Transformers
  • 🌍GET STARTED
    • Transformers
    • Quick tour
    • Installation
  • 🌍TUTORIALS
    • Run inference with pipelines
    • Write portable code with AutoClass
    • Preprocess data
    • Fine-tune a pretrained model
    • Train with a script
    • Set up distributed training with BOINC AI Accelerate
    • Load and train adapters with BOINC AI PEFT
    • Share your model
    • Agents
    • Generation with LLMs
  • 🌍TASK GUIDES
    • 🌍NATURAL LANGUAGE PROCESSING
      • Text classification
      • Token classification
      • Question answering
      • Causal language modeling
      • Masked language modeling
      • Translation
      • Summarization
      • Multiple choice
    • 🌍AUDIO
      • Audio classification
      • Automatic speech recognition
    • 🌍COMPUTER VISION
      • Image classification
      • Semantic segmentation
      • Video classification
      • Object detection
      • Zero-shot object detection
      • Zero-shot image classification
      • Depth estimation
    • 🌍MULTIMODAL
      • Image captioning
      • Document Question Answering
      • Visual Question Answering
      • Text to speech
    • 🌍GENERATION
      • Customize the generation strategy
    • 🌍PROMPTING
      • Image tasks with IDEFICS
  • 🌍DEVELOPER GUIDES
    • Use fast tokenizers from BOINC AI Tokenizers
    • Run inference with multilingual models
    • Use model-specific APIs
    • Share a custom model
    • Templates for chat models
    • Run training on Amazon SageMaker
    • Export to ONNX
    • Export to TFLite
    • Export to TorchScript
    • Benchmarks
    • Notebooks with examples
    • Community resources
    • Custom Tools and Prompts
    • Troubleshoot
  • 🌍PERFORMANCE AND SCALABILITY
    • Overview
    • 🌍EFFICIENT TRAINING TECHNIQUES
      • Methods and tools for efficient training on a single GPU
      • Multiple GPUs and parallelism
      • Efficient training on CPU
      • Distributed CPU training
      • Training on TPUs
      • Training on TPU with TensorFlow
      • Training on Specialized Hardware
      • Custom hardware for training
      • Hyperparameter Search using Trainer API
    • 🌍OPTIMIZING INFERENCE
      • Inference on CPU
      • Inference on one GPU
      • Inference on many GPUs
      • Inference on Specialized Hardware
    • Instantiating a big model
    • Troubleshooting
    • XLA Integration for TensorFlow Models
    • Optimize inference using `torch.compile()`
  • 🌍CONTRIBUTE
    • How to contribute to transformers?
    • How to add a model to BOINC AI Transformers?
    • How to convert a BOINC AI Transformers model to TensorFlow?
    • How to add a pipeline to BOINC AI Transformers?
    • Testing
    • Checks on a Pull Request
  • 🌍CONCEPTUAL GUIDES
    • Philosophy
    • Glossary
    • What BOINC AI Transformers can do
    • How BOINC AI Transformers solve tasks
    • The Transformer model family
    • Summary of the tokenizers
    • Attention mechanisms
    • Padding and truncation
    • BERTology
    • Perplexity of fixed-length models
    • Pipelines for webserver inference
    • Model training anatomy
  • 🌍API
    • 🌍MAIN CLASSES
      • Agents and Tools
      • 🌍Auto Classes
        • Extending the Auto Classes
        • AutoConfig
        • AutoTokenizer
        • AutoFeatureExtractor
        • AutoImageProcessor
        • AutoProcessor
        • Generic model classes
          • AutoModel
          • TFAutoModel
          • FlaxAutoModel
        • Generic pretraining classes
          • AutoModelForPreTraining
          • TFAutoModelForPreTraining
          • FlaxAutoModelForPreTraining
        • Natural Language Processing
          • AutoModelForCausalLM
          • TFAutoModelForCausalLM
          • FlaxAutoModelForCausalLM
          • AutoModelForMaskedLM
          • TFAutoModelForMaskedLM
          • FlaxAutoModelForMaskedLM
          • AutoModelForMaskGenerationge
          • TFAutoModelForMaskGeneration
          • AutoModelForSeq2SeqLM
          • TFAutoModelForSeq2SeqLM
          • FlaxAutoModelForSeq2SeqLM
          • AutoModelForSequenceClassification
          • TFAutoModelForSequenceClassification
          • FlaxAutoModelForSequenceClassification
          • AutoModelForMultipleChoice
          • TFAutoModelForMultipleChoice
          • FlaxAutoModelForMultipleChoice
          • AutoModelForNextSentencePrediction
          • TFAutoModelForNextSentencePrediction
          • FlaxAutoModelForNextSentencePrediction
          • AutoModelForTokenClassification
          • TFAutoModelForTokenClassification
          • FlaxAutoModelForTokenClassification
          • AutoModelForQuestionAnswering
          • TFAutoModelForQuestionAnswering
          • FlaxAutoModelForQuestionAnswering
          • AutoModelForTextEncoding
          • TFAutoModelForTextEncoding
        • Computer vision
          • AutoModelForDepthEstimation
          • AutoModelForImageClassification
          • TFAutoModelForImageClassification
          • FlaxAutoModelForImageClassification
          • AutoModelForVideoClassification
          • AutoModelForMaskedImageModeling
          • TFAutoModelForMaskedImageModeling
          • AutoModelForObjectDetection
          • AutoModelForImageSegmentation
          • AutoModelForImageToImage
          • AutoModelForSemanticSegmentation
          • TFAutoModelForSemanticSegmentation
          • AutoModelForInstanceSegmentation
          • AutoModelForUniversalSegmentation
          • AutoModelForZeroShotImageClassification
          • TFAutoModelForZeroShotImageClassification
          • AutoModelForZeroShotObjectDetection
        • Audio
          • AutoModelForAudioClassification
          • AutoModelForAudioFrameClassification
          • TFAutoModelForAudioFrameClassification
          • AutoModelForCTC
          • AutoModelForSpeechSeq2Seq
          • TFAutoModelForSpeechSeq2Seq
          • FlaxAutoModelForSpeechSeq2Seq
          • AutoModelForAudioXVector
          • AutoModelForTextToSpectrogram
          • AutoModelForTextToWaveform
        • Multimodal
          • AutoModelForTableQuestionAnswering
          • TFAutoModelForTableQuestionAnswering
          • AutoModelForDocumentQuestionAnswering
          • TFAutoModelForDocumentQuestionAnswering
          • AutoModelForVisualQuestionAnswering
          • AutoModelForVision2Seq
          • TFAutoModelForVision2Seq
          • FlaxAutoModelForVision2Seq
      • Callbacks
      • Configuration
      • Data Collator
      • Keras callbacks
      • Logging
      • Models
      • Text Generation
      • ONNX
      • Optimization
      • Model outputs
      • Pipelines
      • Processors
      • Quantization
      • Tokenizer
      • Trainer
      • DeepSpeed Integration
      • Feature Extractor
      • Image Processor
    • 🌍MODELS
      • 🌍TEXT MODELS
        • ALBERT
        • BART
        • BARThez
        • BARTpho
        • BERT
        • BertGeneration
        • BertJapanese
        • Bertweet
        • BigBird
        • BigBirdPegasus
        • BioGpt
        • Blenderbot
        • Blenderbot Small
        • BLOOM
        • BORT
        • ByT5
        • CamemBERT
        • CANINE
        • CodeGen
        • CodeLlama
        • ConvBERT
        • CPM
        • CPMANT
        • CTRL
        • DeBERTa
        • DeBERTa-v2
        • DialoGPT
        • DistilBERT
        • DPR
        • ELECTRA
        • Encoder Decoder Models
        • ERNIE
        • ErnieM
        • ESM
        • Falcon
        • FLAN-T5
        • FLAN-UL2
        • FlauBERT
        • FNet
        • FSMT
        • Funnel Transformer
        • GPT
        • GPT Neo
        • GPT NeoX
        • GPT NeoX Japanese
        • GPT-J
        • GPT2
        • GPTBigCode
        • GPTSAN Japanese
        • GPTSw3
        • HerBERT
        • I-BERT
        • Jukebox
        • LED
        • LLaMA
        • LLama2
        • Longformer
        • LongT5
        • LUKE
        • M2M100
        • MarianMT
        • MarkupLM
        • MBart and MBart-50
        • MEGA
        • MegatronBERT
        • MegatronGPT2
        • Mistral
        • mLUKE
        • MobileBERT
        • MPNet
        • MPT
        • MRA
        • MT5
        • MVP
        • NEZHA
        • NLLB
        • NLLB-MoE
        • Nyströmformer
        • Open-Llama
        • OPT
        • Pegasus
        • PEGASUS-X
        • Persimmon
        • PhoBERT
        • PLBart
        • ProphetNet
        • QDQBert
        • RAG
        • REALM
        • Reformer
        • RemBERT
        • RetriBERT
        • RoBERTa
        • RoBERTa-PreLayerNorm
        • RoCBert
        • RoFormer
        • RWKV
        • Splinter
        • SqueezeBERT
        • SwitchTransformers
        • T5
        • T5v1.1
        • TAPEX
        • Transformer XL
        • UL2
        • UMT5
        • X-MOD
        • XGLM
        • XLM
        • XLM-ProphetNet
        • XLM-RoBERTa
        • XLM-RoBERTa-XL
        • XLM-V
        • XLNet
        • YOSO
      • 🌍VISION MODELS
        • BEiT
        • BiT
        • Conditional DETR
        • ConvNeXT
        • ConvNeXTV2
        • CvT
        • Deformable DETR
        • DeiT
        • DETA
        • DETR
        • DiNAT
        • DINO V2
        • DiT
        • DPT
        • EfficientFormer
        • EfficientNet
        • FocalNet
        • GLPN
        • ImageGPT
        • LeViT
        • Mask2Former
        • MaskFormer
        • MobileNetV1
        • MobileNetV2
        • MobileViT
        • MobileViTV2
        • NAT
        • PoolFormer
        • Pyramid Vision Transformer (PVT)
        • RegNet
        • ResNet
        • SegFormer
        • SwiftFormer
        • Swin Transformer
        • Swin Transformer V2
        • Swin2SR
        • Table Transformer
        • TimeSformer
        • UperNet
        • VAN
        • VideoMAE
        • Vision Transformer (ViT)
        • ViT Hybrid
        • ViTDet
        • ViTMAE
        • ViTMatte
        • ViTMSN
        • ViViT
        • YOLOS
      • 🌍AUDIO MODELS
        • Audio Spectrogram Transformer
        • Bark
        • CLAP
        • EnCodec
        • Hubert
        • MCTCT
        • MMS
        • MusicGen
        • Pop2Piano
        • SEW
        • SEW-D
        • Speech2Text
        • Speech2Text2
        • SpeechT5
        • UniSpeech
        • UniSpeech-SAT
        • VITS
        • Wav2Vec2
        • Wav2Vec2-Conformer
        • Wav2Vec2Phoneme
        • WavLM
        • Whisper
        • XLS-R
        • XLSR-Wav2Vec2
      • 🌍MULTIMODAL MODELS
        • ALIGN
        • AltCLIP
        • BLIP
        • BLIP-2
        • BridgeTower
        • BROS
        • Chinese-CLIP
        • CLIP
        • CLIPSeg
        • Data2Vec
        • DePlot
        • Donut
        • FLAVA
        • GIT
        • GroupViT
        • IDEFICS
        • InstructBLIP
        • LayoutLM
        • LayoutLMV2
        • LayoutLMV3
        • LayoutXLM
        • LiLT
        • LXMERT
        • MatCha
        • MGP-STR
        • Nougat
        • OneFormer
        • OWL-ViT
        • Perceiver
        • Pix2Struct
        • Segment Anything
        • Speech Encoder Decoder Models
        • TAPAS
        • TrOCR
        • TVLT
        • ViLT
        • Vision Encoder Decoder Models
        • Vision Text Dual Encoder
        • VisualBERT
        • X-CLIP
      • 🌍REINFORCEMENT LEARNING MODELS
        • Decision Transformer
        • Trajectory Transformer
      • 🌍TIME SERIES MODELS
        • Autoformer
        • Informer
        • Time Series Transformer
      • 🌍GRAPH MODELS
        • Graphormer
  • 🌍INTERNAL HELPERS
    • Custom Layers and Utilities
    • Utilities for pipelines
    • Utilities for Tokenizers
    • Utilities for Trainer
    • Utilities for Generation
    • Utilities for Image Processors
    • Utilities for Audio processing
    • General Utilities
    • Utilities for Time Series
Powered by GitBook
On this page
  • FlauBERT
  • Overview
  • Documentation resources
  • FlaubertConfig
  • FlaubertTokenizer
  • FlaubertModel
  • FlaubertWithLMHeadModel
  • FlaubertForSequenceClassification
  • FlaubertForMultipleChoice
  • FlaubertForTokenClassification
  • FlaubertForQuestionAnsweringSimple
  • FlaubertForQuestionAnswering
  • TFFlaubertModel
  • TFFlaubertWithLMHeadModel
  • TFFlaubertForSequenceClassification
  • TFFlaubertForMultipleChoice
  • TFFlaubertForTokenClassification
  • TFFlaubertForQuestionAnsweringSimple
  1. API
  2. MODELS
  3. TEXT MODELS

