Transformers
  • 🌍GET STARTED
    • Transformers
    • Quick tour
    • Installation
  • 🌍TUTORIALS
    • Run inference with pipelines
    • Write portable code with AutoClass
    • Preprocess data
    • Fine-tune a pretrained model
    • Train with a script
    • Set up distributed training with BOINC AI Accelerate
    • Load and train adapters with BOINC AI PEFT
    • Share your model
    • Agents
    • Generation with LLMs
  • 🌍TASK GUIDES
    • 🌍NATURAL LANGUAGE PROCESSING
      • Text classification
      • Token classification
      • Question answering
      • Causal language modeling
      • Masked language modeling
      • Translation
      • Summarization
      • Multiple choice
    • 🌍AUDIO
      • Audio classification
      • Automatic speech recognition
    • 🌍COMPUTER VISION
      • Image classification
      • Semantic segmentation
      • Video classification
      • Object detection
      • Zero-shot object detection
      • Zero-shot image classification
      • Depth estimation
    • 🌍MULTIMODAL
      • Image captioning
      • Document Question Answering
      • Visual Question Answering
      • Text to speech
    • 🌍GENERATION
      • Customize the generation strategy
    • 🌍PROMPTING
      • Image tasks with IDEFICS
  • 🌍DEVELOPER GUIDES
    • Use fast tokenizers from BOINC AI Tokenizers
    • Run inference with multilingual models
    • Use model-specific APIs
    • Share a custom model
    • Templates for chat models
    • Run training on Amazon SageMaker
    • Export to ONNX
    • Export to TFLite
    • Export to TorchScript
    • Benchmarks
    • Notebooks with examples
    • Community resources
    • Custom Tools and Prompts
    • Troubleshoot
  • 🌍PERFORMANCE AND SCALABILITY
    • Overview
    • 🌍EFFICIENT TRAINING TECHNIQUES
      • Methods and tools for efficient training on a single GPU
      • Multiple GPUs and parallelism
      • Efficient training on CPU
      • Distributed CPU training
      • Training on TPUs
      • Training on TPU with TensorFlow
      • Training on Specialized Hardware
      • Custom hardware for training
      • Hyperparameter Search using Trainer API
    • 🌍OPTIMIZING INFERENCE
      • Inference on CPU
      • Inference on one GPU
      • Inference on many GPUs
      • Inference on Specialized Hardware
    • Instantiating a big model
    • Troubleshooting
    • XLA Integration for TensorFlow Models
    • Optimize inference using `torch.compile()`
  • 🌍CONTRIBUTE
    • How to contribute to transformers?
    • How to add a model to BOINC AI Transformers?
    • How to convert a BOINC AI Transformers model to TensorFlow?
    • How to add a pipeline to BOINC AI Transformers?
    • Testing
    • Checks on a Pull Request
  • 🌍CONCEPTUAL GUIDES
    • Philosophy
    • Glossary
    • What BOINC AI Transformers can do
    • How BOINC AI Transformers solve tasks
    • The Transformer model family
    • Summary of the tokenizers
    • Attention mechanisms
    • Padding and truncation
    • BERTology
    • Perplexity of fixed-length models
    • Pipelines for webserver inference
    • Model training anatomy
  • 🌍API
    • 🌍MAIN CLASSES
      • Agents and Tools
      • 🌍Auto Classes
        • Extending the Auto Classes
        • AutoConfig
        • AutoTokenizer
        • AutoFeatureExtractor
        • AutoImageProcessor
        • AutoProcessor
        • Generic model classes
          • AutoModel
          • TFAutoModel
          • FlaxAutoModel
        • Generic pretraining classes
          • AutoModelForPreTraining
          • TFAutoModelForPreTraining
          • FlaxAutoModelForPreTraining
        • Natural Language Processing
          • AutoModelForCausalLM
          • TFAutoModelForCausalLM
          • FlaxAutoModelForCausalLM
          • AutoModelForMaskedLM
          • TFAutoModelForMaskedLM
          • FlaxAutoModelForMaskedLM
          • AutoModelForMaskGenerationge
          • TFAutoModelForMaskGeneration
          • AutoModelForSeq2SeqLM
          • TFAutoModelForSeq2SeqLM
          • FlaxAutoModelForSeq2SeqLM
          • AutoModelForSequenceClassification
          • TFAutoModelForSequenceClassification
          • FlaxAutoModelForSequenceClassification
          • AutoModelForMultipleChoice
          • TFAutoModelForMultipleChoice
          • FlaxAutoModelForMultipleChoice
          • AutoModelForNextSentencePrediction
          • TFAutoModelForNextSentencePrediction
          • FlaxAutoModelForNextSentencePrediction
          • AutoModelForTokenClassification
          • TFAutoModelForTokenClassification
          • FlaxAutoModelForTokenClassification
          • AutoModelForQuestionAnswering
          • TFAutoModelForQuestionAnswering
          • FlaxAutoModelForQuestionAnswering
          • AutoModelForTextEncoding
          • TFAutoModelForTextEncoding
        • Computer vision
          • AutoModelForDepthEstimation
          • AutoModelForImageClassification
          • TFAutoModelForImageClassification
          • FlaxAutoModelForImageClassification
          • AutoModelForVideoClassification
          • AutoModelForMaskedImageModeling
          • TFAutoModelForMaskedImageModeling
          • AutoModelForObjectDetection
          • AutoModelForImageSegmentation
          • AutoModelForImageToImage
          • AutoModelForSemanticSegmentation
          • TFAutoModelForSemanticSegmentation
          • AutoModelForInstanceSegmentation
          • AutoModelForUniversalSegmentation
          • AutoModelForZeroShotImageClassification
          • TFAutoModelForZeroShotImageClassification
          • AutoModelForZeroShotObjectDetection
        • Audio
          • AutoModelForAudioClassification
          • AutoModelForAudioFrameClassification
          • TFAutoModelForAudioFrameClassification
          • AutoModelForCTC
          • AutoModelForSpeechSeq2Seq
          • TFAutoModelForSpeechSeq2Seq
          • FlaxAutoModelForSpeechSeq2Seq
          • AutoModelForAudioXVector
          • AutoModelForTextToSpectrogram
          • AutoModelForTextToWaveform
        • Multimodal
