformer/small-base")
>>> model = FunnelForSequenceClassification.from_pretrained("funnel-transformer/small-base", problem_type="multi_label_classification")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")

>>> with torch.no_grad():
...     logits = model(**inputs).logits

>>> predicted_class_ids = torch.arange(0, logits.shape[-1])[torch.sigmoid(logits).squeeze(dim=0) > 0.5]

>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = FunnelForSequenceClassification.from_pretrained(
...     "funnel-transformer/small-base", num_labels=num_labels, problem_type="multi_label_classification"
... )

>>> labels = torch.sum(
...     torch.nn.functional.one_hot(predicted_class_ids[None, :].clone(), num_classes=num_labels), dim=1
... ).to(torch.float)
>>> loss = model(**inputs, labels=labels).loss

FunnelForMultipleChoice

class transformers.FunnelForMultipleChoice

( config: FunnelConfig )

Parameters

Funnel Transformer Model with a multiple choice classification head on top (two linear layer on top of the first timestep of the last hidden state, and a softmax) e.g. for RocStories/SWAG tasks.

forward

Parameters

  • input_ids (torch.LongTensor of shape (batch_size, num_choices, sequence_length)) — Indices of input sequence tokens in the vocabulary.

  • attention_mask (torch.FloatTensor of shape (batch_size, num_choices, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:

    • 1 for tokens that are not masked,

    • 0 for tokens that are masked.

  • token_type_ids (torch.LongTensor of shape (batch_size, num_choices, sequence_length), optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]:

    • 0 corresponds to a sentence A token,

    • 1 corresponds to a sentence B token.

  • inputs_embeds (torch.FloatTensor of shape (batch_size, num_choices, sequence_length, hidden_size), optional) — Optionally, instead of passing input_ids you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids indices into associated vectors than the model’s internal embedding lookup matrix.

  • output_attentions (bool, optional) — Whether or not to return the attentions tensors of all attention layers. See attentions under returned tensors for more detail.

  • output_hidden_states (bool, optional) — Whether or not to return the hidden states of all layers. See hidden_states under returned tensors for more detail.

  • labels (torch.LongTensor of shape (batch_size,), optional) — Labels for computing the multiple choice classification loss. Indices should be in [0, ..., num_choices-1] where num_choices is the size of the second dimension of the input tensors. (See input_ids above)

Returns

  • loss (torch.FloatTensor of shape (1,), optional, returned when labels is provided) — Classification loss.

  • logits (torch.FloatTensor of shape (batch_size, num_choices)) — num_choices is the second dimension of the input tensors. (see input_ids above).

    Classification scores (before SoftMax).

  • hidden_states (tuple(torch.FloatTensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) — Tuple of torch.FloatTensor (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.

  • attentions (tuple(torch.FloatTensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) — Tuple of torch.FloatTensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Example:

Copied

>>> from transformers import AutoTokenizer, FunnelForMultipleChoice
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("funnel-transformer/small-base")
>>> model = FunnelForMultipleChoice.from_pretrained("funnel-transformer/small-base")

>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
>>> choice0 = "It is eaten with a fork and a knife."
>>> choice1 = "It is eaten while held in the hand."
>>> labels = torch.tensor(0).unsqueeze(0)  # choice0 is correct (according to Wikipedia ;)), batch size 1

>>> encoding = tokenizer([prompt, prompt], [choice0, choice1], return_tensors="pt", padding=True)
>>> outputs = model(**{k: v.unsqueeze(0) for k, v in encoding.items()}, labels=labels)  # batch size is 1

>>> # the linear classifier still needs to be trained
>>> loss = outputs.loss
>>> logits = outputs.logits

FunnelForTokenClassification

class transformers.FunnelForTokenClassification

( config: FunnelConfig )

Parameters

Funnel Transformer Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks.

forward

Parameters

  • input_ids (torch.LongTensor of shape (batch_size, sequence_length)) — Indices of input sequence tokens in the vocabulary.

  • attention_mask (torch.FloatTensor of shape (batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:

    • 1 for tokens that are not masked,

    • 0 for tokens that are masked.

  • token_type_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]:

    • 0 corresponds to a sentence A token,

    • 1 corresponds to a sentence B token.

  • inputs_embeds (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) — Optionally, instead of passing input_ids you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids indices into associated vectors than the model’s internal embedding lookup matrix.

  • output_attentions (bool, optional) — Whether or not to return the attentions tensors of all attention layers. See attentions under returned tensors for more detail.

  • output_hidden_states (bool, optional) — Whether or not to return the hidden states of all layers. See hidden_states under returned tensors for more detail.

  • labels (torch.LongTensor of shape (batch_size, sequence_length), optional) — Labels for computing the token classification loss. Indices should be in [0, ..., config.num_labels - 1].

Returns

  • loss (torch.FloatTensor of shape (1,), optional, returned when labels is provided) — Classification loss.

  • logits (torch.FloatTensor of shape (batch_size, sequence_length, config.num_labels)) — Classification scores (before SoftMax).

  • hidden_states (tuple(torch.FloatTensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) — Tuple of torch.FloatTensor (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.

  • attentions (tuple(torch.FloatTensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) — Tuple of torch.FloatTensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Example:

Copied

>>> from transformers import AutoTokenizer, FunnelForTokenClassification
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("funnel-transformer/small")
>>> model = FunnelForTokenClassification.from_pretrained("funnel-transformer/small")

>>> inputs = tokenizer(
...     "BOINCAI is a company based in Paris and New York", add_special_tokens=False, return_tensors="pt"
... )

>>> with torch.no_grad():
...     logits = model(**inputs).logits

>>> predicted_token_class_ids = logits.argmax(-1)

>>> # Note that tokens are classified rather then input words which means that
>>> # there might be more predicted token classes than words.
>>> # Multiple token classes might account for the same word
>>> predicted_tokens_classes = [model.config.id2label[t.item()] for t in predicted_token_class_ids[0]]

>>> labels = predicted_token_class_ids
>>> loss = model(**inputs, labels=labels).loss

FunnelForQuestionAnswering

class transformers.FunnelForQuestionAnswering

( config: FunnelConfig )

Parameters

Funnel Transformer Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layer on top of the hidden-states output to compute span start logits and span end logits).

forward

Parameters

  • input_ids (torch.LongTensor of shape (batch_size, sequence_length)) — Indices of input sequence tokens in the vocabulary.

  • attention_mask (torch.FloatTensor of shape (batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:

    • 1 for tokens that are not masked,

    • 0 for tokens that are masked.

  • token_type_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]:

    • 0 corresponds to a sentence A token,

    • 1 corresponds to a sentence B token.

  • inputs_embeds (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) — Optionally, instead of passing input_ids you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids indices into associated vectors than the model’s internal embedding lookup matrix.

  • output_attentions (bool, optional) — Whether or not to return the attentions tensors of all attention layers. See attentions under returned tensors for more detail.

  • output_hidden_states (bool, optional) — Whether or not to return the hidden states of all layers. See hidden_states under returned tensors for more detail.

  • start_positions (torch.LongTensor of shape (batch_size,), optional) — Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (sequence_length). Position outside of the sequence are not taken into account for computing the loss.

  • end_positions (torch.LongTensor of shape (batch_size,), optional) — Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (sequence_length). Position outside of the sequence are not taken into account for computing the loss.

Returns

  • loss (torch.FloatTensor of shape (1,), optional, returned when labels is provided) — Total span extraction loss is the sum of a Cross-Entropy for the start and end positions.

  • start_logits (torch.FloatTensor of shape (batch_size, sequence_length)) — Span-start scores (before SoftMax).

  • end_logits (torch.FloatTensor of shape (batch_size, sequence_length)) — Span-end scores (before SoftMax).

  • hidden_states (tuple(torch.FloatTensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) — Tuple of torch.FloatTensor (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.