FlauBERT

PreviousFLAN-UL2NextFNet

Last updated 1 year ago

FlauBERT

Overview

The FlauBERT model was proposed in the paper by Hang Le et al. It’s a transformer model pretrained using a masked language modeling (MLM) objective (like BERT).

The abstract from the paper is the following:

Language models have become a key step to achieve state-of-the art results in many different Natural Language Processing (NLP) tasks. Leveraging the huge amount of unlabeled texts nowadays available, they provide an efficient way to pre-train continuous word representations that can be fine-tuned for a downstream task, along with their contextualization at the sentence level. This has been widely demonstrated for English using contextualized representations (Dai and Le, 2015; Peters et al., 2018; Howard and Ruder, 2018; Radford et al., 2018; Devlin et al., 2019; Yang et al., 2019b). In this paper, we introduce and share FlauBERT, a model learned on a very large and heterogeneous French corpus. Models of different sizes are trained using the new CNRS (French National Centre for Scientific Research) Jean Zay supercomputer. We apply our French language models to diverse NLP tasks (text classification, paraphrasing, natural language inference, parsing, word sense disambiguation) and show that most of the time they outperform other pretraining approaches. Different versions of FlauBERT as well as a unified evaluation protocol for the downstream tasks, called FLUE (French Language Understanding Evaluation), are shared to the research community for further reproducible experiments in French NLP.

This model was contributed by . The original code can be found .

Tips:

  • Like RoBERTa, without the sentence ordering prediction (so just trained on the MLM objective).

Documentation resources

FlaubertConfig

class transformers.FlaubertConfig

( pre_norm = Falselayerdrop = 0.0vocab_size = 30145emb_dim = 2048n_layers = 12n_heads = 16dropout = 0.1attention_dropout = 0.1gelu_activation = Truesinusoidal_embeddings = Falsecausal = Falseasm = Falsen_langs = 1use_lang_emb = Truemax_position_embeddings = 512embed_init_std = 0.02209708691207961layer_norm_eps = 1e-12init_std = 0.02bos_index = 0eos_index = 1pad_index = 2unk_index = 3mask_index = 5is_encoder = Truesummary_type = 'first'summary_use_proj = Truesummary_activation = Nonesummary_proj_to_labels = Truesummary_first_dropout = 0.1start_n_top = 5end_n_top = 5mask_token_id = 0lang_id = 0pad_token_id = 2bos_token_id = 0**kwargs )

Parameters

  • pre_norm (bool, optional, defaults to False) — Whether to apply the layer normalization before or after the feed forward layer following the attention in each layer (Vaswani et al., Tensor2Tensor for Neural Machine Translation. 2018)

  • layerdrop (float, optional, defaults to 0.0) — Probability to drop layers during training (Fan et al., Reducing Transformer Depth on Demand with Structured Dropout. ICLR 2020)

  • emb_dim (int, optional, defaults to 2048) — Dimensionality of the encoder layers and the pooler layer.

  • n_layer (int, optional, defaults to 12) — Number of hidden layers in the Transformer encoder.

  • n_head (int, optional, defaults to 16) — Number of attention heads for each attention layer in the Transformer encoder.

  • dropout (float, optional, defaults to 0.1) — The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.

  • attention_dropout (float, optional, defaults to 0.1) — The dropout probability for the attention mechanism

  • gelu_activation (bool, optional, defaults to True) — Whether or not to use a gelu activation instead of relu.

  • sinusoidal_embeddings (bool, optional, defaults to False) — Whether or not to use sinusoidal positional embeddings instead of absolute positional embeddings.

  • causal (bool, optional, defaults to False) — Whether or not the model should behave in a causal manner. Causal models use a triangular attention mask in order to only attend to the left-side context instead if a bidirectional context.

  • asm (bool, optional, defaults to False) — Whether or not to use an adaptive log softmax projection layer instead of a linear layer for the prediction layer.

  • n_langs (int, optional, defaults to 1) — The number of languages the model handles. Set to 1 for monolingual models.

  • max_position_embeddings (int, optional, defaults to 512) — The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048).

  • embed_init_std (float, optional, defaults to 2048^-0.5) — The standard deviation of the truncated_normal_initializer for initializing the embedding matrices.

  • init_std (int, optional, defaults to 50257) — The standard deviation of the truncated_normal_initializer for initializing all weight matrices except the embedding matrices.

  • layer_norm_eps (float, optional, defaults to 1e-12) — The epsilon used by the layer normalization layers.

  • bos_index (int, optional, defaults to 0) — The index of the beginning of sentence token in the vocabulary.

  • eos_index (int, optional, defaults to 1) — The index of the end of sentence token in the vocabulary.

  • pad_index (int, optional, defaults to 2) — The index of the padding token in the vocabulary.

  • unk_index (int, optional, defaults to 3) — The index of the unknown token in the vocabulary.

  • mask_index (int, optional, defaults to 5) — The index of the masking token in the vocabulary.

  • is_encoder(bool, optional, defaults to True) — Whether or not the initialized model should be a transformer encoder or decoder as seen in Vaswani et al.

  • summary_type (string, optional, defaults to “first”) — Argument used when doing sequence summary. Used in the sequence classification and multiple choice models.

    Has to be one of the following options:

    • "last": Take the last token hidden state (like XLNet).

    • "first": Take the first token hidden state (like BERT).

    • "mean": Take the mean of all tokens hidden states.

    • "cls_index": Supply a Tensor of classification token position (like GPT/GPT-2).

    • "attn": Not implemented now, use multi-head attention.

  • summary_use_proj (bool, optional, defaults to True) — Argument used when doing sequence summary. Used in the sequence classification and multiple choice models.

    Whether or not to add a projection after the vector extraction.

  • summary_activation (str, optional) — Argument used when doing sequence summary. Used in the sequence classification and multiple choice models.

    Pass "tanh" for a tanh activation to the output, any other value will result in no activation.

  • summary_proj_to_labels (bool, optional, defaults to True) — Used in the sequence classification and multiple choice models.

    Whether the projection outputs should have config.num_labels or config.hidden_size classes.

  • summary_first_dropout (float, optional, defaults to 0.1) — Used in the sequence classification and multiple choice models.

    The dropout ratio to be used after the projection and activation.

  • start_n_top (int, optional, defaults to 5) — Used in the SQuAD evaluation script.

  • end_n_top (int, optional, defaults to 5) — Used in the SQuAD evaluation script.