          • AutoModelForTableQuestionAnswering
          • TFAutoModelForTableQuestionAnswering
          • AutoModelForDocumentQuestionAnswering
          • TFAutoModelForDocumentQuestionAnswering
          • AutoModelForVisualQuestionAnswering
          • AutoModelForVision2Seq
          • TFAutoModelForVision2Seq
          • FlaxAutoModelForVision2Seq
      • Callbacks
      • Configuration
      • Data Collator
      • Keras callbacks
      • Logging
      • Models
      • Text Generation
      • ONNX
      • Optimization
      • Model outputs
      • Pipelines
      • Processors
      • Quantization
      • Tokenizer
      • Trainer
      • DeepSpeed Integration
      • Feature Extractor
      • Image Processor
    • 🌍MODELS
      • 🌍TEXT MODELS
        • ALBERT
        • BART
        • BARThez
        • BARTpho
        • BERT
        • BertGeneration
        • BertJapanese
        • Bertweet
        • BigBird
        • BigBirdPegasus
        • BioGpt
        • Blenderbot
        • Blenderbot Small
        • BLOOM
        • BORT
        • ByT5
        • CamemBERT
        • CANINE
        • CodeGen
        • CodeLlama
        • ConvBERT
        • CPM
        • CPMANT
        • CTRL
        • DeBERTa
        • DeBERTa-v2
        • DialoGPT
        • DistilBERT
        • DPR
        • ELECTRA
        • Encoder Decoder Models
        • ERNIE
        • ErnieM
        • ESM
        • Falcon
        • FLAN-T5
        • FLAN-UL2
        • FlauBERT
        • FNet
        • FSMT
        • Funnel Transformer
        • GPT
        • GPT Neo
        • GPT NeoX
        • GPT NeoX Japanese
        • GPT-J
        • GPT2
        • GPTBigCode
        • GPTSAN Japanese
        • GPTSw3
        • HerBERT
        • I-BERT
        • Jukebox
        • LED
        • LLaMA
        • LLama2
        • Longformer
        • LongT5
        • LUKE
        • M2M100
        • MarianMT
        • MarkupLM
        • MBart and MBart-50
        • MEGA
        • MegatronBERT
        • MegatronGPT2
        • Mistral
        • mLUKE
        • MobileBERT
        • MPNet
        • MPT
        • MRA
        • MT5
        • MVP
        • NEZHA
        • NLLB
        • NLLB-MoE
        • Nyströmformer
        • Open-Llama
        • OPT
        • Pegasus
        • PEGASUS-X
        • Persimmon
        • PhoBERT
        • PLBart
        • ProphetNet
        • QDQBert
        • RAG
        • REALM
        • Reformer
        • RemBERT
        • RetriBERT
        • RoBERTa
        • RoBERTa-PreLayerNorm
        • RoCBert
        • RoFormer
        • RWKV
        • Splinter
        • SqueezeBERT
        • SwitchTransformers
        • T5
        • T5v1.1
        • TAPEX
        • Transformer XL
        • UL2
        • UMT5
        • X-MOD
        • XGLM
        • XLM
        • XLM-ProphetNet
        • XLM-RoBERTa
        • XLM-RoBERTa-XL
        • XLM-V
        • XLNet
        • YOSO
      • 🌍VISION MODELS
        • BEiT
        • BiT
        • Conditional DETR
        • ConvNeXT
        • ConvNeXTV2
        • CvT
        • Deformable DETR
        • DeiT
        • DETA
        • DETR
        • DiNAT
        • DINO V2
        • DiT
        • DPT
        • EfficientFormer
        • EfficientNet
        • FocalNet
        • GLPN
        • ImageGPT
        • LeViT
        • Mask2Former
        • MaskFormer
        • MobileNetV1
        • MobileNetV2
        • MobileViT
        • MobileViTV2
        • NAT
        • PoolFormer
        • Pyramid Vision Transformer (PVT)
        • RegNet
        • ResNet
        • SegFormer
        • SwiftFormer
        • Swin Transformer
        • Swin Transformer V2
        • Swin2SR
        • Table Transformer
        • TimeSformer
        • UperNet
        • VAN
        • VideoMAE
        • Vision Transformer (ViT)
        • ViT Hybrid
        • ViTDet
        • ViTMAE
        • ViTMatte
        • ViTMSN
        • ViViT
        • YOLOS
      • 🌍AUDIO MODELS
        • Audio Spectrogram Transformer
        • Bark
        • CLAP
        • EnCodec
        • Hubert
        • MCTCT
        • MMS
        • MusicGen
        • Pop2Piano
        • SEW
        • SEW-D
        • Speech2Text
        • Speech2Text2
        • SpeechT5
        • UniSpeech
        • UniSpeech-SAT
        • VITS
        • Wav2Vec2
        • Wav2Vec2-Conformer
        • Wav2Vec2Phoneme
        • WavLM
        • Whisper
        • XLS-R
        • XLSR-Wav2Vec2
      • 🌍MULTIMODAL MODELS
        • ALIGN
        • AltCLIP
        • BLIP
        • BLIP-2
        • BridgeTower
        • BROS
        • Chinese-CLIP
        • CLIP
        • CLIPSeg
        • Data2Vec
        • DePlot
        • Donut
        • FLAVA
        • GIT
        • GroupViT
        • IDEFICS
        • InstructBLIP
        • LayoutLM
        • LayoutLMV2
        • LayoutLMV3
        • LayoutXLM
        • LiLT
        • LXMERT
        • MatCha
        • MGP-STR
        • Nougat
        • OneFormer
        • OWL-ViT
        • Perceiver
        • Pix2Struct
        • Segment Anything
        • Speech Encoder Decoder Models
        • TAPAS
        • TrOCR
        • TVLT
        • ViLT
        • Vision Encoder Decoder Models
        • Vision Text Dual Encoder
        • VisualBERT
        • X-CLIP
      • 🌍REINFORCEMENT LEARNING MODELS
        • Decision Transformer
        • Trajectory Transformer
      • 🌍TIME SERIES MODELS
        • Autoformer
        • Informer
        • Time Series Transformer
      • 🌍GRAPH MODELS
        • Graphormer
  • 🌍INTERNAL HELPERS
    • Custom Layers and Utilities
    • Utilities for pipelines
    • Utilities for Tokenizers
    • Utilities for Trainer
    • Utilities for Generation
    • Utilities for Image Processors
    • Utilities for Audio processing
    • General Utilities
    • Utilities for Time Series
Powered by GitBook
On this page
  • Swin Transformer
  • Overview
  • Resources
  • SwinConfig
  • SwinModel
  • SwinForMaskedImageModeling
  • SwinForImageClassification
  • TFSwinModel
  • TFSwinForMaskedImageModeling
  • TFSwinForImageClassification
  1. API
  2. MODELS
  3. VISION MODELS