  • attentions (tuple(torch.FloatTensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) — Tuple of torch.FloatTensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Example:

Copied

>>> from transformers import AutoTokenizer, FunnelForQuestionAnswering
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("funnel-transformer/small")
>>> model = FunnelForQuestionAnswering.from_pretrained("funnel-transformer/small")

>>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"

>>> inputs = tokenizer(question, text, return_tensors="pt")
>>> with torch.no_grad():
...     outputs = model(**inputs)

>>> answer_start_index = outputs.start_logits.argmax()
>>> answer_end_index = outputs.end_logits.argmax()

>>> predict_answer_tokens = inputs.input_ids[0, answer_start_index : answer_end_index + 1]

>>> # target is "nice puppet"
>>> target_start_index = torch.tensor([14])
>>> target_end_index = torch.tensor([15])

>>> outputs = model(**inputs, start_positions=target_start_index, end_positions=target_end_index)
>>> loss = outputs.loss

TFFunnelBaseModel

class transformers.TFFunnelBaseModel

( *args**kwargs )

Parameters

The base Funnel Transformer Model transformer outputting raw hidden-states without upsampling head (also called decoder) or any task-specific head on top.

TensorFlow models and layers in transformers accept two formats as input:

  • having all inputs as keyword arguments (like PyTorch models), or

  • having all inputs as a list, tuple or dict in the first positional argument.

The reason the second format is supported is that Keras methods prefer this format when passing inputs to models and layers. Because of this support, when using methods like model.fit() things should “just work” for you - just pass your inputs and labels in any format that model.fit() supports! If, however, you want to use the second format outside of Keras methods like fit() and predict(), such as when creating your own layers or models with the Keras Functional API, there are three possibilities you can use to gather all the input Tensors in the first positional argument:

  • a single Tensor with input_ids only and nothing else: model(input_ids)

  • a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: model([input_ids, attention_mask]) or model([input_ids, attention_mask, token_type_ids])

  • a dictionary with one or several input Tensors associated to the input names given in the docstring: model({"input_ids": input_ids, "token_type_ids": token_type_ids})

call

Parameters

  • input_ids (Numpy array or tf.Tensor of shape (batch_size, sequence_length)) — Indices of input sequence tokens in the vocabulary.

  • attention_mask (Numpy array or tf.Tensor of shape (batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:

    • 1 for tokens that are not masked,

    • 0 for tokens that are masked.

  • token_type_ids (Numpy array or tf.Tensor of shape (batch_size, sequence_length), optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]:

    • 0 corresponds to a sentence A token,

    • 1 corresponds to a sentence B token.

  • inputs_embeds (tf.Tensor of shape (batch_size, sequence_length, hidden_size), optional) — Optionally, instead of passing input_ids you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids indices into associated vectors than the model’s internal embedding lookup matrix.

  • output_attentions (bool, optional) — Whether or not to return the attentions tensors of all attention layers. See attentions under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead.

  • output_hidden_states (bool, optional) — Whether or not to return the hidden states of all layers. See hidden_states under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead.

  • training (bool, optional, defaults to False) — Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation).

Returns

  • last_hidden_state (tf.Tensor of shape (batch_size, sequence_length, hidden_size)) — Sequence of hidden-states at the output of the last layer of the model.

  • hidden_states (tuple(tf.FloatTensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) — Tuple of tf.Tensor (one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the model at the output of each layer plus the initial embedding outputs.

  • attentions (tuple(tf.Tensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) — Tuple of tf.Tensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Example:

Copied

>>> from transformers import AutoTokenizer, TFFunnelBaseModel
>>> import tensorflow as tf

>>> tokenizer = AutoTokenizer.from_pretrained("funnel-transformer/small-base")
>>> model = TFFunnelBaseModel.from_pretrained("funnel-transformer/small-base")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf")
>>> outputs = model(inputs)

>>> last_hidden_states = outputs.last_hidden_state

TFFunnelModel

class transformers.TFFunnelModel

( *args**kwargs )

Parameters

The bare Funnel Transformer Model transformer outputting raw hidden-states without any specific head on top.

TensorFlow models and layers in transformers accept two formats as input:

  • having all inputs as keyword arguments (like PyTorch models), or

  • having all inputs as a list, tuple or dict in the first positional argument.

The reason the second format is supported is that Keras methods prefer this format when passing inputs to models and layers. Because of this support, when using methods like model.fit() things should “just work” for you - just pass your inputs and labels in any format that model.fit() supports! If, however, you want to use the second format outside of Keras methods like fit() and predict(), such as when creating your own layers or models with the Keras Functional API, there are three possibilities you can use to gather all the input Tensors in the first positional argument:

  • a single Tensor with input_ids only and nothing else: model(input_ids)

  • a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: model([input_ids, attention_mask]) or model([input_ids, attention_mask, token_type_ids])

  • a dictionary with one or several input Tensors associated to the input names given in the docstring: model({"input_ids": input_ids, "token_type_ids": token_type_ids})

call

Parameters

  • input_ids (Numpy array or tf.Tensor of shape (batch_size, sequence_length)) — Indices of input sequence tokens in the vocabulary.

  • attention_mask (Numpy array or tf.Tensor of shape (batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:

    • 1 for tokens that are not masked,

    • 0 for tokens that are masked.

  • token_type_ids (Numpy array or tf.Tensor of shape (batch_size, sequence_length), optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]:

    • 0 corresponds to a sentence A token,

    • 1 corresponds to a sentence B token.

  • inputs_embeds (tf.Tensor of shape (batch_size, sequence_length, hidden_size), optional) — Optionally, instead of passing input_ids you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids indices into associated vectors than the model’s internal embedding lookup matrix.

  • output_attentions (bool, optional) — Whether or not to return the attentions tensors of all attention layers. See attentions under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead.

  • output_hidden_states (bool, optional) — Whether or not to return the hidden states of all layers. See hidden_states under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead.

  • training (bool, optional, defaults to False) — Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation).

Returns

  • last_hidden_state (tf.Tensor of shape (batch_size, sequence_length, hidden_size)) — Sequence of hidden-states at the output of the last layer of the model.

  • hidden_states (tuple(tf.FloatTensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) — Tuple of tf.Tensor (one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the model at the output of each layer plus the initial embedding outputs.

  • attentions (tuple(tf.Tensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) — Tuple of tf.Tensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Example:

Copied

>>> from transformers import AutoTokenizer, TFFunnelModel
>>> import tensorflow as tf

>>> tokenizer = AutoTokenizer.from_pretrained("funnel-transformer/small")
>>> model = TFFunnelModel.from_pretrained("funnel-transformer/small")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf")
>>> outputs = model(inputs)

>>> last_hidden_states = outputs.last_hidden_state

TFFunnelModelForPreTraining

class transformers.TFFunnelForPreTraining

( *args**kwargs )

Parameters

Funnel model with a binary classification head on top as used during pretraining for identifying generated tokens.

TensorFlow models and layers in transformers accept two formats as input:

  • having all inputs as keyword arguments (like PyTorch models), or

  • having all inputs as a list, tuple or dict in the first positional argument.

The reason the second format is supported is that Keras methods prefer this format when passing inputs to models and layers. Because of this support, when using methods like model.fit() things should “just work” for you - just pass your inputs and labels in any format that model.fit() supports! If, however, you want to use the second format outside of Keras methods like fit() and predict(), such as when creating your own layers or models with the Keras Functional API, there are three possibilities you can use to gather all the input Tensors in the first positional argument:

  • a single Tensor with input_ids only and nothing else: model(input_ids)

  • a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: model([input_ids, attention_mask]) or model([input_ids, attention_mask, token_type_ids])

  • a dictionary with one or several input Tensors associated to the input names given in the docstring: model({"input_ids": input_ids, "token_type_ids": token_type_ids})

call

Parameters

  • input_ids (Numpy array or tf.Tensor of shape (batch_size, sequence_length)) — Indices of input sequence tokens in the vocabulary.

  • attention_mask (Numpy array or tf.Tensor of shape (batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:

    • 1 for tokens that are not masked,

    • 0 for tokens that are masked.

  • token_type_ids (Numpy array or tf.Tensor of shape (batch_size, sequence_length), optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]:

    • 0 corresponds to a sentence A token,

    • 1 corresponds to a sentence B token.