  • mask_token_id (int, optional, defaults to 0) — Model agnostic parameter to identify masked tokens when generating text in an MLM context.

  • lang_id (int, optional, defaults to 1) — The ID of the language used by the model. This parameter is used when generating text in a given language.

FlaubertTokenizer

class transformers.FlaubertTokenizer

( vocab_filemerges_filedo_lowercase = Falseunk_token = '<unk>'bos_token = '<s>'sep_token = '</s>'pad_token = '<pad>'cls_token = '</s>'mask_token = '<special1>'additional_special_tokens = ['<special0>', '<special1>', '<special2>', '<special3>', '<special4>', '<special5>', '<special6>', '<special7>', '<special8>', '<special9>']lang2id = Noneid2lang = None**kwargs )

Parameters

  • vocab_file (str) — Vocabulary file.

  • merges_file (str) — Merges file.

  • do_lowercase (bool, optional, defaults to False) — Controls lower casing.

  • unk_token (str, optional, defaults to "<unk>") — The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead.

  • bos_token (str, optional, defaults to "<s>") — The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.

    When building a sequence using special tokens, this is not the token that is used for the beginning of sequence. The token used is the cls_token.

  • sep_token (str, optional, defaults to "</s>") — The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens.

  • pad_token (str, optional, defaults to "<pad>") — The token used for padding, for example when batching sequences of different lengths.

  • cls_token (str, optional, defaults to "</s>") — The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens.

  • mask_token (str, optional, defaults to "<special1>") — The token used for masking values. This is the token used when training this model with masked language modeling. This is the token which the model will try to predict.

  • additional_special_tokens (List[str], optional, defaults to ["<special0>","<special1>","<special2>","<special3>","<special4>","<special5>","<special6>","<special7>","<special8>","<special9>"]) — List of additional special tokens.

  • lang2id (Dict[str, int], optional) — Dictionary mapping languages string identifiers to their IDs.

  • id2lang (Dict[int, str], optional) — Dictionary mapping language IDs to their string identifiers.

Construct a Flaubert tokenizer. Based on Byte-Pair Encoding. The tokenization process is the following:

  • Moses preprocessing and tokenization.

  • Normalizing all inputs text.

  • The arguments special_tokens and the function set_special_tokens, can be used to add additional symbols (like ”classify”) to a vocabulary.

  • The argument do_lowercase controls lower casing (automatically set for pretrained vocabularies).

build_inputs_with_special_tokens

( token_ids_0: typing.List[int]token_ids_1: typing.Optional[typing.List[int]] = None ) → List[int]

Parameters

  • token_ids_0 (List[int]) — List of IDs to which the special tokens will be added.

  • token_ids_1 (List[int], optional) — Optional second list of IDs for sequence pairs.

Returns

List[int]

Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. An XLM sequence has the following format:

  • single sequence: <s> X </s>

  • pair of sequences: <s> A </s> B </s>

convert_tokens_to_string

( tokens )

Converts a sequence of tokens (string) in a single string.

create_token_type_ids_from_sequences

( token_ids_0: typing.List[int]token_ids_1: typing.Optional[typing.List[int]] = None ) → List[int]

Parameters

  • token_ids_0 (List[int]) — List of IDs.

  • token_ids_1 (List[int], optional) — Optional second list of IDs for sequence pairs.

Returns

List[int]

Create a mask from the two sequences passed to be used in a sequence-pair classification task. An XLM sequence

pair mask has the following format:

Copied

0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
| first sequence    | second sequence |

If token_ids_1 is None, this method only returns the first portion of the mask (0s).

get_special_tokens_mask

( token_ids_0: typing.List[int]token_ids_1: typing.Optional[typing.List[int]] = Nonealready_has_special_tokens: bool = False ) → List[int]

Parameters

  • token_ids_0 (List[int]) — List of IDs.

  • token_ids_1 (List[int], optional) — Optional second list of IDs for sequence pairs.

  • already_has_special_tokens (bool, optional, defaults to False) — Whether or not the token list is already formatted with special tokens for the model.

Returns

List[int]

A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.

Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer prepare_for_model method.

FlaubertModel

class transformers.FlaubertModel

( config )

forward

Parameters

  • input_ids (torch.LongTensor of shape (batch_size, sequence_length)) — Indices of input sequence tokens in the vocabulary.

  • attention_mask (torch.FloatTensor of shape (batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:

    • 1 for tokens that are not masked,

    • 0 for tokens that are masked.

  • token_type_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]:

    • 0 corresponds to a sentence A token,

    • 1 corresponds to a sentence B token.

  • position_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1].

  • lengths (torch.LongTensor of shape (batch_size,), optional) — Length of each sentence that can be used to avoid performing attention on padding token indices. You can also use attention_mask for the same result (see above), kept here for compatibility. Indices selected in [0, ..., input_ids.size(-1)]:

  • cache (Dict[str, torch.FloatTensor], optional) — Dictionary strings to torch.FloatTensor that contains precomputed hidden-states (key and values in the attention blocks) as computed by the model (see cache output below). Can be used to speed up sequential decoding. The dictionary object will be modified in-place during the forward pass to add newly computed hidden-states.

  • head_mask (torch.FloatTensor of shape (num_heads,) or (num_layers, num_heads), optional) — Mask to nullify selected heads of the self-attention modules. Mask values selected in [0, 1]:

    • 1 indicates the head is not masked,

    • 0 indicates the head is masked.

  • inputs_embeds (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) — Optionally, instead of passing input_ids you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids indices into associated vectors than the model’s internal embedding lookup matrix.

  • output_attentions (bool, optional) — Whether or not to return the attentions tensors of all attention layers. See attentions under returned tensors for more detail.

  • output_hidden_states (bool, optional) — Whether or not to return the hidden states of all layers. See hidden_states under returned tensors for more detail.

Returns

  • last_hidden_state (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size)) — Sequence of hidden-states at the output of the last layer of the model.

  • hidden_states (tuple(torch.FloatTensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) — Tuple of torch.FloatTensor (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.

  • attentions (tuple(torch.FloatTensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) — Tuple of torch.FloatTensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Example:

Copied

>>> from transformers import AutoTokenizer, FlaubertModel
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("flaubert/flaubert_base_cased")
>>> model = FlaubertModel.from_pretrained("flaubert/flaubert_base_cased")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)

>>> last_hidden_states = outputs.last_hidden_state

FlaubertWithLMHeadModel

class transformers.FlaubertWithLMHeadModel

( config )

Parameters

The Flaubert Model transformer with a language modeling head on top (linear layer with weights tied to the input embeddings).

forward

Parameters

  • input_ids (torch.LongTensor of shape (batch_size, sequence_length)) — Indices of input sequence tokens in the vocabulary.

  • attention_mask (torch.FloatTensor of shape (batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:

    • 1 for tokens that are not masked,

    • 0 for tokens that are masked.

  • token_type_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]:

    • 0 corresponds to a sentence A token,

    • 1 corresponds to a sentence B token.

  • position_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1].

  • lengths (torch.LongTensor of shape (batch_size,), optional) — Length of each sentence that can be used to avoid performing attention on padding token indices. You can also use attention_mask for the same result (see above), kept here for compatibility. Indices selected in [0, ..., input_ids.size(-1)]:

  • cache (Dict[str, torch.FloatTensor], optional) — Dictionary strings to torch.FloatTensor that contains precomputed hidden-states (key and values in the attention blocks) as computed by the model (see cache output below). Can be used to speed up sequential decoding. The dictionary object will be modified in-place during the forward pass to add newly computed hidden-states.

  • head_mask (torch.FloatTensor of shape (num_heads,) or (num_layers, num_heads), optional) — Mask to nullify selected heads of the self-attention modules. Mask values selected in [0, 1]:

    • 1 indicates the head is not masked,

    • 0 indicates the head is masked.

  • inputs_embeds (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) — Optionally, instead of passing input_ids you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids indices into associated vectors than the model’s internal embedding lookup matrix.

  • output_attentions (bool, optional) — Whether or not to return the attentions tensors of all attention layers. See attentions under returned tensors for more detail.

  • output_hidden_states (bool, optional) — Whether or not to return the hidden states of all layers. See hidden_states under returned tensors for more detail.

  • labels (torch.LongTensor of shape (batch_size, sequence_length), optional) — Labels for language modeling. Note that the labels are shifted inside the model, i.e. you can set labels = input_ids Indices are selected in [-100, 0, ..., config.vocab_size] All labels set to -100 are ignored (masked), the loss is only computed for labels in [0, ..., config.vocab_size]

Returns

  • loss (torch.FloatTensor of shape (1,), optional, returned when labels is provided) — Masked language modeling (MLM) loss.

  • logits (torch.FloatTensor of shape (batch_size, sequence_length, config.vocab_size)) — Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).

  • hidden_states (tuple(torch.FloatTensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) — Tuple of torch.FloatTensor (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.

  • attentions (tuple(torch.FloatTensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) — Tuple of torch.FloatTensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Example:

Copied

>>> from transformers import AutoTokenizer, FlaubertWithLMHeadModel
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("flaubert/flaubert_base_cased")
>>> model = FlaubertWithLMHeadModel.from_pretrained("flaubert/flaubert_base_cased")

>>> inputs = tokenizer("The capital of France is <special1>.", return_tensors="pt")

>>> with torch.no_grad():
...     logits = model(**inputs).logits

>>> # retrieve index of <special1>
>>> mask_token_index = (inputs.input_ids == tokenizer.mask_token_id)[0].nonzero(as_tuple=True)[0]

>>> predicted_token_id = logits[0, mask_token_index].argmax(axis=-1)

>>> labels = tokenizer("The capital of France is Paris.", return_tensors="pt")["input_ids"]
>>> # mask labels of non-<special1> tokens
>>> labels = torch.where(inputs.input_ids == tokenizer.mask_token_id, labels, -100)

>>> outputs = model(**inputs, labels=labels)

FlaubertForSequenceClassification

class transformers.FlaubertForSequenceClassification

( config )

Parameters

Flaubert Model with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks.

forward

Parameters

  • input_ids (torch.LongTensor of shape (batch_size, sequence_length)) — Indices of input sequence tokens in the vocabulary.