Swin Transformer

PreviousSwiftFormerNextSwin Transformer V2

Last updated 1 year ago

Swin Transformer

Overview

The Swin Transformer was proposed in by Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, Baining Guo.

The abstract from the paper is the following:

This paper presents a new vision Transformer, called Swin Transformer, that capably serves as a general-purpose backbone for computer vision. Challenges in adapting Transformer from language to vision arise from differences between the two domains, such as large variations in the scale of visual entities and the high resolution of pixels in images compared to words in text. To address these differences, we propose a hierarchical Transformer whose representation is computed with \bold{S}hifted \bold{win}dows. The shifted windowing scheme brings greater efficiency by limiting self-attention computation to non-overlapping local windows while also allowing for cross-window connection. This hierarchical architecture has the flexibility to model at various scales and has linear computational complexity with respect to image size. These qualities of Swin Transformer make it compatible with a broad range of vision tasks, including image classification (87.3 top-1 accuracy on ImageNet-1K) and dense prediction tasks such as object detection (58.7 box AP and 51.1 mask AP on COCO test-dev) and semantic segmentation (53.5 mIoU on ADE20K val). Its performance surpasses the previous state-of-the-art by a large margin of +2.7 box AP and +2.6 mask AP on COCO, and +3.2 mIoU on ADE20K, demonstrating the potential of Transformer-based models as vision backbones. The hierarchical design and the shifted window approach also prove beneficial for all-MLP architectures.

Tips:

  • One can use the API to prepare images for the model.

  • Swin pads the inputs supporting any input height and width (if divisible by 32).

  • Swin can be used as a backbone. When output_hidden_states = True, it will output both hidden_states and reshaped_hidden_states. The reshaped_hidden_states have a shape of (batch, num_channels, height, width) rather than (batch_size, sequence_length, num_channels).

Resources

A list of official BOINC AI and community (indicated by 🌎) resources to help you get started with Swin Transformer.

Image Classification

Besides that:

If you’re interested in submitting a resource to be included here, please feel free to open a Pull Request and we’ll review it! The resource should ideally demonstrate something new instead of duplicating an existing resource.

SwinConfig

class transformers.SwinConfig

( image_size = 224patch_size = 4num_channels = 3embed_dim = 96depths = [2, 2, 6, 2]num_heads = [3, 6, 12, 24]window_size = 7mlp_ratio = 4.0qkv_bias = Truehidden_dropout_prob = 0.0attention_probs_dropout_prob = 0.0drop_path_rate = 0.1hidden_act = 'gelu'use_absolute_embeddings = Falseinitializer_range = 0.02layer_norm_eps = 1e-05encoder_stride = 32out_features = Noneout_indices = None**kwargs )

Parameters

  • image_size (int, optional, defaults to 224) — The size (resolution) of each image.

  • patch_size (int, optional, defaults to 4) — The size (resolution) of each patch.

  • num_channels (int, optional, defaults to 3) — The number of input channels.

  • embed_dim (int, optional, defaults to 96) — Dimensionality of patch embedding.

  • depths (list(int), optional, defaults to [2, 2, 6, 2]) — Depth of each layer in the Transformer encoder.

  • num_heads (list(int), optional, defaults to [3, 6, 12, 24]) — Number of attention heads in each layer of the Transformer encoder.

  • window_size (int, optional, defaults to 7) — Size of windows.