  • inputs_embeds (tf.Tensor of shape (batch_size, sequence_length, hidden_size), optional) — Optionally, instead of passing input_ids you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids indices into associated vectors than the model’s internal embedding lookup matrix.

  • output_attentions (bool, optional) — Whether or not to return the attentions tensors of all attention layers. See attentions under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead.

  • output_hidden_states (bool, optional) — Whether or not to return the hidden states of all layers. See hidden_states under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead.

  • training (bool, optional, defaults to False) — Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation).

Returns

  • logits (tf.Tensor of shape (batch_size, sequence_length)) — Prediction scores of the head (scores for each token before SoftMax).

  • hidden_states (tuple(tf.Tensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) — Tuple of tf.Tensor (one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the model at the output of each layer plus the initial embedding outputs.

  • attentions (tuple(tf.Tensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) — Tuple of tf.Tensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Examples:

Copied

>>> from transformers import AutoTokenizer, TFFunnelForPreTraining
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("funnel-transformer/small")
>>> model = TFFunnelForPreTraining.from_pretrained("funnel-transformer/small")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf")
>>> logits = model(inputs).logits

TFFunnelForMaskedLM

class transformers.TFFunnelForMaskedLM

( *args**kwargs )

Parameters

Funnel Model with a language modeling head on top.

TensorFlow models and layers in transformers accept two formats as input:

  • having all inputs as keyword arguments (like PyTorch models), or

  • having all inputs as a list, tuple or dict in the first positional argument.

The reason the second format is supported is that Keras methods prefer this format when passing inputs to models and layers. Because of this support, when using methods like model.fit() things should “just work” for you - just pass your inputs and labels in any format that model.fit() supports! If, however, you want to use the second format outside of Keras methods like fit() and predict(), such as when creating your own layers or models with the Keras Functional API, there are three possibilities you can use to gather all the input Tensors in the first positional argument:

  • a single Tensor with input_ids only and nothing else: model(input_ids)

  • a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: model([input_ids, attention_mask]) or model([input_ids, attention_mask, token_type_ids])

  • a dictionary with one or several input Tensors associated to the input names given in the docstring: model({"input_ids": input_ids, "token_type_ids": token_type_ids})

call

Parameters

  • input_ids (Numpy array or tf.Tensor of shape (batch_size, sequence_length)) — Indices of input sequence tokens in the vocabulary.

  • attention_mask (Numpy array or tf.Tensor of shape (batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:

    • 1 for tokens that are not masked,

    • 0 for tokens that are masked.

  • token_type_ids (Numpy array or tf.Tensor of shape (batch_size, sequence_length), optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]:

    • 0 corresponds to a sentence A token,

    • 1 corresponds to a sentence B token.

  • inputs_embeds (tf.Tensor of shape (batch_size, sequence_length, hidden_size), optional) — Optionally, instead of passing input_ids you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids indices into associated vectors than the model’s internal embedding lookup matrix.

  • output_attentions (bool, optional) — Whether or not to return the attentions tensors of all attention layers. See attentions under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead.

  • output_hidden_states (bool, optional) — Whether or not to return the hidden states of all layers. See hidden_states under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead.

  • training (bool, optional, defaults to False) — Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation).

  • labels (tf.Tensor of shape (batch_size, sequence_length), optional) — Labels for computing the masked language modeling loss. Indices should be in [-100, 0, ..., config.vocab_size] (see input_ids docstring) Tokens with indices set to -100 are ignored (masked), the loss is only computed for the tokens with labels in [0, ..., config.vocab_size]

Returns

  • loss (tf.Tensor of shape (n,), optional, where n is the number of non-masked labels, returned when labels is provided) — Masked language modeling (MLM) loss.

  • logits (tf.Tensor of shape (batch_size, sequence_length, config.vocab_size)) — Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).

  • hidden_states (tuple(tf.Tensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) — Tuple of tf.Tensor (one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the model at the output of each layer plus the initial embedding outputs.

  • attentions (tuple(tf.Tensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) — Tuple of tf.Tensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Example:

Copied

>>> from transformers import AutoTokenizer, TFFunnelForMaskedLM
>>> import tensorflow as tf

>>> tokenizer = AutoTokenizer.from_pretrained("funnel-transformer/small")
>>> model = TFFunnelForMaskedLM.from_pretrained("funnel-transformer/small")

>>> inputs = tokenizer("The capital of France is [MASK].", return_tensors="tf")
>>> logits = model(**inputs).logits

>>> # retrieve index of [MASK]
>>> mask_token_index = tf.where((inputs.input_ids == tokenizer.mask_token_id)[0])
>>> selected_logits = tf.gather_nd(logits[0], indices=mask_token_index)

>>> predicted_token_id = tf.math.argmax(selected_logits, axis=-1)

Copied

>>> labels = tokenizer("The capital of France is Paris.", return_tensors="tf")["input_ids"]
>>> # mask labels of non-[MASK] tokens
>>> labels = tf.where(inputs.input_ids == tokenizer.mask_token_id, labels, -100)

>>> outputs = model(**inputs, labels=labels)

TFFunnelForSequenceClassification

class transformers.TFFunnelForSequenceClassification

( *args**kwargs )

Parameters

Funnel Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks.

TensorFlow models and layers in transformers accept two formats as input:

  • having all inputs as keyword arguments (like PyTorch models), or

  • having all inputs as a list, tuple or dict in the first positional argument.

The reason the second format is supported is that Keras methods prefer this format when passing inputs to models and layers. Because of this support, when using methods like model.fit() things should “just work” for you - just pass your inputs and labels in any format that model.fit() supports! If, however, you want to use the second format outside of Keras methods like fit() and predict(), such as when creating your own layers or models with the Keras Functional API, there are three possibilities you can use to gather all the input Tensors in the first positional argument:

  • a single Tensor with input_ids only and nothing else: model(input_ids)

  • a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: model([input_ids, attention_mask]) or model([input_ids, attention_mask, token_type_ids])

  • a dictionary with one or several input Tensors associated to the input names given in the docstring: model({"input_ids": input_ids, "token_type_ids": token_type_ids})

call

Parameters

  • input_ids (Numpy array or tf.Tensor of shape (batch_size, sequence_length)) — Indices of input sequence tokens in the vocabulary.

  • attention_mask (Numpy array or tf.Tensor of shape (batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:

    • 1 for tokens that are not masked,

    • 0 for tokens that are masked.

  • token_type_ids (Numpy array or tf.Tensor of shape (batch_size, sequence_length), optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]:

    • 0 corresponds to a sentence A token,

    • 1 corresponds to a sentence B token.

  • inputs_embeds (tf.Tensor of shape (batch_size, sequence_length, hidden_size), optional) — Optionally, instead of passing input_ids you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids indices into associated vectors than the model’s internal embedding lookup matrix.

  • output_attentions (bool, optional) — Whether or not to return the attentions tensors of all attention layers. See attentions under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead.

  • output_hidden_states (bool, optional) — Whether or not to return the hidden states of all layers. See hidden_states under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead.

  • training (bool, optional, defaults to False) — Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation).

  • labels (tf.Tensor of shape (batch_size,), optional) — Labels for computing the sequence classification/regression loss. Indices should be in [0, ..., config.num_labels - 1]. If config.num_labels == 1 a regression loss is computed (Mean-Square loss), If config.num_labels > 1 a classification loss is computed (Cross-Entropy).

Returns

  • loss (tf.Tensor of shape (batch_size, ), optional, returned when labels is provided) — Classification (or regression if config.num_labels==1) loss.

  • logits (tf.Tensor of shape (batch_size, config.num_labels)) — Classification (or regression if config.num_labels==1) scores (before SoftMax).

  • hidden_states (tuple(tf.Tensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) — Tuple of tf.Tensor (one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the model at the output of each layer plus the initial embedding outputs.