  • attention_mask (torch.FloatTensor of shape (batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:

    • 1 for tokens that are not masked,

    • 0 for tokens that are masked.

  • token_type_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]:

    • 0 corresponds to a sentence A token,

    • 1 corresponds to a sentence B token.

  • position_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1].

  • lengths (torch.LongTensor of shape (batch_size,), optional) — Length of each sentence that can be used to avoid performing attention on padding token indices. You can also use attention_mask for the same result (see above), kept here for compatibility. Indices selected in [0, ..., input_ids.size(-1)]:

  • cache (Dict[str, torch.FloatTensor], optional) — Dictionary strings to torch.FloatTensor that contains precomputed hidden-states (key and values in the attention blocks) as computed by the model (see cache output below). Can be used to speed up sequential decoding. The dictionary object will be modified in-place during the forward pass to add newly computed hidden-states.

  • head_mask (torch.FloatTensor of shape (num_heads,) or (num_layers, num_heads), optional) — Mask to nullify selected heads of the self-attention modules. Mask values selected in [0, 1]:

    • 1 indicates the head is not masked,

    • 0 indicates the head is masked.

  • inputs_embeds (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) — Optionally, instead of passing input_ids you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids indices into associated vectors than the model’s internal embedding lookup matrix.

  • output_attentions (bool, optional) — Whether or not to return the attentions tensors of all attention layers. See attentions under returned tensors for more detail.

  • output_hidden_states (bool, optional) — Whether or not to return the hidden states of all layers. See hidden_states under returned tensors for more detail.

  • labels (torch.LongTensor of shape (batch_size,), optional) — Labels for computing the sequence classification/regression loss. Indices should be in [0, ..., config.num_labels - 1]. If config.num_labels == 1 a regression loss is computed (Mean-Square loss), If config.num_labels > 1 a classification loss is computed (Cross-Entropy).

Returns

  • loss (torch.FloatTensor of shape (1,), optional, returned when labels is provided) — Classification (or regression if config.num_labels==1) loss.

  • logits (torch.FloatTensor of shape (batch_size, config.num_labels)) — Classification (or regression if config.num_labels==1) scores (before SoftMax).

  • hidden_states (tuple(torch.FloatTensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) — Tuple of torch.FloatTensor (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.

  • attentions (tuple(torch.FloatTensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) — Tuple of torch.FloatTensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Example of single-label classification:

Copied

>>> import torch
>>> from transformers import AutoTokenizer, FlaubertForSequenceClassification

>>> tokenizer = AutoTokenizer.from_pretrained("flaubert/flaubert_base_cased")
>>> model = FlaubertForSequenceClassification.from_pretrained("flaubert/flaubert_base_cased")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")

>>> with torch.no_grad():
...     logits = model(**inputs).logits

>>> predicted_class_id = logits.argmax().item()

>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = FlaubertForSequenceClassification.from_pretrained("flaubert/flaubert_base_cased", num_labels=num_labels)

>>> labels = torch.tensor([1])
>>> loss = model(**inputs, labels=labels).loss

Example of multi-label classification:

Copied

>>> import torch
>>> from transformers import AutoTokenizer, FlaubertForSequenceClassification

>>> tokenizer = AutoTokenizer.from_pretrained("flaubert/flaubert_base_cased")
>>> model = FlaubertForSequenceClassification.from_pretrained("flaubert/flaubert_base_cased", problem_type="multi_label_classification")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")

>>> with torch.no_grad():
...     logits = model(**inputs).logits

>>> predicted_class_ids = torch.arange(0, logits.shape[-1])[torch.sigmoid(logits).squeeze(dim=0) > 0.5]

>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = FlaubertForSequenceClassification.from_pretrained(
...     "flaubert/flaubert_base_cased", num_labels=num_labels, problem_type="multi_label_classification"
... )

>>> labels = torch.sum(
...     torch.nn.functional.one_hot(predicted_class_ids[None, :].clone(), num_classes=num_labels), dim=1
... ).to(torch.float)
>>> loss = model(**inputs, labels=labels).loss

FlaubertForMultipleChoice

class transformers.FlaubertForMultipleChoice

( config*inputs**kwargs )

Parameters

Flaubert Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a softmax) e.g. for RocStories/SWAG tasks.

forward

Parameters

  • input_ids (torch.LongTensor of shape (batch_size, sequence_length)) — Indices of input sequence tokens in the vocabulary.

  • attention_mask (torch.FloatTensor of shape (batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:

    • 1 for tokens that are not masked,

    • 0 for tokens that are masked.

  • token_type_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]:

    • 0 corresponds to a sentence A token,

    • 1 corresponds to a sentence B token.

  • position_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1].

  • lengths (torch.LongTensor of shape (batch_size,), optional) — Length of each sentence that can be used to avoid performing attention on padding token indices. You can also use attention_mask for the same result (see above), kept here for compatibility. Indices selected in [0, ..., input_ids.size(-1)]:

  • cache (Dict[str, torch.FloatTensor], optional) — Dictionary strings to torch.FloatTensor that contains precomputed hidden-states (key and values in the attention blocks) as computed by the model (see cache output below). Can be used to speed up sequential decoding. The dictionary object will be modified in-place during the forward pass to add newly computed hidden-states.

  • head_mask (torch.FloatTensor of shape (num_heads,) or (num_layers, num_heads), optional) — Mask to nullify selected heads of the self-attention modules. Mask values selected in [0, 1]:

    • 1 indicates the head is not masked,

    • 0 indicates the head is masked.

  • inputs_embeds (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) — Optionally, instead of passing input_ids you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids indices into associated vectors than the model’s internal embedding lookup matrix.

  • output_attentions (bool, optional) — Whether or not to return the attentions tensors of all attention layers. See attentions under returned tensors for more detail.

  • output_hidden_states (bool, optional) — Whether or not to return the hidden states of all layers. See hidden_states under returned tensors for more detail.

  • labels (torch.LongTensor of shape (batch_size,), optional) — Labels for computing the multiple choice classification loss. Indices should be in [0, ..., num_choices-1] where num_choices is the size of the second dimension of the input tensors. (See input_ids above)

Returns

  • loss (torch.FloatTensor of shape (1,), optional, returned when labels is provided) — Classification loss.

  • logits (torch.FloatTensor of shape (batch_size, num_choices)) — num_choices is the second dimension of the input tensors. (see input_ids above).

    Classification scores (before SoftMax).

  • hidden_states (tuple(torch.FloatTensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) — Tuple of torch.FloatTensor (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.

  • attentions (tuple(torch.FloatTensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) — Tuple of torch.FloatTensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Example:

Copied

>>> from transformers import AutoTokenizer, FlaubertForMultipleChoice
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("flaubert/flaubert_base_cased")
>>> model = FlaubertForMultipleChoice.from_pretrained("flaubert/flaubert_base_cased")

>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
>>> choice0 = "It is eaten with a fork and a knife."
>>> choice1 = "It is eaten while held in the hand."
>>> labels = torch.tensor(0).unsqueeze(0)  # choice0 is correct (according to Wikipedia ;)), batch size 1

>>> encoding = tokenizer([prompt, prompt], [choice0, choice1], return_tensors="pt", padding=True)
>>> outputs = model(**{k: v.unsqueeze(0) for k, v in encoding.items()}, labels=labels)  # batch size is 1

>>> # the linear classifier still needs to be trained
>>> loss = outputs.loss
>>> logits = outputs.logits

FlaubertForTokenClassification

class transformers.FlaubertForTokenClassification

( config )

Parameters

Flaubert Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks.

forward

Parameters

  • input_ids (torch.LongTensor of shape (batch_size, sequence_length)) — Indices of input sequence tokens in the vocabulary.

  • attention_mask (torch.FloatTensor of shape (batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:

    • 1 for tokens that are not masked,

    • 0 for tokens that are masked.

  • token_type_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]:

    • 0 corresponds to a sentence A token,

    • 1 corresponds to a sentence B token.

  • position_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1].

  • lengths (torch.LongTensor of shape (batch_size,), optional) — Length of each sentence that can be used to avoid performing attention on padding token indices. You can also use attention_mask for the same result (see above), kept here for compatibility. Indices selected in [0, ..., input_ids.size(-1)]:

  • cache (Dict[str, torch.FloatTensor], optional) — Dictionary strings to torch.FloatTensor that contains precomputed hidden-states (key and values in the attention blocks) as computed by the model (see cache output below). Can be used to speed up sequential decoding. The dictionary object will be modified in-place during the forward pass to add newly computed hidden-states.

  • head_mask (torch.FloatTensor of shape (num_heads,) or (num_layers, num_heads), optional) — Mask to nullify selected heads of the self-attention modules. Mask values selected in [0, 1]:

    • 1 indicates the head is not masked,

    • 0 indicates the head is masked.

  • inputs_embeds (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) — Optionally, instead of passing input_ids you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids indices into associated vectors than the model’s internal embedding lookup matrix.

  • output_attentions (bool, optional) — Whether or not to return the attentions tensors of all attention layers. See attentions under returned tensors for more detail.

  • output_hidden_states (bool, optional) — Whether or not to return the hidden states of all layers. See hidden_states under returned tensors for more detail.

  • labels (torch.LongTensor of shape (batch_size, sequence_length), optional) — Labels for computing the token classification loss. Indices should be in [0, ..., config.num_labels - 1].

Returns

  • loss (torch.FloatTensor of shape (1,), optional, returned when labels is provided) — Classification loss.

  • logits (torch.FloatTensor of shape (batch_size, sequence_length, config.num_labels)) — Classification scores (before SoftMax).