  • mlp_ratio (float, optional, defaults to 4.0) — Ratio of MLP hidden dimensionality to embedding dimensionality.

  • qkv_bias (bool, optional, defaults to True) — Whether or not a learnable bias should be added to the queries, keys and values.

  • hidden_dropout_prob (float, optional, defaults to 0.0) — The dropout probability for all fully connected layers in the embeddings and encoder.

  • attention_probs_dropout_prob (float, optional, defaults to 0.0) — The dropout ratio for the attention probabilities.

  • drop_path_rate (float, optional, defaults to 0.1) — Stochastic depth rate.

  • hidden_act (str or function, optional, defaults to "gelu") — The non-linear activation function (function or string) in the encoder. If string, "gelu", "relu", "selu" and "gelu_new" are supported.

  • use_absolute_embeddings (bool, optional, defaults to False) — Whether or not to add absolute position embeddings to the patch embeddings.

  • initializer_range (float, optional, defaults to 0.02) — The standard deviation of the truncated_normal_initializer for initializing all weight matrices.

  • layer_norm_eps (float, optional, defaults to 1e-12) — The epsilon used by the layer normalization layers.

  • encoder_stride (int, optional, defaults to 32) — Factor to increase the spatial resolution by in the decoder head for masked image modeling.

  • out_features (List[str], optional) — If used as backbone, list of features to output. Can be any of "stem", "stage1", "stage2", etc. (depending on how many stages the model has). If unset and out_indices is set, will default to the corresponding stages. If unset and out_indices is unset, will default to the last stage.

  • out_indices (List[int], optional) — If used as backbone, list of indices of features to output. Can be any of 0, 1, 2, etc. (depending on how many stages the model has). If unset and out_features is set, will default to the corresponding stages. If unset and out_features is unset, will default to the last stage.

Example:

Copied

>>> from transformers import SwinConfig, SwinModel

>>> # Initializing a Swin microsoft/swin-tiny-patch4-window7-224 style configuration
>>> configuration = SwinConfig()

>>> # Initializing a model (with random weights) from the microsoft/swin-tiny-patch4-window7-224 style configuration
>>> model = SwinModel(configuration)

>>> # Accessing the model configuration
>>> configuration = model.config

SwinModel

class transformers.SwinModel

( configadd_pooling_layer = Trueuse_mask_token = False )

Parameters

forward

( pixel_values: typing.Optional[torch.FloatTensor] = Nonebool_masked_pos: typing.Optional[torch.BoolTensor] = Nonehead_mask: typing.Optional[torch.FloatTensor] = Noneoutput_attentions: typing.Optional[bool] = Noneoutput_hidden_states: typing.Optional[bool] = Nonereturn_dict: typing.Optional[bool] = None ) → transformers.models.swin.modeling_swin.SwinModelOutput or tuple(torch.FloatTensor)

Parameters

  • head_mask (torch.FloatTensor of shape (num_heads,) or (num_layers, num_heads), optional) — Mask to nullify selected heads of the self-attention modules. Mask values selected in [0, 1]:

    • 1 indicates the head is not masked,

    • 0 indicates the head is masked.

  • output_attentions (bool, optional) — Whether or not to return the attentions tensors of all attention layers. See attentions under returned tensors for more detail.

  • output_hidden_states (bool, optional) — Whether or not to return the hidden states of all layers. See hidden_states under returned tensors for more detail.

  • bool_masked_pos (torch.BoolTensor of shape (batch_size, num_patches), optional) — Boolean masked positions. Indicates which patches are masked (1) and which aren’t (0).

Returns

transformers.models.swin.modeling_swin.SwinModelOutput or tuple(torch.FloatTensor)

  • last_hidden_state (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size)) — Sequence of hidden-states at the output of the last layer of the model.

  • pooler_output (torch.FloatTensor of shape (batch_size, hidden_size), optional, returned when add_pooling_layer=True is passed) — Average pooling of the last layer hidden-state.

  • hidden_states (tuple(torch.FloatTensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) — Tuple of torch.FloatTensor (one for the output of the embeddings + one for the output of each stage) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the model at the output of each layer plus the initial embedding outputs.

  • attentions (tuple(torch.FloatTensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) — Tuple of torch.FloatTensor (one for each stage) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

  • reshaped_hidden_states (tuple(torch.FloatTensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) — Tuple of torch.FloatTensor (one for the output of the embeddings + one for the output of each stage) of shape (batch_size, hidden_size, height, width).

    Hidden-states of the model at the output of each layer plus the initial embedding outputs reshaped to include the spatial dimensions.

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Example:

Copied

>>> from transformers import AutoImageProcessor, SwinModel
>>> import torch
>>> from datasets import load_dataset

>>> dataset = load_dataset("boincai/cats-image")
>>> image = dataset["test"]["image"][0]

>>> image_processor = AutoImageProcessor.from_pretrained("microsoft/swin-tiny-patch4-window7-224")
>>> model = SwinModel.from_pretrained("microsoft/swin-tiny-patch4-window7-224")

>>> inputs = image_processor(image, return_tensors="pt")

>>> with torch.no_grad():
...     outputs = model(**inputs)

>>> last_hidden_states = outputs.last_hidden_state
>>> list(last_hidden_states.shape)
[1, 49, 768]

SwinForMaskedImageModeling

class transformers.SwinForMaskedImageModeling

( config )

Parameters

forward

( pixel_values: typing.Optional[torch.FloatTensor] = Nonebool_masked_pos: typing.Optional[torch.BoolTensor] = Nonehead_mask: typing.Optional[torch.FloatTensor] = Noneoutput_attentions: typing.Optional[bool] = Noneoutput_hidden_states: typing.Optional[bool] = Nonereturn_dict: typing.Optional[bool] = None ) → transformers.models.swin.modeling_swin.SwinMaskedImageModelingOutput or tuple(torch.FloatTensor)

Parameters

  • head_mask (torch.FloatTensor of shape (num_heads,) or (num_layers, num_heads), optional) — Mask to nullify selected heads of the self-attention modules. Mask values selected in [0, 1]:

    • 1 indicates the head is not masked,

    • 0 indicates the head is masked.