  • attentions (tuple(tf.Tensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) — Tuple of tf.Tensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Example:

Copied

>>> from transformers import AutoTokenizer, TFFunnelForSequenceClassification
>>> import tensorflow as tf

>>> tokenizer = AutoTokenizer.from_pretrained("funnel-transformer/small-base")
>>> model = TFFunnelForSequenceClassification.from_pretrained("funnel-transformer/small-base")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf")

>>> logits = model(**inputs).logits

>>> predicted_class_id = int(tf.math.argmax(logits, axis=-1)[0])

Copied

>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = TFFunnelForSequenceClassification.from_pretrained("funnel-transformer/small-base", num_labels=num_labels)

>>> labels = tf.constant(1)
>>> loss = model(**inputs, labels=labels).loss

TFFunnelForMultipleChoice

class transformers.TFFunnelForMultipleChoice

( *args**kwargs )

Parameters

Funnel Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a softmax) e.g. for RocStories/SWAG tasks.

TensorFlow models and layers in transformers accept two formats as input:

  • having all inputs as keyword arguments (like PyTorch models), or

  • having all inputs as a list, tuple or dict in the first positional argument.

The reason the second format is supported is that Keras methods prefer this format when passing inputs to models and layers. Because of this support, when using methods like model.fit() things should “just work” for you - just pass your inputs and labels in any format that model.fit() supports! If, however, you want to use the second format outside of Keras methods like fit() and predict(), such as when creating your own layers or models with the Keras Functional API, there are three possibilities you can use to gather all the input Tensors in the first positional argument:

  • a single Tensor with input_ids only and nothing else: model(input_ids)

  • a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: model([input_ids, attention_mask]) or model([input_ids, attention_mask, token_type_ids])

  • a dictionary with one or several input Tensors associated to the input names given in the docstring: model({"input_ids": input_ids, "token_type_ids": token_type_ids})

call

Parameters

  • input_ids (Numpy array or tf.Tensor of shape (batch_size, num_choices, sequence_length)) — Indices of input sequence tokens in the vocabulary.

  • attention_mask (Numpy array or tf.Tensor of shape (batch_size, num_choices, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:

    • 1 for tokens that are not masked,

    • 0 for tokens that are masked.

  • token_type_ids (Numpy array or tf.Tensor of shape (batch_size, num_choices, sequence_length), optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]:

    • 0 corresponds to a sentence A token,

    • 1 corresponds to a sentence B token.

  • inputs_embeds (tf.Tensor of shape (batch_size, num_choices, sequence_length, hidden_size), optional) — Optionally, instead of passing input_ids you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids indices into associated vectors than the model’s internal embedding lookup matrix.

  • output_attentions (bool, optional) — Whether or not to return the attentions tensors of all attention layers. See attentions under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead.

  • output_hidden_states (bool, optional) — Whether or not to return the hidden states of all layers. See hidden_states under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead.

  • training (bool, optional, defaults to False) — Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation).

  • labels (tf.Tensor of shape (batch_size,), optional) — Labels for computing the multiple choice classification loss. Indices should be in [0, ..., num_choices] where num_choices is the size of the second dimension of the input tensors. (See input_ids above)

Returns

  • loss (tf.Tensor of shape (batch_size, ), optional, returned when labels is provided) — Classification loss.

  • logits (tf.Tensor of shape (batch_size, num_choices)) — num_choices is the second dimension of the input tensors. (see input_ids above).

    Classification scores (before SoftMax).

  • hidden_states (tuple(tf.Tensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) — Tuple of tf.Tensor (one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the model at the output of each layer plus the initial embedding outputs.

  • attentions (tuple(tf.Tensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) — Tuple of tf.Tensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Example:

Copied

>>> from transformers import AutoTokenizer, TFFunnelForMultipleChoice
>>> import tensorflow as tf

>>> tokenizer = AutoTokenizer.from_pretrained("funnel-transformer/small-base")
>>> model = TFFunnelForMultipleChoice.from_pretrained("funnel-transformer/small-base")

>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
>>> choice0 = "It is eaten with a fork and a knife."
>>> choice1 = "It is eaten while held in the hand."

>>> encoding = tokenizer([prompt, prompt], [choice0, choice1], return_tensors="tf", padding=True)
>>> inputs = {k: tf.expand_dims(v, 0) for k, v in encoding.items()}
>>> outputs = model(inputs)  # batch size is 1

>>> # the linear classifier still needs to be trained
>>> logits = outputs.logits

TFFunnelForTokenClassification

class transformers.TFFunnelForTokenClassification

( *args**kwargs )

Parameters

Funnel Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks.

TensorFlow models and layers in transformers accept two formats as input:

  • having all inputs as keyword arguments (like PyTorch models), or

  • having all inputs as a list, tuple or dict in the first positional argument.

The reason the second format is supported is that Keras methods prefer this format when passing inputs to models and layers. Because of this support, when using methods like model.fit() things should “just work” for you - just pass your inputs and labels in any format that model.fit() supports! If, however, you want to use the second format outside of Keras methods like fit() and predict(), such as when creating your own layers or models with the Keras Functional API, there are three possibilities you can use to gather all the input Tensors in the first positional argument:

  • a single Tensor with input_ids only and nothing else: model(input_ids)

  • a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: model([input_ids, attention_mask]) or model([input_ids, attention_mask, token_type_ids])

  • a dictionary with one or several input Tensors associated to the input names given in the docstring: model({"input_ids": input_ids, "token_type_ids": token_type_ids})

call

Parameters

  • input_ids (Numpy array or tf.Tensor of shape (batch_size, sequence_length)) — Indices of input sequence tokens in the vocabulary.

  • attention_mask (Numpy array or tf.Tensor of shape (batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:

    • 1 for tokens that are not masked,

    • 0 for tokens that are masked.

  • token_type_ids (Numpy array or tf.Tensor of shape (batch_size, sequence_length), optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]:

    • 0 corresponds to a sentence A token,

    • 1 corresponds to a sentence B token.

  • inputs_embeds (tf.Tensor of shape (batch_size, sequence_length, hidden_size), optional) — Optionally, instead of passing input_ids you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids indices into associated vectors than the model’s internal embedding lookup matrix.

  • output_attentions (bool, optional) — Whether or not to return the attentions tensors of all attention layers. See attentions under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead.

  • output_hidden_states (bool, optional) — Whether or not to return the hidden states of all layers. See hidden_states under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead.

  • training (bool, optional, defaults to False) — Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation).

  • labels (tf.Tensor of shape (batch_size, sequence_length), optional) — Labels for computing the token classification loss. Indices should be in [0, ..., config.num_labels - 1].

Returns

  • loss (tf.Tensor of shape (n,), optional, where n is the number of unmasked labels, returned when labels is provided) — Classification loss.

  • logits (tf.Tensor of shape (batch_size, sequence_length, config.num_labels)) — Classification scores (before SoftMax).

  • hidden_states (tuple(tf.Tensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) — Tuple of tf.Tensor (one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the model at the output of each layer plus the initial embedding outputs.

  • attentions (tuple(tf.Tensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) — Tuple of tf.Tensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Example:

Copied

>>> from transformers import AutoTokenizer, TFFunnelForTokenClassification
>>> import tensorflow as tf

>>> tokenizer = AutoTokenizer.from_pretrained("funnel-transformer/small")
>>> model = TFFunnelForTokenClassification.from_pretrained("funnel-transformer/small")

>>> inputs = tokenizer(
...     "BOINCAI is a company based in Paris and New York", add_special_tokens=False, return_tensors="tf"
... )

>>> logits = model(**inputs).logits
>>> predicted_token_class_ids = tf.math.argmax(logits, axis=-1)

>>> # Note that tokens are classified rather then input words which means that
>>> # there might be more predicted token classes than words.
>>> # Multiple token classes might account for the same word
>>> predicted_tokens_classes = [model.config.id2label[t] for t in predicted_token_class_ids[0].numpy().tolist()]

Copied

>>> labels = predicted_token_class_ids
>>> loss = tf.math.reduce_mean(model(**inputs, labels=labels).loss)

TFFunnelForQuestionAnswering

class transformers.TFFunnelForQuestionAnswering

( *args**kwargs )

Parameters

Funnel Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of the hidden-states output to compute span start logits and span end logits).