  • hidden_states (tuple(torch.FloatTensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) — Tuple of torch.FloatTensor (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.

  • attentions (tuple(torch.FloatTensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) — Tuple of torch.FloatTensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Example:

Copied

>>> from transformers import AutoTokenizer, FlaubertForTokenClassification
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("flaubert/flaubert_base_cased")
>>> model = FlaubertForTokenClassification.from_pretrained("flaubert/flaubert_base_cased")

>>> inputs = tokenizer(
...     "BOINCAI is a company based in Paris and New York", add_special_tokens=False, return_tensors="pt"
... )

>>> with torch.no_grad():
...     logits = model(**inputs).logits

>>> predicted_token_class_ids = logits.argmax(-1)

>>> # Note that tokens are classified rather then input words which means that
>>> # there might be more predicted token classes than words.
>>> # Multiple token classes might account for the same word
>>> predicted_tokens_classes = [model.config.id2label[t.item()] for t in predicted_token_class_ids[0]]

>>> labels = predicted_token_class_ids
>>> loss = model(**inputs, labels=labels).loss

FlaubertForQuestionAnsweringSimple

class transformers.FlaubertForQuestionAnsweringSimple

( config )

Parameters

Flaubert Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of the hidden-states output to compute span start logits and span end logits).

forward

Parameters

  • input_ids (torch.LongTensor of shape (batch_size, sequence_length)) — Indices of input sequence tokens in the vocabulary.

  • attention_mask (torch.FloatTensor of shape (batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:

    • 1 for tokens that are not masked,

    • 0 for tokens that are masked.

  • token_type_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]:

    • 0 corresponds to a sentence A token,

    • 1 corresponds to a sentence B token.

  • position_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1].

  • lengths (torch.LongTensor of shape (batch_size,), optional) — Length of each sentence that can be used to avoid performing attention on padding token indices. You can also use attention_mask for the same result (see above), kept here for compatibility. Indices selected in [0, ..., input_ids.size(-1)]:

  • cache (Dict[str, torch.FloatTensor], optional) — Dictionary strings to torch.FloatTensor that contains precomputed hidden-states (key and values in the attention blocks) as computed by the model (see cache output below). Can be used to speed up sequential decoding. The dictionary object will be modified in-place during the forward pass to add newly computed hidden-states.

  • head_mask (torch.FloatTensor of shape (num_heads,) or (num_layers, num_heads), optional) — Mask to nullify selected heads of the self-attention modules. Mask values selected in [0, 1]:

    • 1 indicates the head is not masked,

    • 0 indicates the head is masked.

  • inputs_embeds (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) — Optionally, instead of passing input_ids you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids indices into associated vectors than the model’s internal embedding lookup matrix.

  • output_attentions (bool, optional) — Whether or not to return the attentions tensors of all attention layers. See attentions under returned tensors for more detail.

  • output_hidden_states (bool, optional) — Whether or not to return the hidden states of all layers. See hidden_states under returned tensors for more detail.

  • start_positions (torch.LongTensor of shape (batch_size,), optional) — Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (sequence_length). Position outside of the sequence are not taken into account for computing the loss.

  • end_positions (torch.LongTensor of shape (batch_size,), optional) — Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (sequence_length). Position outside of the sequence are not taken into account for computing the loss.

Returns

  • loss (torch.FloatTensor of shape (1,), optional, returned when labels is provided) — Total span extraction loss is the sum of a Cross-Entropy for the start and end positions.

  • start_logits (torch.FloatTensor of shape (batch_size, sequence_length)) — Span-start scores (before SoftMax).

  • end_logits (torch.FloatTensor of shape (batch_size, sequence_length)) — Span-end scores (before SoftMax).

  • hidden_states (tuple(torch.FloatTensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) — Tuple of torch.FloatTensor (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.

  • attentions (tuple(torch.FloatTensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) — Tuple of torch.FloatTensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Example:

Copied

>>> from transformers import AutoTokenizer, FlaubertForQuestionAnsweringSimple
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("flaubert/flaubert_base_cased")
>>> model = FlaubertForQuestionAnsweringSimple.from_pretrained("flaubert/flaubert_base_cased")

>>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"

>>> inputs = tokenizer(question, text, return_tensors="pt")
>>> with torch.no_grad():
...     outputs = model(**inputs)

>>> answer_start_index = outputs.start_logits.argmax()
>>> answer_end_index = outputs.end_logits.argmax()

>>> predict_answer_tokens = inputs.input_ids[0, answer_start_index : answer_end_index + 1]

>>> # target is "nice puppet"
>>> target_start_index = torch.tensor([14])
>>> target_end_index = torch.tensor([15])

>>> outputs = model(**inputs, start_positions=target_start_index, end_positions=target_end_index)
>>> loss = outputs.loss

FlaubertForQuestionAnswering

class transformers.FlaubertForQuestionAnswering

( config )

forward

( input_ids: typing.Optional[torch.Tensor] = Noneattention_mask: typing.Optional[torch.Tensor] = Nonelangs: typing.Optional[torch.Tensor] = Nonetoken_type_ids: typing.Optional[torch.Tensor] = Noneposition_ids: typing.Optional[torch.Tensor] = Nonelengths: typing.Optional[torch.Tensor] = Nonecache: typing.Union[typing.Dict[str, torch.Tensor], NoneType] = Nonehead_mask: typing.Optional[torch.Tensor] = Noneinputs_embeds: typing.Optional[torch.Tensor] = Nonestart_positions: typing.Optional[torch.Tensor] = Noneend_positions: typing.Optional[torch.Tensor] = Noneis_impossible: typing.Optional[torch.Tensor] = Nonecls_index: typing.Optional[torch.Tensor] = Nonep_mask: typing.Optional[torch.Tensor] = Noneoutput_attentions: typing.Optional[bool] = Noneoutput_hidden_states: typing.Optional[bool] = Nonereturn_dict: typing.Optional[bool] = None ) → transformers.models.flaubert.modeling_flaubert.FlaubertForQuestionAnsweringOutput or tuple(torch.FloatTensor)

Parameters

  • input_ids (torch.LongTensor of shape (batch_size, sequence_length)) — Indices of input sequence tokens in the vocabulary.

Returns

transformers.models.flaubert.modeling_flaubert.FlaubertForQuestionAnsweringOutput or tuple(torch.FloatTensor)

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Base class for outputs of question answering models using a SquadHead.

Example:

Copied

>>> from transformers import XLMTokenizer, XLMForQuestionAnswering
>>> import torch

>>> tokenizer = XLMTokenizer.from_pretrained("xlm-mlm-en-2048")
>>> model = XLMForQuestionAnswering.from_pretrained("xlm-mlm-en-2048")

>>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(
...     0
... )  # Batch size 1
>>> start_positions = torch.tensor([1])
>>> end_positions = torch.tensor([3])

>>> outputs = model(input_ids, start_positions=start_positions, end_positions=end_positions)
>>> loss = outputs.loss

TFFlaubertModel

class transformers.TFFlaubertModel

( *args**kwargs )

Parameters

The bare Flaubert Model transformer outputting raw hidden-states without any specific head on top.

TensorFlow models and layers in transformers accept two formats as input:

  • having all inputs as keyword arguments (like PyTorch models), or

  • having all inputs as a list, tuple or dict in the first positional argument.

The reason the second format is supported is that Keras methods prefer this format when passing inputs to models and layers. Because of this support, when using methods like model.fit() things should “just work” for you - just pass your inputs and labels in any format that model.fit() supports! If, however, you want to use the second format outside of Keras methods like fit() and predict(), such as when creating your own layers or models with the Keras Functional API, there are three possibilities you can use to gather all the input Tensors in the first positional argument:

  • a single Tensor with input_ids only and nothing else: model(input_ids)

  • a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: model([input_ids, attention_mask]) or model([input_ids, attention_mask, token_type_ids])

  • a dictionary with one or several input Tensors associated to the input names given in the docstring: model({"input_ids": input_ids, "token_type_ids": token_type_ids})

call

Parameters

  • input_ids (Numpy array or tf.Tensor of shape (batch_size, sequence_length)) — Indices of input sequence tokens in the vocabulary.

  • attention_mask (Numpy array or tf.Tensor of shape (batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:

    • 1 for tokens that are not masked,

    • 0 for tokens that are masked.

  • langs (tf.Tensor or Numpy array of shape (batch_size, sequence_length), optional) — A parallel sequence of tokens to be used to indicate the language of each token in the input. Indices are languages ids which can be obtained from the language names by using two conversion mappings provided in the configuration of the model (only provided for multilingual models). More precisely, the language name to language id mapping is in model.config.lang2id (which is a dictionary string to int) and the language id to language name mapping is in model.config.id2lang (dictionary int to string).

  • token_type_ids (tf.Tensor or Numpy array of shape (batch_size, sequence_length), optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]:

    • 0 corresponds to a sentence A token,

    • 1 corresponds to a sentence B token.

  • position_ids (tf.Tensor or Numpy array of shape (batch_size, sequence_length), optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1].

  • lengths (tf.Tensor or Numpy array of shape (batch_size,), optional) — Length of each sentence that can be used to avoid performing attention on padding token indices. You can also use attention_mask for the same result (see above), kept here for compatibility Indices selected in [0, ..., input_ids.size(-1)]:

  • cache (Dict[str, tf.Tensor], optional) — Dictionary string to tf.FloatTensor that contains precomputed hidden states (key and values in the attention blocks) as computed by the model (see cache output below). Can be used to speed up sequential decoding.

    The dictionary object will be modified in-place during the forward pass to add newly computed hidden-states.

  • head_mask (Numpy array or tf.Tensor of shape (num_heads,) or (num_layers, num_heads), optional) — Mask to nullify selected heads of the self-attention modules. Mask values selected in [0, 1]:

    • 1 indicates the head is not masked,

    • 0 indicates the head is masked.