  • output_attentions (bool, optional) — Whether or not to return the attentions tensors of all attention layers. See attentions under returned tensors for more detail.

  • output_hidden_states (bool, optional) — Whether or not to return the hidden states of all layers. See hidden_states under returned tensors for more detail.

  • bool_masked_pos (torch.BoolTensor of shape (batch_size, num_patches)) — Boolean masked positions. Indicates which patches are masked (1) and which aren’t (0).

Returns

transformers.models.swin.modeling_swin.SwinMaskedImageModelingOutput or tuple(torch.FloatTensor)

  • loss (torch.FloatTensor of shape (1,), optional, returned when bool_masked_pos is provided) — Masked image modeling (MLM) loss.

  • reconstruction (torch.FloatTensor of shape (batch_size, num_channels, height, width)) — Reconstructed pixel values.

  • hidden_states (tuple(torch.FloatTensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) — Tuple of torch.FloatTensor (one for the output of the embeddings + one for the output of each stage) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the model at the output of each layer plus the initial embedding outputs.

  • attentions (tuple(torch.FloatTensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) — Tuple of torch.FloatTensor (one for each stage) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

  • reshaped_hidden_states (tuple(torch.FloatTensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) — Tuple of torch.FloatTensor (one for the output of the embeddings + one for the output of each stage) of shape (batch_size, hidden_size, height, width).

    Hidden-states of the model at the output of each layer plus the initial embedding outputs reshaped to include the spatial dimensions.

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Examples:

Copied

>>> from transformers import AutoImageProcessor, SwinForMaskedImageModeling
>>> import torch
>>> from PIL import Image
>>> import requests

>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)

>>> image_processor = AutoImageProcessor.from_pretrained("microsoft/swin-base-simmim-window6-192")
>>> model = SwinForMaskedImageModeling.from_pretrained("microsoft/swin-base-simmim-window6-192")

>>> num_patches = (model.config.image_size // model.config.patch_size) ** 2
>>> pixel_values = image_processor(images=image, return_tensors="pt").pixel_values
>>> # create random boolean mask of shape (batch_size, num_patches)
>>> bool_masked_pos = torch.randint(low=0, high=2, size=(1, num_patches)).bool()

>>> outputs = model(pixel_values, bool_masked_pos=bool_masked_pos)
>>> loss, reconstructed_pixel_values = outputs.loss, outputs.reconstruction
>>> list(reconstructed_pixel_values.shape)
[1, 3, 192, 192]

SwinForImageClassification

class transformers.SwinForImageClassification

( config )

Parameters

Swin Model transformer with an image classification head on top (a linear layer on top of the final hidden state of the [CLS] token) e.g. for ImageNet.

forward

( pixel_values: typing.Optional[torch.FloatTensor] = Nonehead_mask: typing.Optional[torch.FloatTensor] = Nonelabels: typing.Optional[torch.LongTensor] = Noneoutput_attentions: typing.Optional[bool] = Noneoutput_hidden_states: typing.Optional[bool] = Nonereturn_dict: typing.Optional[bool] = None ) → transformers.models.swin.modeling_swin.SwinImageClassifierOutput or tuple(torch.FloatTensor)

Parameters

  • head_mask (torch.FloatTensor of shape (num_heads,) or (num_layers, num_heads), optional) — Mask to nullify selected heads of the self-attention modules. Mask values selected in [0, 1]:

    • 1 indicates the head is not masked,

    • 0 indicates the head is masked.

  • output_attentions (bool, optional) — Whether or not to return the attentions tensors of all attention layers. See attentions under returned tensors for more detail.

  • output_hidden_states (bool, optional) — Whether or not to return the hidden states of all layers. See hidden_states under returned tensors for more detail.

  • labels (torch.LongTensor of shape (batch_size,), optional) — Labels for computing the image classification/regression loss. Indices should be in [0, ..., config.num_labels - 1]. If config.num_labels == 1 a regression loss is computed (Mean-Square loss), If config.num_labels > 1 a classification loss is computed (Cross-Entropy).

Returns

transformers.models.swin.modeling_swin.SwinImageClassifierOutput or tuple(torch.FloatTensor)

  • loss (torch.FloatTensor of shape (1,), optional, returned when labels is provided) — Classification (or regression if config.num_labels==1) loss.

  • logits (torch.FloatTensor of shape (batch_size, config.num_labels)) — Classification (or regression if config.num_labels==1) scores (before SoftMax).

  • hidden_states (tuple(torch.FloatTensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) — Tuple of torch.FloatTensor (one for the output of the embeddings + one for the output of each stage) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the model at the output of each layer plus the initial embedding outputs.

  • attentions (tuple(torch.FloatTensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) — Tuple of torch.FloatTensor (one for each stage) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

  • reshaped_hidden_states (tuple(torch.FloatTensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) — Tuple of torch.FloatTensor (one for the output of the embeddings + one for the output of each stage) of shape (batch_size, hidden_size, height, width).