TensorFlow models and layers in transformers accept two formats as input:

  • having all inputs as keyword arguments (like PyTorch models), or

  • having all inputs as a list, tuple or dict in the first positional argument.

The reason the second format is supported is that Keras methods prefer this format when passing inputs to models and layers. Because of this support, when using methods like model.fit() things should “just work” for you - just pass your inputs and labels in any format that model.fit() supports! If, however, you want to use the second format outside of Keras methods like fit() and predict(), such as when creating your own layers or models with the Keras Functional API, there are three possibilities you can use to gather all the input Tensors in the first positional argument:

  • a single Tensor with input_ids only and nothing else: model(input_ids)

  • a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: model([input_ids, attention_mask]) or model([input_ids, attention_mask, token_type_ids])

  • a dictionary with one or several input Tensors associated to the input names given in the docstring: model({"input_ids": input_ids, "token_type_ids": token_type_ids})

call

Parameters

  • input_ids (Numpy array or tf.Tensor of shape (batch_size, sequence_length)) — Indices of input sequence tokens in the vocabulary.

  • attention_mask (Numpy array or tf.Tensor of shape (batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:

    • 1 for tokens that are not masked,

    • 0 for tokens that are masked.

  • token_type_ids (Numpy array or tf.Tensor of shape (batch_size, sequence_length), optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]:

    • 0 corresponds to a sentence A token,

    • 1 corresponds to a sentence B token.

  • inputs_embeds (tf.Tensor of shape (batch_size, sequence_length, hidden_size), optional) — Optionally, instead of passing input_ids you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids indices into associated vectors than the model’s internal embedding lookup matrix.

  • output_attentions (bool, optional) — Whether or not to return the attentions tensors of all attention layers. See attentions under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead.

  • output_hidden_states (bool, optional) — Whether or not to return the hidden states of all layers. See hidden_states under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead.

  • training (bool, optional, defaults to False) — Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation).

  • start_positions (tf.Tensor of shape (batch_size,), optional) — Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (sequence_length). Position outside of the sequence are not taken into account for computing the loss.

  • end_positions (tf.Tensor of shape (batch_size,), optional) — Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (sequence_length). Position outside of the sequence are not taken into account for computing the loss.

Returns

  • loss (tf.Tensor of shape (batch_size, ), optional, returned when start_positions and end_positions are provided) — Total span extraction loss is the sum of a Cross-Entropy for the start and end positions.

  • start_logits (tf.Tensor of shape (batch_size, sequence_length)) — Span-start scores (before SoftMax).

  • end_logits (tf.Tensor of shape (batch_size, sequence_length)) — Span-end scores (before SoftMax).

  • hidden_states (tuple(tf.Tensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) — Tuple of tf.Tensor (one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the model at the output of each layer plus the initial embedding outputs.

  • attentions (tuple(tf.Tensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) — Tuple of tf.Tensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Example:

Copied

>>> from transformers import AutoTokenizer, TFFunnelForQuestionAnswering
>>> import tensorflow as tf

>>> tokenizer = AutoTokenizer.from_pretrained("funnel-transformer/small")
>>> model = TFFunnelForQuestionAnswering.from_pretrained("funnel-transformer/small")

>>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"

>>> inputs = tokenizer(question, text, return_tensors="tf")
>>> outputs = model(**inputs)

>>> answer_start_index = int(tf.math.argmax(outputs.start_logits, axis=-1)[0])
>>> answer_end_index = int(tf.math.argmax(outputs.end_logits, axis=-1)[0])

>>> predict_answer_tokens = inputs.input_ids[0, answer_start_index : answer_end_index + 1]

Copied

>>> # target is "nice puppet"
>>> target_start_index = tf.constant([14])
>>> target_end_index = tf.constant([15])

>>> outputs = model(**inputs, start_positions=target_start_index, end_positions=target_end_index)
>>> loss = tf.math.reduce_mean(outputs.loss)

vocab_size (int, optional, defaults to 30522) — Vocabulary size of the Funnel transformer. Defines the number of different tokens that can be represented by the inputs_ids passed when calling or .

This is the configuration class to store the configuration of a or a . It is used to instantiate a Funnel Transformer model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the Funnel Transformer architecture.

Configuration objects inherit from and can be used to control the model outputs. Read the documentation from for more information.

This should likely be deactivated for Japanese (see this ).

This tokenizer inherits from which contains most of the main methods. Users should refer to this superclass for more information regarding those methods.

List of with the appropriate special tokens.

List of according to the given sequence(s).

tokenize_chinese_chars (bool, optional, defaults to True) — Whether or not to tokenize Chinese characters. This should likely be deactivated for Japanese (see ).

This tokenizer inherits from which contains most of the main methods. Users should refer to this superclass for more information regarding those methods.

List of with the appropriate special tokens.

List of according to the given sequence(s).

Output type of .

Output type of .

config () — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the method to load the model weights.

The Funnel Transformer model was proposed in by Zihang Dai, Guokun Lai, Yiming Yang, Quoc V. Le.

This model inherits from . Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)

This model is also a PyTorch subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.

( input_ids: typing.Optional[torch.Tensor] = Noneattention_mask: typing.Optional[torch.Tensor] = Nonetoken_type_ids: typing.Optional[torch.Tensor] = Noneposition_ids: typing.Optional[torch.Tensor] = Nonehead_mask: typing.Optional[torch.Tensor] = Noneinputs_embeds: typing.Optional[torch.Tensor] = Noneoutput_attentions: typing.Optional[bool] = Noneoutput_hidden_states: typing.Optional[bool] = Nonereturn_dict: typing.Optional[bool] = None ) → or tuple(torch.FloatTensor)

Indices can be obtained using . See and for details.

return_dict (bool, optional) — Whether or not to return a instead of a plain tuple.

or tuple(torch.FloatTensor)

A or a tuple of torch.FloatTensor (if return_dict=False is passed or when config.return_dict=False) comprising various elements depending on the configuration () and inputs.

The forward method, overrides the __call__ special method.

config () — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the method to load the model weights.

The Funnel Transformer model was proposed in by Zihang Dai, Guokun Lai, Yiming Yang, Quoc V. Le.

This model inherits from . Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)

This model is also a PyTorch subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.

( input_ids: typing.Optional[torch.Tensor] = Noneattention_mask: typing.Optional[torch.Tensor] = Nonetoken_type_ids: typing.Optional[torch.Tensor] = Noneinputs_embeds: typing.Optional[torch.Tensor] = Noneoutput_attentions: typing.Optional[bool] = Noneoutput_hidden_states: typing.Optional[bool] = Nonereturn_dict: typing.Optional[bool] = None ) → or tuple(torch.FloatTensor)

Indices can be obtained using . See and for details.

return_dict (bool, optional) — Whether or not to return a instead of a plain tuple.

or tuple(torch.FloatTensor)

A or a tuple of torch.FloatTensor (if return_dict=False is passed or when config.return_dict=False) comprising various elements depending on the configuration () and inputs.

The forward method, overrides the __call__ special method.

( input_ids: typing.Optional[torch.Tensor] = Noneattention_mask: typing.Optional[torch.Tensor] = Nonetoken_type_ids: typing.Optional[torch.Tensor] = Noneinputs_embeds: typing.Optional[torch.Tensor] = Nonelabels: typing.Optional[torch.Tensor] = Noneoutput_attentions: typing.Optional[bool] = Noneoutput_hidden_states: typing.Optional[bool] = Nonereturn_dict: typing.Optional[bool] = None ) → or tuple(torch.FloatTensor)

Indices can be obtained using . See and for details.

return_dict (bool, optional) — Whether or not to return a instead of a plain tuple.

or tuple(torch.FloatTensor)

A or a tuple of torch.FloatTensor (if return_dict=False is passed or when config.return_dict=False) comprising various elements depending on the configuration () and inputs.

The forward method, overrides the __call__ special method.

config () — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the method to load the model weights.

The Funnel Transformer model was proposed in by Zihang Dai, Guokun Lai, Yiming Yang, Quoc V. Le.