  • inputs_embeds (tf.Tensor of shape (batch_size, sequence_length, hidden_size), optional) — Optionally, instead of passing input_ids you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids indices into associated vectors than the model’s internal embedding lookup matrix.

  • output_attentions (bool, optional) — Whether or not to return the attentions tensors of all attention layers. See attentions under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead.

  • output_hidden_states (bool, optional) — Whether or not to return the hidden states of all layers. See hidden_states under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead.

  • training (bool, optional, defaults to False) — Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation).

Returns

  • last_hidden_state (tf.Tensor of shape (batch_size, sequence_length, hidden_size)) — Sequence of hidden-states at the output of the last layer of the model.

  • hidden_states (tuple(tf.FloatTensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) — Tuple of tf.Tensor (one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the model at the output of each layer plus the initial embedding outputs.

  • attentions (tuple(tf.Tensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) — Tuple of tf.Tensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Example:

Copied

>>> from transformers import AutoTokenizer, TFFlaubertModel
>>> import tensorflow as tf

>>> tokenizer = AutoTokenizer.from_pretrained("flaubert/flaubert_base_cased")
>>> model = TFFlaubertModel.from_pretrained("flaubert/flaubert_base_cased")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf")
>>> outputs = model(inputs)

>>> last_hidden_states = outputs.last_hidden_state

TFFlaubertWithLMHeadModel

class transformers.TFFlaubertWithLMHeadModel

( *args**kwargs )

Parameters

The Flaubert Model transformer with a language modeling head on top (linear layer with weights tied to the input embeddings).

TensorFlow models and layers in transformers accept two formats as input:

  • having all inputs as keyword arguments (like PyTorch models), or

  • having all inputs as a list, tuple or dict in the first positional argument.

The reason the second format is supported is that Keras methods prefer this format when passing inputs to models and layers. Because of this support, when using methods like model.fit() things should “just work” for you - just pass your inputs and labels in any format that model.fit() supports! If, however, you want to use the second format outside of Keras methods like fit() and predict(), such as when creating your own layers or models with the Keras Functional API, there are three possibilities you can use to gather all the input Tensors in the first positional argument:

  • a single Tensor with input_ids only and nothing else: model(input_ids)

  • a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: model([input_ids, attention_mask]) or model([input_ids, attention_mask, token_type_ids])

  • a dictionary with one or several input Tensors associated to the input names given in the docstring: model({"input_ids": input_ids, "token_type_ids": token_type_ids})

call

( input_ids: np.ndarray | tf.Tensor | None = Noneattention_mask: np.ndarray | tf.Tensor | None = Nonelangs: np.ndarray | tf.Tensor | None = Nonetoken_type_ids: np.ndarray | tf.Tensor | None = Noneposition_ids: np.ndarray | tf.Tensor | None = Nonelengths: np.ndarray | tf.Tensor | None = Nonecache: Optional[Dict[str, tf.Tensor]] = Nonehead_mask: np.ndarray | tf.Tensor | None = Noneinputs_embeds: tf.Tensor | None = Noneoutput_attentions: Optional[bool] = Noneoutput_hidden_states: Optional[bool] = Nonereturn_dict: Optional[bool] = Nonetraining: Optional[bool] = False ) → transformers.models.flaubert.modeling_tf_flaubert.TFFlaubertWithLMHeadModelOutput or tuple(tf.Tensor)

Parameters

  • input_ids (Numpy array or tf.Tensor of shape (batch_size, sequence_length)) — Indices of input sequence tokens in the vocabulary.

  • attention_mask (Numpy array or tf.Tensor of shape (batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:

    • 1 for tokens that are not masked,

    • 0 for tokens that are masked.

  • langs (tf.Tensor or Numpy array of shape (batch_size, sequence_length), optional) — A parallel sequence of tokens to be used to indicate the language of each token in the input. Indices are languages ids which can be obtained from the language names by using two conversion mappings provided in the configuration of the model (only provided for multilingual models). More precisely, the language name to language id mapping is in model.config.lang2id (which is a dictionary string to int) and the language id to language name mapping is in model.config.id2lang (dictionary int to string).

  • token_type_ids (tf.Tensor or Numpy array of shape (batch_size, sequence_length), optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]:

    • 0 corresponds to a sentence A token,

    • 1 corresponds to a sentence B token.

  • position_ids (tf.Tensor or Numpy array of shape (batch_size, sequence_length), optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1].

  • lengths (tf.Tensor or Numpy array of shape (batch_size,), optional) — Length of each sentence that can be used to avoid performing attention on padding token indices. You can also use attention_mask for the same result (see above), kept here for compatibility Indices selected in [0, ..., input_ids.size(-1)]:

  • cache (Dict[str, tf.Tensor], optional) — Dictionary string to tf.FloatTensor that contains precomputed hidden states (key and values in the attention blocks) as computed by the model (see cache output below). Can be used to speed up sequential decoding.

    The dictionary object will be modified in-place during the forward pass to add newly computed hidden-states.

  • head_mask (Numpy array or tf.Tensor of shape (num_heads,) or (num_layers, num_heads), optional) — Mask to nullify selected heads of the self-attention modules. Mask values selected in [0, 1]:

    • 1 indicates the head is not masked,

    • 0 indicates the head is masked.

  • inputs_embeds (tf.Tensor of shape (batch_size, sequence_length, hidden_size), optional) — Optionally, instead of passing input_ids you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids indices into associated vectors than the model’s internal embedding lookup matrix.

  • output_attentions (bool, optional) — Whether or not to return the attentions tensors of all attention layers. See attentions under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead.

  • output_hidden_states (bool, optional) — Whether or not to return the hidden states of all layers. See hidden_states under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead.

  • training (bool, optional, defaults to False) — Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation).

Returns

transformers.models.flaubert.modeling_tf_flaubert.TFFlaubertWithLMHeadModelOutput or tuple(tf.Tensor)

  • logits (tf.Tensor of shape (batch_size, sequence_length, config.vocab_size)) — Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).

  • hidden_states (tuple(tf.Tensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) — Tuple of tf.Tensor (one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the model at the output of each layer plus the initial embedding outputs.

  • attentions (tuple(tf.Tensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) — Tuple of tf.Tensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Example:

Copied

>>> from transformers import AutoTokenizer, TFFlaubertWithLMHeadModel
>>> import tensorflow as tf

>>> tokenizer = AutoTokenizer.from_pretrained("flaubert/flaubert_base_cased")
>>> model = TFFlaubertWithLMHeadModel.from_pretrained("flaubert/flaubert_base_cased")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf")
>>> outputs = model(inputs)
>>> logits = outputs.logits

TFFlaubertForSequenceClassification

class transformers.TFFlaubertForSequenceClassification

( *args**kwargs )

Parameters

Flaubert Model with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks.

TensorFlow models and layers in transformers accept two formats as input:

  • having all inputs as keyword arguments (like PyTorch models), or

  • having all inputs as a list, tuple or dict in the first positional argument.

The reason the second format is supported is that Keras methods prefer this format when passing inputs to models and layers. Because of this support, when using methods like model.fit() things should “just work” for you - just pass your inputs and labels in any format that model.fit() supports! If, however, you want to use the second format outside of Keras methods like fit() and predict(), such as when creating your own layers or models with the Keras Functional API, there are three possibilities you can use to gather all the input Tensors in the first positional argument:

  • a single Tensor with input_ids only and nothing else: model(input_ids)

  • a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: model([input_ids, attention_mask]) or model([input_ids, attention_mask, token_type_ids])

  • a dictionary with one or several input Tensors associated to the input names given in the docstring: model({"input_ids": input_ids, "token_type_ids": token_type_ids})

call

Parameters

  • input_ids (Numpy array or tf.Tensor of shape (batch_size, sequence_length)) — Indices of input sequence tokens in the vocabulary.

  • attention_mask (Numpy array or tf.Tensor of shape (batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:

    • 1 for tokens that are not masked,

    • 0 for tokens that are masked.

  • langs (tf.Tensor or Numpy array of shape (batch_size, sequence_length), optional) — A parallel sequence of tokens to be used to indicate the language of each token in the input. Indices are languages ids which can be obtained from the language names by using two conversion mappings provided in the configuration of the model (only provided for multilingual models). More precisely, the language name to language id mapping is in model.config.lang2id (which is a dictionary string to int) and the language id to language name mapping is in model.config.id2lang (dictionary int to string).

  • token_type_ids (tf.Tensor or Numpy array of shape (batch_size, sequence_length), optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]:

    • 0 corresponds to a sentence A token,

    • 1 corresponds to a sentence B token.

  • position_ids (tf.Tensor or Numpy array of shape (batch_size, sequence_length), optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1].

  • lengths (tf.Tensor or Numpy array of shape (batch_size,), optional) — Length of each sentence that can be used to avoid performing attention on padding token indices. You can also use attention_mask for the same result (see above), kept here for compatibility Indices selected in [0, ..., input_ids.size(-1)]:

  • cache (Dict[str, tf.Tensor], optional) — Dictionary string to tf.FloatTensor that contains precomputed hidden states (key and values in the attention blocks) as computed by the model (see cache output below). Can be used to speed up sequential decoding.

    The dictionary object will be modified in-place during the forward pass to add newly computed hidden-states.

  • head_mask (Numpy array or tf.Tensor of shape (num_heads,) or (num_layers, num_heads), optional) — Mask to nullify selected heads of the self-attention modules. Mask values selected in [0, 1]:

    • 1 indicates the head is not masked,

    • 0 indicates the head is masked.

  • inputs_embeds (tf.Tensor of shape (batch_size, sequence_length, hidden_size), optional) — Optionally, instead of passing input_ids you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids indices into associated vectors than the model’s internal embedding lookup matrix.

  • output_attentions (bool, optional) — Whether or not to return the attentions tensors of all attention layers. See attentions under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead.