    Hidden-states of the model at the output of each layer plus the initial embedding outputs reshaped to include the spatial dimensions.

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Example:

Copied

>>> from transformers import AutoImageProcessor, SwinForImageClassification
>>> import torch
>>> from datasets import load_dataset

>>> dataset = load_dataset("boincai/cats-image")
>>> image = dataset["test"]["image"][0]

>>> image_processor = AutoImageProcessor.from_pretrained("microsoft/swin-tiny-patch4-window7-224")
>>> model = SwinForImageClassification.from_pretrained("microsoft/swin-tiny-patch4-window7-224")

>>> inputs = image_processor(image, return_tensors="pt")

>>> with torch.no_grad():
...     logits = model(**inputs).logits

>>> # model predicts one of the 1000 ImageNet classes
>>> predicted_label = logits.argmax(-1).item()
>>> print(model.config.id2label[predicted_label])
tabby, tabby cat

TFSwinModel

class transformers.TFSwinModel

( *args**kwargs )

Parameters

call

( pixel_values: tf.Tensor | None = Nonebool_masked_pos: tf.Tensor | None = Nonehead_mask: tf.Tensor | None = Noneoutput_attentions: Optional[bool] = Noneoutput_hidden_states: Optional[bool] = Nonereturn_dict: Optional[bool] = Nonetraining: bool = False ) → transformers.models.swin.modeling_tf_swin.TFSwinModelOutput or tuple(tf.Tensor)

Parameters

  • head_mask (tf.Tensor of shape (num_heads,) or (num_layers, num_heads), optional) — Mask to nullify selected heads of the self-attention modules. Mask values selected in [0, 1]:

    • 1 indicates the head is not masked,

    • 0 indicates the head is masked.

  • output_attentions (bool, optional) — Whether or not to return the attentions tensors of all attention layers. See attentions under returned tensors for more detail.

  • output_hidden_states (bool, optional) — Whether or not to return the hidden states of all layers. See hidden_states under returned tensors for more detail.

  • bool_masked_pos (tf.Tensor of shape (batch_size, num_patches), optional) — Boolean masked positions. Indicates which patches are masked (1) and which aren’t (0).

Returns

transformers.models.swin.modeling_tf_swin.TFSwinModelOutput or tuple(tf.Tensor)

  • last_hidden_state (tf.Tensor of shape (batch_size, sequence_length, hidden_size)) — Sequence of hidden-states at the output of the last layer of the model.

  • pooler_output (tf.Tensor of shape (batch_size, hidden_size), optional, returned when add_pooling_layer=True is passed) — Average pooling of the last layer hidden-state.

  • hidden_states (tuple(tf.Tensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) — Tuple of tf.Tensor (one for the output of the embeddings + one for the output of each stage) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the model at the output of each layer plus the initial embedding outputs.

  • attentions (tuple(tf.Tensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) — Tuple of tf.Tensor (one for each stage) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

  • reshaped_hidden_states (tuple(tf.Tensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) — Tuple of tf.Tensor (one for the output of the embeddings + one for the output of each stage) of shape (batch_size, hidden_size, height, width).

    Hidden-states of the model at the output of each layer plus the initial embedding outputs reshaped to include the spatial dimensions.

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Example:

Copied

>>> from transformers import AutoImageProcessor, TFSwinModel
>>> from datasets import load_dataset

>>> dataset = load_dataset("boincai/cats-image")
>>> image = dataset["test"]["image"][0]

>>> image_processor = AutoImageProcessor.from_pretrained("microsoft/swin-tiny-patch4-window7-224")
>>> model = TFSwinModel.from_pretrained("microsoft/swin-tiny-patch4-window7-224")

>>> inputs = image_processor(image, return_tensors="tf")
>>> outputs = model(**inputs)

>>> last_hidden_states = outputs.last_hidden_state
>>> list(last_hidden_states.shape)
[1, 49, 768]

TFSwinForMaskedImageModeling

class transformers.TFSwinForMaskedImageModeling

( *args**kwargs )

Parameters

call

( pixel_values: tf.Tensor | None = Nonebool_masked_pos: tf.Tensor | None = Nonehead_mask: tf.Tensor | None = Noneoutput_attentions: Optional[bool] = Noneoutput_hidden_states: Optional[bool] = Nonereturn_dict: Optional[bool] = Nonetraining: bool = False ) → transformers.models.swin.modeling_tf_swin.TFSwinMaskedImageModelingOutput or tuple(tf.Tensor)

Parameters

  • head_mask (tf.Tensor of shape (num_heads,) or (num_layers, num_heads), optional) — Mask to nullify selected heads of the self-attention modules. Mask values selected in [0, 1]:

    • 1 indicates the head is not masked,

    • 0 indicates the head is masked.

  • output_attentions (bool, optional) — Whether or not to return the attentions tensors of all attention layers. See attentions under returned tensors for more detail.

  • output_hidden_states (bool, optional) — Whether or not to return the hidden states of all layers. See hidden_states under returned tensors for more detail.

  • bool_masked_pos (tf.Tensor of shape (batch_size, num_patches)) — Boolean masked positions. Indicates which patches are masked (1) and which aren’t (0).

Returns

transformers.models.swin.modeling_tf_swin.TFSwinMaskedImageModelingOutput or tuple(tf.Tensor)

  • loss (tf.Tensor of shape (1,), optional, returned when bool_masked_pos is provided) — Masked image modeling (MLM) loss.