This model inherits from . Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)

This model is also a PyTorch subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.

( input_ids: typing.Optional[torch.Tensor] = Noneattention_mask: typing.Optional[torch.Tensor] = Nonetoken_type_ids: typing.Optional[torch.Tensor] = Noneinputs_embeds: typing.Optional[torch.Tensor] = Nonelabels: typing.Optional[torch.Tensor] = Noneoutput_attentions: typing.Optional[bool] = Noneoutput_hidden_states: typing.Optional[bool] = Nonereturn_dict: typing.Optional[bool] = None ) → or tuple(torch.FloatTensor)

Indices can be obtained using . See and for details.

return_dict (bool, optional) — Whether or not to return a instead of a plain tuple.

or tuple(torch.FloatTensor)

A or a tuple of torch.FloatTensor (if return_dict=False is passed or when config.return_dict=False) comprising various elements depending on the configuration () and inputs.

The forward method, overrides the __call__ special method.

config () — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the method to load the model weights.

The Funnel Transformer model was proposed in by Zihang Dai, Guokun Lai, Yiming Yang, Quoc V. Le.

This model inherits from . Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)

This model is also a PyTorch subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.

( input_ids: typing.Optional[torch.Tensor] = Noneattention_mask: typing.Optional[torch.Tensor] = Nonetoken_type_ids: typing.Optional[torch.Tensor] = Noneinputs_embeds: typing.Optional[torch.Tensor] = Nonelabels: typing.Optional[torch.Tensor] = Noneoutput_attentions: typing.Optional[bool] = Noneoutput_hidden_states: typing.Optional[bool] = Nonereturn_dict: typing.Optional[bool] = None ) → or tuple(torch.FloatTensor)

Indices can be obtained using . See and for details.

return_dict (bool, optional) — Whether or not to return a instead of a plain tuple.

or tuple(torch.FloatTensor)

A or a tuple of torch.FloatTensor (if return_dict=False is passed or when config.return_dict=False) comprising various elements depending on the configuration () and inputs.

The forward method, overrides the __call__ special method.

config () — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the method to load the model weights.

The Funnel Transformer model was proposed in by Zihang Dai, Guokun Lai, Yiming Yang, Quoc V. Le.

This model inherits from . Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)

This model is also a PyTorch subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.

( input_ids: typing.Optional[torch.Tensor] = Noneattention_mask: typing.Optional[torch.Tensor] = Nonetoken_type_ids: typing.Optional[torch.Tensor] = Noneinputs_embeds: typing.Optional[torch.Tensor] = Nonelabels: typing.Optional[torch.Tensor] = Noneoutput_attentions: typing.Optional[bool] = Noneoutput_hidden_states: typing.Optional[bool] = Nonereturn_dict: typing.Optional[bool] = None ) → or tuple(torch.FloatTensor)

Indices can be obtained using . See and for details.

return_dict (bool, optional) — Whether or not to return a instead of a plain tuple.

or tuple(torch.FloatTensor)

A or a tuple of torch.FloatTensor (if return_dict=False is passed or when config.return_dict=False) comprising various elements depending on the configuration () and inputs.

The forward method, overrides the __call__ special method.

config () — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the method to load the model weights.

The Funnel Transformer model was proposed in by Zihang Dai, Guokun Lai, Yiming Yang, Quoc V. Le.

This model inherits from . Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)

This model is also a PyTorch subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.

( input_ids: typing.Optional[torch.Tensor] = Noneattention_mask: typing.Optional[torch.Tensor] = Nonetoken_type_ids: typing.Optional[torch.Tensor] = Noneinputs_embeds: typing.Optional[torch.Tensor] = Nonelabels: typing.Optional[torch.Tensor] = Noneoutput_attentions: typing.Optional[bool] = Noneoutput_hidden_states: typing.Optional[bool] = Nonereturn_dict: typing.Optional[bool] = None ) → or tuple(torch.FloatTensor)

Indices can be obtained using . See and for details.

return_dict (bool, optional) — Whether or not to return a instead of a plain tuple.

or tuple(torch.FloatTensor)

A or a tuple of torch.FloatTensor (if return_dict=False is passed or when config.return_dict=False) comprising various elements depending on the configuration () and inputs.

The forward method, overrides the __call__ special method.

config () — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the method to load the model weights.

The Funnel Transformer model was proposed in by Zihang Dai, Guokun Lai, Yiming Yang, Quoc V. Le.

This model inherits from . Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)

This model is also a PyTorch subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.

( input_ids: typing.Optional[torch.Tensor] = Noneattention_mask: typing.Optional[torch.Tensor] = Nonetoken_type_ids: typing.Optional[torch.Tensor] = Noneinputs_embeds: typing.Optional[torch.Tensor] = Nonestart_positions: typing.Optional[torch.Tensor] = Noneend_positions: typing.Optional[torch.Tensor] = Noneoutput_attentions: typing.Optional[bool] = Noneoutput_hidden_states: typing.Optional[bool] = Nonereturn_dict: typing.Optional[bool] = None ) → or tuple(torch.FloatTensor)

Indices can be obtained using . See and for details.

return_dict (bool, optional) — Whether or not to return a instead of a plain tuple.

or tuple(torch.FloatTensor)

A or a tuple of torch.FloatTensor (if return_dict=False is passed or when config.return_dict=False) comprising various elements depending on the configuration () and inputs.

The forward method, overrides the __call__ special method.

config (XxxConfig) — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the method to load the model weights.

The Funnel Transformer model was proposed in by Zihang Dai, Guokun Lai, Yiming Yang, Quoc V. Le.

This model inherits from . Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)

This model is also a subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior.

Note that when creating models and layers with then you don’t need to worry about any of this, as you can just pass inputs like you would to any other Python function!

( input_ids: TFModelInputType | None = Noneattention_mask: np.ndarray | tf.Tensor | None = Nonetoken_type_ids: np.ndarray | tf.Tensor | None = Noneinputs_embeds: np.ndarray | tf.Tensor | None = Noneoutput_attentions: Optional[bool] = Noneoutput_hidden_states: Optional[bool] = Nonereturn_dict: Optional[bool] = Nonetraining: bool = False ) → or tuple(tf.Tensor)

Indices can be obtained using . See and for details.

return_dict (bool, optional) — Whether or not to return a instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True.

or tuple(tf.Tensor)

A or a tuple of tf.Tensor (if return_dict=False is passed or when config.return_dict=False) comprising various elements depending on the configuration () and inputs.

The forward method, overrides the __call__ special method.

config (XxxConfig) — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the method to load the model weights.

The Funnel Transformer model was proposed in by Zihang Dai, Guokun Lai, Yiming Yang, Quoc V. Le.

This model inherits from . Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)

This model is also a subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior.

Note that when creating models and layers with then you don’t need to worry about any of this, as you can just pass inputs like you would to any other Python function!

( input_ids: TFModelInputType | None = Noneattention_mask: np.ndarray | tf.Tensor | None = Nonetoken_type_ids: np.ndarray | tf.Tensor | None = Noneinputs_embeds: np.ndarray | tf.Tensor | None = Noneoutput_attentions: Optional[bool] = Noneoutput_hidden_states: Optional[bool] = Nonereturn_dict: Optional[bool] = Nonetraining: bool = False ) → or tuple(tf.Tensor)

Indices can be obtained using . See and for details.

return_dict (bool, optional) — Whether or not to return a instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True.

or tuple(tf.Tensor)

A or a tuple of tf.Tensor (if return_dict=False is passed or when config.return_dict=False) comprising various elements depending on the configuration () and inputs.

The forward method, overrides the __call__ special method.

config (XxxConfig) — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the method to load the model weights.

The Funnel Transformer model was proposed in by Zihang Dai, Guokun Lai, Yiming Yang, Quoc V. Le.

This model inherits from . Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)

This model is also a subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior.

Note that when creating models and layers with then you don’t need to worry about any of this, as you can just pass inputs like you would to any other Python function!