  • output_hidden_states (bool, optional) — Whether or not to return the hidden states of all layers. See hidden_states under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead.

  • training (bool, optional, defaults to False) — Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation).

  • labels (tf.Tensor of shape (batch_size,), optional) — Labels for computing the sequence classification/regression loss. Indices should be in [0, ..., config.num_labels - 1]. If config.num_labels == 1 a regression loss is computed (Mean-Square loss), If config.num_labels > 1 a classification loss is computed (Cross-Entropy).

Returns

  • loss (tf.Tensor of shape (batch_size, ), optional, returned when labels is provided) — Classification (or regression if config.num_labels==1) loss.

  • logits (tf.Tensor of shape (batch_size, config.num_labels)) — Classification (or regression if config.num_labels==1) scores (before SoftMax).

  • hidden_states (tuple(tf.Tensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) — Tuple of tf.Tensor (one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the model at the output of each layer plus the initial embedding outputs.

  • attentions (tuple(tf.Tensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) — Tuple of tf.Tensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Example:

Copied

>>> from transformers import AutoTokenizer, TFFlaubertForSequenceClassification
>>> import tensorflow as tf

>>> tokenizer = AutoTokenizer.from_pretrained("flaubert/flaubert_base_cased")
>>> model = TFFlaubertForSequenceClassification.from_pretrained("flaubert/flaubert_base_cased")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf")

>>> logits = model(**inputs).logits

>>> predicted_class_id = int(tf.math.argmax(logits, axis=-1)[0])

Copied

>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = TFFlaubertForSequenceClassification.from_pretrained("flaubert/flaubert_base_cased", num_labels=num_labels)

>>> labels = tf.constant(1)
>>> loss = model(**inputs, labels=labels).loss

TFFlaubertForMultipleChoice

class transformers.TFFlaubertForMultipleChoice

( *args**kwargs )

Parameters

Flaubert Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a softmax) e.g. for RocStories/SWAG tasks.

TensorFlow models and layers in transformers accept two formats as input:

  • having all inputs as keyword arguments (like PyTorch models), or

  • having all inputs as a list, tuple or dict in the first positional argument.

The reason the second format is supported is that Keras methods prefer this format when passing inputs to models and layers. Because of this support, when using methods like model.fit() things should “just work” for you - just pass your inputs and labels in any format that model.fit() supports! If, however, you want to use the second format outside of Keras methods like fit() and predict(), such as when creating your own layers or models with the Keras Functional API, there are three possibilities you can use to gather all the input Tensors in the first positional argument:

  • a single Tensor with input_ids only and nothing else: model(input_ids)

  • a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: model([input_ids, attention_mask]) or model([input_ids, attention_mask, token_type_ids])

  • a dictionary with one or several input Tensors associated to the input names given in the docstring: model({"input_ids": input_ids, "token_type_ids": token_type_ids})

call

Parameters

  • input_ids (Numpy array or tf.Tensor of shape (batch_size, sequence_length)) — Indices of input sequence tokens in the vocabulary.

  • attention_mask (Numpy array or tf.Tensor of shape (batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:

    • 1 for tokens that are not masked,

    • 0 for tokens that are masked.

  • langs (tf.Tensor or Numpy array of shape (batch_size, sequence_length), optional) — A parallel sequence of tokens to be used to indicate the language of each token in the input. Indices are languages ids which can be obtained from the language names by using two conversion mappings provided in the configuration of the model (only provided for multilingual models). More precisely, the language name to language id mapping is in model.config.lang2id (which is a dictionary string to int) and the language id to language name mapping is in model.config.id2lang (dictionary int to string).

  • token_type_ids (tf.Tensor or Numpy array of shape (batch_size, sequence_length), optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]:

    • 0 corresponds to a sentence A token,

    • 1 corresponds to a sentence B token.

  • position_ids (tf.Tensor or Numpy array of shape (batch_size, sequence_length), optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1].

  • lengths (tf.Tensor or Numpy array of shape (batch_size,), optional) — Length of each sentence that can be used to avoid performing attention on padding token indices. You can also use attention_mask for the same result (see above), kept here for compatibility Indices selected in [0, ..., input_ids.size(-1)]:

  • cache (Dict[str, tf.Tensor], optional) — Dictionary string to tf.FloatTensor that contains precomputed hidden states (key and values in the attention blocks) as computed by the model (see cache output below). Can be used to speed up sequential decoding.

    The dictionary object will be modified in-place during the forward pass to add newly computed hidden-states.

  • head_mask (Numpy array or tf.Tensor of shape (num_heads,) or (num_layers, num_heads), optional) — Mask to nullify selected heads of the self-attention modules. Mask values selected in [0, 1]:

    • 1 indicates the head is not masked,

    • 0 indicates the head is masked.

  • inputs_embeds (tf.Tensor of shape (batch_size, sequence_length, hidden_size), optional) — Optionally, instead of passing input_ids you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids indices into associated vectors than the model’s internal embedding lookup matrix.

  • output_attentions (bool, optional) — Whether or not to return the attentions tensors of all attention layers. See attentions under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead.

  • output_hidden_states (bool, optional) — Whether or not to return the hidden states of all layers. See hidden_states under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead.

  • training (bool, optional, defaults to False) — Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation).

Returns

  • loss (tf.Tensor of shape (batch_size, ), optional, returned when labels is provided) — Classification loss.

  • logits (tf.Tensor of shape (batch_size, num_choices)) — num_choices is the second dimension of the input tensors. (see input_ids above).

    Classification scores (before SoftMax).

  • hidden_states (tuple(tf.Tensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) — Tuple of tf.Tensor (one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the model at the output of each layer plus the initial embedding outputs.

  • attentions (tuple(tf.Tensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) — Tuple of tf.Tensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Example:

Copied

>>> from transformers import AutoTokenizer, TFFlaubertForMultipleChoice
>>> import tensorflow as tf

>>> tokenizer = AutoTokenizer.from_pretrained("flaubert/flaubert_base_cased")
>>> model = TFFlaubertForMultipleChoice.from_pretrained("flaubert/flaubert_base_cased")

>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
>>> choice0 = "It is eaten with a fork and a knife."
>>> choice1 = "It is eaten while held in the hand."

>>> encoding = tokenizer([prompt, prompt], [choice0, choice1], return_tensors="tf", padding=True)
>>> inputs = {k: tf.expand_dims(v, 0) for k, v in encoding.items()}
>>> outputs = model(inputs)  # batch size is 1

>>> # the linear classifier still needs to be trained
>>> logits = outputs.logits

TFFlaubertForTokenClassification

class transformers.TFFlaubertForTokenClassification

( *args**kwargs )

Parameters

Flaubert Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks.

TensorFlow models and layers in transformers accept two formats as input:

  • having all inputs as keyword arguments (like PyTorch models), or

  • having all inputs as a list, tuple or dict in the first positional argument.

The reason the second format is supported is that Keras methods prefer this format when passing inputs to models and layers. Because of this support, when using methods like model.fit() things should “just work” for you - just pass your inputs and labels in any format that model.fit() supports! If, however, you want to use the second format outside of Keras methods like fit() and predict(), such as when creating your own layers or models with the Keras Functional API, there are three possibilities you can use to gather all the input Tensors in the first positional argument:

  • a single Tensor with input_ids only and nothing else: model(input_ids)

  • a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: model([input_ids, attention_mask]) or model([input_ids, attention_mask, token_type_ids])

  • a dictionary with one or several input Tensors associated to the input names given in the docstring: model({"input_ids": input_ids, "token_type_ids": token_type_ids})

call

Parameters

  • input_ids (Numpy array or tf.Tensor of shape (batch_size, sequence_length)) — Indices of input sequence tokens in the vocabulary.

  • attention_mask (Numpy array or tf.Tensor of shape (batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:

    • 1 for tokens that are not masked,

    • 0 for tokens that are masked.

  • langs (tf.Tensor or Numpy array of shape (batch_size, sequence_length), optional) — A parallel sequence of tokens to be used to indicate the language of each token in the input. Indices are languages ids which can be obtained from the language names by using two conversion mappings provided in the configuration of the model (only provided for multilingual models). More precisely, the language name to language id mapping is in model.config.lang2id (which is a dictionary string to int) and the language id to language name mapping is in model.config.id2lang (dictionary int to string).

  • token_type_ids (tf.Tensor or Numpy array of shape (batch_size, sequence_length), optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]:

    • 0 corresponds to a sentence A token,

    • 1 corresponds to a sentence B token.

  • position_ids (tf.Tensor or Numpy array of shape (batch_size, sequence_length), optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1].

  • lengths (tf.Tensor or Numpy array of shape (batch_size,), optional) — Length of each sentence that can be used to avoid performing attention on padding token indices. You can also use attention_mask for the same result (see above), kept here for compatibility Indices selected in [0, ..., input_ids.size(-1)]:

  • cache (Dict[str, tf.Tensor], optional) — Dictionary string to tf.FloatTensor that contains precomputed hidden states (key and values in the attention blocks) as computed by the model (see cache output below). Can be used to speed up sequential decoding.

    The dictionary object will be modified in-place during the forward pass to add newly computed hidden-states.

  • head_mask (Numpy array or tf.Tensor of shape (num_heads,) or (num_layers, num_heads), optional) — Mask to nullify selected heads of the self-attention modules. Mask values selected in [0, 1]:

    • 1 indicates the head is not masked,

    • 0 indicates the head is masked.

  • inputs_embeds (tf.Tensor of shape (batch_size, sequence_length, hidden_size), optional) — Optionally, instead of passing input_ids you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids indices into associated vectors than the model’s internal embedding lookup matrix.

  • output_attentions (bool, optional) — Whether or not to return the attentions tensors of all attention layers. See attentions under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead.

  • output_hidden_states (bool, optional) — Whether or not to return the hidden states of all layers. See hidden_states under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead.