  • reconstruction (tf.Tensor of shape (batch_size, num_channels, height, width)) — Reconstructed pixel values.

  • hidden_states (tuple(tf.Tensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) — Tuple of tf.Tensor (one for the output of the embeddings + one for the output of each stage) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the model at the output of each layer plus the initial embedding outputs.

  • attentions (tuple(tf.Tensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) — Tuple of tf.Tensor (one for each stage) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

  • reshaped_hidden_states (tuple(tf.Tensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) — Tuple of tf.Tensor (one for the output of the embeddings + one for the output of each stage) of shape (batch_size, hidden_size, height, width).

    Hidden-states of the model at the output of each layer plus the initial embedding outputs reshaped to include the spatial dimensions.

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Examples:

Copied

>>> from transformers import AutoImageProcessor, TFSwinForMaskedImageModeling
>>> import tensorflow as tf
>>> from PIL import Image
>>> import requests

>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)

>>> image_processor = AutoImageProcessor.from_pretrained("microsoft/swin-tiny-patch4-window7-224")
>>> model = TFSwinForMaskedImageModeling.from_pretrained("microsoft/swin-tiny-patch4-window7-224")

>>> num_patches = (model.config.image_size // model.config.patch_size) ** 2
>>> pixel_values = image_processor(images=image, return_tensors="tf").pixel_values
>>> # create random boolean mask of shape (batch_size, num_patches)
>>> bool_masked_pos = tf.random.uniform((1, num_patches)) >= 0.5

>>> outputs = model(pixel_values, bool_masked_pos=bool_masked_pos)
>>> loss, reconstructed_pixel_values = outputs.loss, outputs.reconstruction
>>> list(reconstructed_pixel_values.shape)
[1, 3, 224, 224]

TFSwinForImageClassification

class transformers.TFSwinForImageClassification

( *args**kwargs )

Parameters

Swin Model transformer with an image classification head on top (a linear layer on top of the final hidden state of the [CLS] token) e.g. for ImageNet.

call

( pixel_values: tf.Tensor | None = Nonehead_mask: tf.Tensor | None = Nonelabels: tf.Tensor | None = Noneoutput_attentions: Optional[bool] = Noneoutput_hidden_states: Optional[bool] = Nonereturn_dict: Optional[bool] = Nonetraining: bool = False ) → transformers.models.swin.modeling_tf_swin.TFSwinImageClassifierOutput or tuple(tf.Tensor)

Parameters

  • head_mask (tf.Tensor of shape (num_heads,) or (num_layers, num_heads), optional) — Mask to nullify selected heads of the self-attention modules. Mask values selected in [0, 1]:

    • 1 indicates the head is not masked,

    • 0 indicates the head is masked.

  • output_attentions (bool, optional) — Whether or not to return the attentions tensors of all attention layers. See attentions under returned tensors for more detail.

  • output_hidden_states (bool, optional) — Whether or not to return the hidden states of all layers. See hidden_states under returned tensors for more detail.

  • labels (tf.Tensor of shape (batch_size,), optional) — Labels for computing the image classification/regression loss. Indices should be in [0, ..., config.num_labels - 1]. If config.num_labels == 1 a regression loss is computed (Mean-Square loss), If config.num_labels > 1 a classification loss is computed (Cross-Entropy).

Returns

transformers.models.swin.modeling_tf_swin.TFSwinImageClassifierOutput or tuple(tf.Tensor)

  • loss (tf.Tensor of shape (1,), optional, returned when labels is provided) — Classification (or regression if config.num_labels==1) loss.

  • logits (tf.Tensor of shape (batch_size, config.num_labels)) — Classification (or regression if config.num_labels==1) scores (before SoftMax).

  • hidden_states (tuple(tf.Tensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) — Tuple of tf.Tensor (one for the output of the embeddings + one for the output of each stage) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the model at the output of each layer plus the initial embedding outputs.

  • attentions (tuple(tf.Tensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) — Tuple of tf.Tensor (one for each stage) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

  • reshaped_hidden_states (tuple(tf.Tensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) — Tuple of tf.Tensor (one for the output of the embeddings + one for the output of each stage) of shape (batch_size, hidden_size, height, width).

    Hidden-states of the model at the output of each layer plus the initial embedding outputs reshaped to include the spatial dimensions.

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Example:

Copied

>>> from transformers import AutoImageProcessor, TFSwinForImageClassification
>>> import tensorflow as tf
>>> from datasets import load_dataset

>>> dataset = load_dataset("boincai/cats-image")
>>> image = dataset["test"]["image"][0]

>>> image_processor = AutoImageProcessor.from_pretrained("microsoft/swin-tiny-patch4-window7-224")
>>> model = TFSwinForImageClassification.from_pretrained("microsoft/swin-tiny-patch4-window7-224")

>>> inputs = image_processor(image, return_tensors="tf")
>>> logits = model(**inputs).logits

>>> # model predicts one of the 1000 ImageNet classes
>>> predicted_label = int(tf.math.argmax(logits, axis=-1))
>>> print(model.config.id2label[predicted_label])
tabby, tabby cat

Swin Transformer architecture. Taken from the .

This model was contributed by . The Tensorflow version of this model was contributed by . The original code can be found .

is supported by this and .

See also:

is supported by this .

This is the configuration class to store the configuration of a . It is used to instantiate a Swin model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the Swin architecture.