( input_ids: TFModelInputType | None = Noneattention_mask: np.ndarray | tf.Tensor | None = Nonetoken_type_ids: np.ndarray | tf.Tensor | None = Noneinputs_embeds: np.ndarray | tf.Tensor | None = Noneoutput_attentions: Optional[bool] = Noneoutput_hidden_states: Optional[bool] = Nonereturn_dict: Optional[bool] = Nonetraining: bool = False**kwargs ) → or tuple(tf.Tensor)

Indices can be obtained using . See and for details.

return_dict (bool, optional) — Whether or not to return a instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True.

or tuple(tf.Tensor)

A or a tuple of tf.Tensor (if return_dict=False is passed or when config.return_dict=False) comprising various elements depending on the configuration () and inputs.

The forward method, overrides the __call__ special method.

config (XxxConfig) — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the method to load the model weights.

The Funnel Transformer model was proposed in by Zihang Dai, Guokun Lai, Yiming Yang, Quoc V. Le.

This model inherits from . Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)

This model is also a subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior.

Note that when creating models and layers with then you don’t need to worry about any of this, as you can just pass inputs like you would to any other Python function!

( input_ids: TFModelInputType | None = Noneattention_mask: np.ndarray | tf.Tensor | None = Nonetoken_type_ids: np.ndarray | tf.Tensor | None = Noneinputs_embeds: np.ndarray | tf.Tensor | None = Noneoutput_attentions: Optional[bool] = Noneoutput_hidden_states: Optional[bool] = Nonereturn_dict: Optional[bool] = Nonelabels: np.ndarray | tf.Tensor | None = Nonetraining: bool = False ) → or tuple(tf.Tensor)

Indices can be obtained using . See and for details.

return_dict (bool, optional) — Whether or not to return a instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True.

or tuple(tf.Tensor)

A or a tuple of tf.Tensor (if return_dict=False is passed or when config.return_dict=False) comprising various elements depending on the configuration () and inputs.

The forward method, overrides the __call__ special method.

config (XxxConfig) — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the method to load the model weights.

The Funnel Transformer model was proposed in by Zihang Dai, Guokun Lai, Yiming Yang, Quoc V. Le.

This model inherits from . Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)

This model is also a subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior.

Note that when creating models and layers with then you don’t need to worry about any of this, as you can just pass inputs like you would to any other Python function!

( input_ids: TFModelInputType | None = Noneattention_mask: np.ndarray | tf.Tensor | None = Nonetoken_type_ids: np.ndarray | tf.Tensor | None = Noneinputs_embeds: np.ndarray | tf.Tensor | None = Noneoutput_attentions: Optional[bool] = Noneoutput_hidden_states: Optional[bool] = Nonereturn_dict: Optional[bool] = Nonelabels: np.ndarray | tf.Tensor | None = Nonetraining: bool = False ) → or tuple(tf.Tensor)

Indices can be obtained using . See and for details.

return_dict (bool, optional) — Whether or not to return a instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True.

or tuple(tf.Tensor)

A or a tuple of tf.Tensor (if return_dict=False is passed or when config.return_dict=False) comprising various elements depending on the configuration () and inputs.

The forward method, overrides the __call__ special method.

config (XxxConfig) — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the method to load the model weights.

The Funnel Transformer model was proposed in by Zihang Dai, Guokun Lai, Yiming Yang, Quoc V. Le.

This model inherits from . Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)

This model is also a subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior.

Note that when creating models and layers with then you don’t need to worry about any of this, as you can just pass inputs like you would to any other Python function!

( input_ids: TFModelInputType | None = Noneattention_mask: np.ndarray | tf.Tensor | None = Nonetoken_type_ids: np.ndarray | tf.Tensor | None = Noneinputs_embeds: np.ndarray | tf.Tensor | None = Noneoutput_attentions: Optional[bool] = Noneoutput_hidden_states: Optional[bool] = Nonereturn_dict: Optional[bool] = Nonelabels: np.ndarray | tf.Tensor | None = Nonetraining: bool = False ) → or tuple(tf.Tensor)

Indices can be obtained using . See and for details.

return_dict (bool, optional) — Whether or not to return a instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True.

or tuple(tf.Tensor)

A or a tuple of tf.Tensor (if return_dict=False is passed or when config.return_dict=False) comprising various elements depending on the configuration () and inputs.

The forward method, overrides the __call__ special method.

config (XxxConfig) — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the method to load the model weights.

The Funnel Transformer model was proposed in by Zihang Dai, Guokun Lai, Yiming Yang, Quoc V. Le.

This model inherits from . Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)

This model is also a subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior.

Note that when creating models and layers with then you don’t need to worry about any of this, as you can just pass inputs like you would to any other Python function!

( input_ids: TFModelInputType | None = Noneattention_mask: np.ndarray | tf.Tensor | None = Nonetoken_type_ids: np.ndarray | tf.Tensor | None = Noneinputs_embeds: np.ndarray | tf.Tensor | None = Noneoutput_attentions: Optional[bool] = Noneoutput_hidden_states: Optional[bool] = Nonereturn_dict: Optional[bool] = Nonelabels: np.ndarray | tf.Tensor | None = Nonetraining: bool = False ) → or tuple(tf.Tensor)

Indices can be obtained using . See and for details.

return_dict (bool, optional) — Whether or not to return a instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True.

or tuple(tf.Tensor)

A or a tuple of tf.Tensor (if return_dict=False is passed or when config.return_dict=False) comprising various elements depending on the configuration () and inputs.

The forward method, overrides the __call__ special method.

config (XxxConfig) — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the method to load the model weights.

The Funnel Transformer model was proposed in by Zihang Dai, Guokun Lai, Yiming Yang, Quoc V. Le.

This model inherits from . Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)

This model is also a subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior.

Note that when creating models and layers with then you don’t need to worry about any of this, as you can just pass inputs like you would to any other Python function!

( input_ids: TFModelInputType | None = Noneattention_mask: np.ndarray | tf.Tensor | None = Nonetoken_type_ids: np.ndarray | tf.Tensor | None = Noneinputs_embeds: np.ndarray | tf.Tensor | None = Noneoutput_attentions: Optional[bool] = Noneoutput_hidden_states: Optional[bool] = Nonereturn_dict: Optional[bool] = Nonestart_positions: np.ndarray | tf.Tensor | None = Noneend_positions: np.ndarray | tf.Tensor | None = Nonetraining: bool = False ) → or tuple(tf.Tensor)

Indices can be obtained using . See and for details.

return_dict (bool, optional) — Whether or not to return a instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True.

or tuple(tf.Tensor)

A or a tuple of tf.Tensor (if return_dict=False is passed or when config.return_dict=False) comprising various elements depending on the configuration () and inputs.

The forward method, overrides the __call__ special method.

🌍
🌍
🌍
<source>
FunnelModel
TFFunnelModel
FunnelModel
TFBertModel
funnel-transformer/small
PretrainedConfig
PretrainedConfig
<source>
issue
PreTrainedTokenizer
<source>
input IDs
<source>
<source>
token type IDs
<source>
<source>
this issue
PreTrainedTokenizerFast
<source>
input IDs
<source>
token type IDs
<source>
FunnelForPreTraining
<source>
FunnelForPreTraining
<source>
FunnelConfig
from_pretrained()
Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing
PreTrainedModel
torch.nn.Module
<source>
transformers.modeling_outputs.BaseModelOutput
AutoTokenizer
PreTrainedTokenizer.encode()
PreTrainedTokenizer.call()
What are input IDs?
What are attention masks?
What are token type IDs?
ModelOutput
transformers.modeling_outputs.BaseModelOutput
transformers.modeling_outputs.BaseModelOutput
FunnelConfig
FunnelBaseModel
<source>
FunnelConfig
from_pretrained()
Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing
PreTrainedModel
torch.nn.Module
<source>
transformers.modeling_outputs.BaseModelOutput
AutoTokenizer
PreTrainedTokenizer.encode()
PreTrainedTokenizer.call()
What are input IDs?
What are attention masks?
What are token type IDs?
ModelOutput
transformers.modeling_outputs.BaseModelOutput
transformers.modeling_outputs.BaseModelOutput
FunnelConfig
FunnelModel
<source>
<source>
transformers.models.funnel.modeling_funnel.FunnelForPreTrainingOutput
AutoTokenizer
PreTrainedTokenizer.encode()
PreTrainedTokenizer.call()
What are input IDs?
What are attention masks?
What are token type IDs?
ModelOutput
transformers.models.funnel.modeling_funnel.FunnelForPreTrainingOutput
transformers.models.funnel.modeling_funnel.FunnelForPreTrainingOutput
FunnelConfig
FunnelForPreTraining
<source>
FunnelConfig
from_pretrained()
Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing
PreTrainedModel
torch.nn.Module
<source>
transformers.modeling_outputs.MaskedLMOutput
AutoTokenizer
PreTrainedTokenizer.encode()
PreTrainedTokenizer.call()
What are input IDs?
What are attention masks?
What are token type IDs?
ModelOutput
transformers.modeling_outputs.MaskedLMOutput
transformers.modeling_outputs.MaskedLMOutput
FunnelConfig
FunnelForMaskedLM
<source>
FunnelConfig
from_pretrained()
Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing
PreTrainedModel
torch.nn.Module
<source>
transformers.modeling_outputs.SequenceClassifierOutput
AutoTokenizer
PreTrainedTokenizer.encode()
PreTrainedTokenizer.call()
What are input IDs?
What are attention masks?
What are token type IDs?
ModelOutput
transformers.modeling_outputs.SequenceClassifierOutput
transformers.modeling_outputs.SequenceClassifierOutput
FunnelConfig
FunnelForSequenceClassification
<source>
FunnelConfig
from_pretrained()
Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing
PreTrainedModel
torch.nn.Module
<source>
transformers.modeling_outputs.MultipleChoiceModelOutput
AutoTokenizer
PreTrainedTokenizer.encode()
PreTrainedTokenizer.call()
What are input IDs?
What are attention masks?
What are token type IDs?
ModelOutput
transformers.modeling_outputs.MultipleChoiceModelOutput
transformers.modeling_outputs.MultipleChoiceModelOutput
FunnelConfig
FunnelForMultipleChoice
<source>
FunnelConfig
from_pretrained()
Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing
PreTrainedModel
torch.nn.Module
<source>
transformers.modeling_outputs.TokenClassifierOutput
AutoTokenizer
PreTrainedTokenizer.encode()
PreTrainedTokenizer.call()
What are input IDs?
What are attention masks?
What are token type IDs?
ModelOutput
transformers.modeling_outputs.TokenClassifierOutput
transformers.modeling_outputs.TokenClassifierOutput
FunnelConfig
FunnelForTokenClassification
<source>
FunnelConfig
from_pretrained()
Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing
PreTrainedModel
torch.nn.Module
<source>
transformers.modeling_outputs.QuestionAnsweringModelOutput
AutoTokenizer
PreTrainedTokenizer.encode()
PreTrainedTokenizer.call()
What are input IDs?
What are attention masks?
What are token type IDs?
ModelOutput
transformers.modeling_outputs.QuestionAnsweringModelOutput
transformers.modeling_outputs.QuestionAnsweringModelOutput
FunnelConfig
FunnelForQuestionAnswering
<source>
from_pretrained()
Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing
TFPreTrainedModel
tf.keras.Model
subclassing
<source>
transformers.modeling_tf_outputs.TFBaseModelOutput
AutoTokenizer
PreTrainedTokenizer.call()
PreTrainedTokenizer.encode()
What are input IDs?
What are attention masks?
What are token type IDs?
ModelOutput
transformers.modeling_tf_outputs.TFBaseModelOutput
transformers.modeling_tf_outputs.TFBaseModelOutput
FunnelConfig
TFFunnelBaseModel
<source>
from_pretrained()
Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing
TFPreTrainedModel
tf.keras.Model
subclassing
<source>
transformers.modeling_tf_outputs.TFBaseModelOutput
AutoTokenizer
PreTrainedTokenizer.call()
PreTrainedTokenizer.encode()
What are input IDs?
What are attention masks?
What are token type IDs?
ModelOutput
transformers.modeling_tf_outputs.TFBaseModelOutput
transformers.modeling_tf_outputs.TFBaseModelOutput
FunnelConfig
TFFunnelModel
<source>
from_pretrained()
Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing
TFPreTrainedModel
tf.keras.Model
subclassing
<source>
transformers.models.funnel.modeling_tf_funnel.TFFunnelForPreTrainingOutput
AutoTokenizer
PreTrainedTokenizer.call()
PreTrainedTokenizer.encode()
What are input IDs?
What are attention masks?
What are token type IDs?
ModelOutput
transformers.models.funnel.modeling_tf_funnel.TFFunnelForPreTrainingOutput
transformers.models.funnel.modeling_tf_funnel.TFFunnelForPreTrainingOutput
FunnelConfig
TFFunnelForPreTraining
<source>
from_pretrained()
Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing
TFPreTrainedModel
tf.keras.Model
subclassing
<source>
transformers.modeling_tf_outputs.TFMaskedLMOutput
AutoTokenizer
PreTrainedTokenizer.call()
PreTrainedTokenizer.encode()
What are input IDs?
What are attention masks?
What are token type IDs?
ModelOutput
transformers.modeling_tf_outputs.TFMaskedLMOutput
transformers.modeling_tf_outputs.TFMaskedLMOutput
FunnelConfig
TFFunnelForMaskedLM
<source>
from_pretrained()
Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing
TFPreTrainedModel
tf.keras.Model
subclassing
<source>
transformers.modeling_tf_outputs.TFSequenceClassifierOutput
AutoTokenizer
PreTrainedTokenizer.call()
PreTrainedTokenizer.encode()
What are input IDs?
What are attention masks?
What are token type IDs?
ModelOutput
transformers.modeling_tf_outputs.TFSequenceClassifierOutput
transformers.modeling_tf_outputs.TFSequenceClassifierOutput
FunnelConfig
TFFunnelForSequenceClassification
<source>
from_pretrained()
Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing
TFPreTrainedModel
tf.keras.Model
subclassing
<source>
transformers.modeling_tf_outputs.TFMultipleChoiceModelOutput
AutoTokenizer
PreTrainedTokenizer.call()
PreTrainedTokenizer.encode()
What are input IDs?
What are attention masks?
What are token type IDs?
ModelOutput
transformers.modeling_tf_outputs.TFMultipleChoiceModelOutput
transformers.modeling_tf_outputs.TFMultipleChoiceModelOutput
FunnelConfig
TFFunnelForMultipleChoice
<source>
from_pretrained()
Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing
TFPreTrainedModel
tf.keras.Model
subclassing
<source>
transformers.modeling_tf_outputs.TFTokenClassifierOutput
AutoTokenizer
PreTrainedTokenizer.call()
PreTrainedTokenizer.encode()
What are input IDs?
What are attention masks?
What are token type IDs?
ModelOutput
transformers.modeling_tf_outputs.TFTokenClassifierOutput
transformers.modeling_tf_outputs.TFTokenClassifierOutput
FunnelConfig
TFFunnelForTokenClassification
<source>
from_pretrained()
Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing
TFPreTrainedModel
tf.keras.Model
subclassing
<source>
transformers.modeling_tf_outputs.TFQuestionAnsweringModelOutput
AutoTokenizer
PreTrainedTokenizer.call()
PreTrainedTokenizer.encode()
What are input IDs?
What are attention masks?
What are token type IDs?
ModelOutput
transformers.modeling_tf_outputs.TFQuestionAnsweringModelOutput
transformers.modeling_tf_outputs.TFQuestionAnsweringModelOutput
FunnelConfig
TFFunnelForQuestionAnswering
Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing
FunnelModel
FunnelForPreTraining
FunnelForMaskedLM
FunnelForTokenClassification
FunnelForQuestionAnswering
FunnelBaseModel
FunnelForSequenceClassification
FunnelForMultipleChoice
sgugger
here
Text classification task guide
Token classification task guide
Question answering task guide
Masked language modeling task guide
Multiple choice task guide