Configuration objects inherit from and can be used to control the model outputs. Read the documentation from for more information.

config () — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the method to load the model weights.

The bare Swin Model transformer outputting raw hidden-states without any specific head on top. This model is a PyTorch sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.

pixel_values (torch.FloatTensor of shape (batch_size, num_channels, height, width)) — Pixel values. Pixel values can be obtained using . See for details.

return_dict (bool, optional) — Whether or not to return a instead of a plain tuple.

A transformers.models.swin.modeling_swin.SwinModelOutput or a tuple of torch.FloatTensor (if return_dict=False is passed or when config.return_dict=False) comprising various elements depending on the configuration () and inputs.

The forward method, overrides the __call__ special method.

config () — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the method to load the model weights.

Swin Model with a decoder on top for masked image modeling, as proposed in .

Note that we provide a script to pre-train this model on custom data in our .

This model is a PyTorch sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.

pixel_values (torch.FloatTensor of shape (batch_size, num_channels, height, width)) — Pixel values. Pixel values can be obtained using . See for details.

return_dict (bool, optional) — Whether or not to return a instead of a plain tuple.

A transformers.models.swin.modeling_swin.SwinMaskedImageModelingOutput or a tuple of torch.FloatTensor (if return_dict=False is passed or when config.return_dict=False) comprising various elements depending on the configuration () and inputs.

The forward method, overrides the __call__ special method.

config () — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the method to load the model weights.

This model is a PyTorch sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.

pixel_values (torch.FloatTensor of shape (batch_size, num_channels, height, width)) — Pixel values. Pixel values can be obtained using . See for details.

return_dict (bool, optional) — Whether or not to return a instead of a plain tuple.

A transformers.models.swin.modeling_swin.SwinImageClassifierOutput or a tuple of torch.FloatTensor (if return_dict=False is passed or when config.return_dict=False) comprising various elements depending on the configuration () and inputs.

The forward method, overrides the __call__ special method.

config () — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the method to load the model weights.

The bare Swin Model transformer outputting raw hidden-states without any specific head on top. This model is a Tensorflow sub-class. Use it as a regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and behavior.

pixel_values (tf.Tensor of shape (batch_size, num_channels, height, width)) — Pixel values. Pixel values can be obtained using . See for details.

return_dict (bool, optional) — Whether or not to return a instead of a plain tuple.

A transformers.models.swin.modeling_tf_swin.TFSwinModelOutput or a tuple of tf.Tensor (if return_dict=False is passed or when config.return_dict=False) comprising various elements depending on the configuration () and inputs.

The forward method, overrides the __call__ special method.

config () — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the method to load the model weights.

Swin Model with a decoder on top for masked image modeling, as proposed in . This model is a Tensorflow sub-class. Use it as a regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and behavior.

pixel_values (tf.Tensor of shape (batch_size, num_channels, height, width)) — Pixel values. Pixel values can be obtained using . See for details.

return_dict (bool, optional) — Whether or not to return a instead of a plain tuple.

A transformers.models.swin.modeling_tf_swin.TFSwinMaskedImageModelingOutput or a tuple of tf.Tensor (if return_dict=False is passed or when config.return_dict=False) comprising various elements depending on the configuration () and inputs.

The forward method, overrides the __call__ special method.

config () — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the method to load the model weights.

This model is a Tensorflow sub-class. Use it as a regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and behavior.

pixel_values (tf.Tensor of shape (batch_size, num_channels, height, width)) — Pixel values. Pixel values can be obtained using . See for details.

return_dict (bool, optional) — Whether or not to return a instead of a plain tuple.

A transformers.models.swin.modeling_tf_swin.TFSwinImageClassifierOutput or a tuple of tf.Tensor (if return_dict=False is passed or when config.return_dict=False) comprising various elements depending on the configuration () and inputs.

The forward method, overrides the __call__ special method.

🌍
🌍
🌍
original paper
novice03
amyeroberts
here
SwinForImageClassification
example script
notebook
Image classification task guide
SwinForMaskedImageModeling
example script
<source>
SwinModel
microsoft/swin-tiny-patch4-window7-224
PretrainedConfig
PretrainedConfig
<source>
SwinConfig
from_pretrained()
torch.nn.Module
<source>
AutoImageProcessor
ViTImageProcessor.call()
ModelOutput
SwinConfig
SwinModel
<source>
SwinConfig
from_pretrained()
SimMIM
examples directory
torch.nn.Module
<source>
AutoImageProcessor
ViTImageProcessor.call()
ModelOutput
SwinConfig
SwinForMaskedImageModeling
<source>
SwinConfig
from_pretrained()
torch.nn.Module
<source>
AutoImageProcessor
ViTImageProcessor.call()
ModelOutput
SwinConfig
SwinForImageClassification
<source>
SwinConfig
from_pretrained()
tf.keras.layers.Layer
<source>
AutoImageProcessor
ViTImageProcessor.call()
ModelOutput
SwinConfig
TFSwinModel
<source>
SwinConfig
from_pretrained()
SimMIM
tf.keras.layers.Layer
<source>
AutoImageProcessor
ViTImageProcessor.call()
ModelOutput
SwinConfig
TFSwinForMaskedImageModeling
<source>
SwinConfig
from_pretrained()
tf.keras.layers.Layer
<source>
AutoImageProcessor
ViTImageProcessor.call()
ModelOutput
SwinConfig
TFSwinForImageClassification
Swin Transformer: Hierarchical Vision Transformer using Shifted Windows
AutoImageProcessor