  • training (bool, optional, defaults to False) — Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation).

  • labels (tf.Tensor of shape (batch_size, sequence_length), optional) — Labels for computing the token classification loss. Indices should be in [0, ..., config.num_labels - 1].

Returns

  • loss (tf.Tensor of shape (n,), optional, where n is the number of unmasked labels, returned when labels is provided) — Classification loss.

  • logits (tf.Tensor of shape (batch_size, sequence_length, config.num_labels)) — Classification scores (before SoftMax).

  • hidden_states (tuple(tf.Tensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) — Tuple of tf.Tensor (one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the model at the output of each layer plus the initial embedding outputs.

  • attentions (tuple(tf.Tensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) — Tuple of tf.Tensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Example:

Copied

>>> from transformers import AutoTokenizer, TFFlaubertForTokenClassification
>>> import tensorflow as tf

>>> tokenizer = AutoTokenizer.from_pretrained("flaubert/flaubert_base_cased")
>>> model = TFFlaubertForTokenClassification.from_pretrained("flaubert/flaubert_base_cased")

>>> inputs = tokenizer(
...     "BOINCAI is a company based in Paris and New York", add_special_tokens=False, return_tensors="tf"
... )

>>> logits = model(**inputs).logits
>>> predicted_token_class_ids = tf.math.argmax(logits, axis=-1)

>>> # Note that tokens are classified rather then input words which means that
>>> # there might be more predicted token classes than words.
>>> # Multiple token classes might account for the same word
>>> predicted_tokens_classes = [model.config.id2label[t] for t in predicted_token_class_ids[0].numpy().tolist()]

Copied

>>> labels = predicted_token_class_ids
>>> loss = tf.math.reduce_mean(model(**inputs, labels=labels).loss)

TFFlaubertForQuestionAnsweringSimple

class transformers.TFFlaubertForQuestionAnsweringSimple

( *args**kwargs )

Parameters

Flaubert Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layer on top of the hidden-states output to compute span start logits and span end logits).

TensorFlow models and layers in transformers accept two formats as input:

  • having all inputs as keyword arguments (like PyTorch models), or

  • having all inputs as a list, tuple or dict in the first positional argument.

The reason the second format is supported is that Keras methods prefer this format when passing inputs to models and layers. Because of this support, when using methods like model.fit() things should “just work” for you - just pass your inputs and labels in any format that model.fit() supports! If, however, you want to use the second format outside of Keras methods like fit() and predict(), such as when creating your own layers or models with the Keras Functional API, there are three possibilities you can use to gather all the input Tensors in the first positional argument:

  • a single Tensor with input_ids only and nothing else: model(input_ids)

  • a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: model([input_ids, attention_mask]) or model([input_ids, attention_mask, token_type_ids])

  • a dictionary with one or several input Tensors associated to the input names given in the docstring: model({"input_ids": input_ids, "token_type_ids": token_type_ids})

call

Parameters

  • input_ids (Numpy array or tf.Tensor of shape (batch_size, sequence_length)) — Indices of input sequence tokens in the vocabulary.

  • attention_mask (Numpy array or tf.Tensor of shape (batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:

    • 1 for tokens that are not masked,

    • 0 for tokens that are masked.

  • langs (tf.Tensor or Numpy array of shape (batch_size, sequence_length), optional) — A parallel sequence of tokens to be used to indicate the language of each token in the input. Indices are languages ids which can be obtained from the language names by using two conversion mappings provided in the configuration of the model (only provided for multilingual models). More precisely, the language name to language id mapping is in model.config.lang2id (which is a dictionary string to int) and the language id to language name mapping is in model.config.id2lang (dictionary int to string).

  • token_type_ids (tf.Tensor or Numpy array of shape (batch_size, sequence_length), optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]:

    • 0 corresponds to a sentence A token,

    • 1 corresponds to a sentence B token.

  • position_ids (tf.Tensor or Numpy array of shape (batch_size, sequence_length), optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1].

  • lengths (tf.Tensor or Numpy array of shape (batch_size,), optional) — Length of each sentence that can be used to avoid performing attention on padding token indices. You can also use attention_mask for the same result (see above), kept here for compatibility Indices selected in [0, ..., input_ids.size(-1)]:

  • cache (Dict[str, tf.Tensor], optional) — Dictionary string to tf.FloatTensor that contains precomputed hidden states (key and values in the attention blocks) as computed by the model (see cache output below). Can be used to speed up sequential decoding.

    The dictionary object will be modified in-place during the forward pass to add newly computed hidden-states.

  • head_mask (Numpy array or tf.Tensor of shape (num_heads,) or (num_layers, num_heads), optional) — Mask to nullify selected heads of the self-attention modules. Mask values selected in [0, 1]:

    • 1 indicates the head is not masked,

    • 0 indicates the head is masked.

  • inputs_embeds (tf.Tensor of shape (batch_size, sequence_length, hidden_size), optional) — Optionally, instead of passing input_ids you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids indices into associated vectors than the model’s internal embedding lookup matrix.

  • output_attentions (bool, optional) — Whether or not to return the attentions tensors of all attention layers. See attentions under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead.

  • output_hidden_states (bool, optional) — Whether or not to return the hidden states of all layers. See hidden_states under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead.

  • training (bool, optional, defaults to False) — Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation).

  • start_positions (tf.Tensor of shape (batch_size,), optional) — Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (sequence_length). Position outside of the sequence are not taken into account for computing the loss.

  • end_positions (tf.Tensor of shape (batch_size,), optional) — Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (sequence_length). Position outside of the sequence are not taken into account for computing the loss.

Returns

  • loss (tf.Tensor of shape (batch_size, ), optional, returned when start_positions and end_positions are provided) — Total span extraction loss is the sum of a Cross-Entropy for the start and end positions.

  • start_logits (tf.Tensor of shape (batch_size, sequence_length)) — Span-start scores (before SoftMax).

  • end_logits (tf.Tensor of shape (batch_size, sequence_length)) — Span-end scores (before SoftMax).

  • hidden_states (tuple(tf.Tensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) — Tuple of tf.Tensor (one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the model at the output of each layer plus the initial embedding outputs.

  • attentions (tuple(tf.Tensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) — Tuple of tf.Tensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Example:

Copied

>>> from transformers import AutoTokenizer, TFFlaubertForQuestionAnsweringSimple
>>> import tensorflow as tf

>>> tokenizer = AutoTokenizer.from_pretrained("flaubert/flaubert_base_cased")
>>> model = TFFlaubertForQuestionAnsweringSimple.from_pretrained("flaubert/flaubert_base_cased")

>>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"

>>> inputs = tokenizer(question, text, return_tensors="tf")
>>> outputs = model(**inputs)

>>> answer_start_index = int(tf.math.argmax(outputs.start_logits, axis=-1)[0])
>>> answer_end_index = int(tf.math.argmax(outputs.end_logits, axis=-1)[0])

>>> predict_answer_tokens = inputs.input_ids[0, answer_start_index : answer_end_index + 1]

Copied

>>> # target is "nice puppet"
>>> target_start_index = tf.constant([14])
>>> target_end_index = tf.constant([15])

>>> outputs = model(**inputs, start_positions=target_start_index, end_positions=target_end_index)
>>> loss = tf.math.reduce_mean(outputs.loss)

vocab_size (int, optional, defaults to 30145) — Vocabulary size of the FlauBERT model. Defines the number of different tokens that can be represented by the inputs_ids passed when calling or .

use_lang_emb (bool, optional, defaults to True) — Whether to use language embeddings. Some models use additional language embeddings, see for information on how to use them.

This is the configuration class to store the configuration of a or a . It is used to instantiate a FlauBERT model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the FlauBERT architecture.

Configuration objects inherit from and can be used to control the model outputs. Read the documentation from for more information.

This tokenizer inherits from which contains most of the main methods. Users should refer to this superclass for more information regarding those methods.

List of with the appropriate special tokens.

List of according to the given sequence(s).

( input_ids: typing.Optional[torch.LongTensor] = Noneattention_mask: typing.Optional[torch.FloatTensor] = Nonelangs: typing.Optional[torch.Tensor] = Nonetoken_type_ids: typing.Optional[torch.LongTensor] = Noneposition_ids: typing.Optional[torch.LongTensor] = Nonelengths: typing.Optional[torch.LongTensor] = Nonecache: typing.Union[typing.Dict[str, torch.FloatTensor], NoneType] = Nonehead_mask: typing.Optional[torch.FloatTensor] = Noneinputs_embeds: typing.Optional[torch.FloatTensor] = Noneoutput_attentions: typing.Optional[bool] = Noneoutput_hidden_states: typing.Optional[bool] = Nonereturn_dict: typing.Optional[bool] = None ) → or tuple(torch.FloatTensor)

Indices can be obtained using . See and for details.

return_dict (bool, optional) — Whether or not to return a instead of a plain tuple.

or tuple(torch.FloatTensor)

A or a tuple of torch.FloatTensor (if return_dict=False is passed or when config.return_dict=False) comprising various elements depending on the configuration () and inputs.

The forward method, overrides the __call__ special method.

config () — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the method to load the model weights.

This model inherits from . Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)

This model is also a PyTorch subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.

( input_ids: typing.Optional[torch.Tensor] = Noneattention_mask: typing.Optional[torch.Tensor] = Nonelangs: typing.Optional[torch.Tensor] = Nonetoken_type_ids: typing.Optional[torch.Tensor] = Noneposition_ids: typing.Optional[torch.Tensor] = Nonelengths: typing.Optional[torch.Tensor] = Nonecache: typing.Union[typing.Dict[str, torch.Tensor], NoneType] = Nonehead_mask: typing.Optional[torch.Tensor] = Noneinputs_embeds: typing.Optional[torch.Tensor] = Nonelabels: typing.Optional[torch.Tensor] = Noneoutput_attentions: typing.Optional[bool] = Noneoutput_hidden_states: typing.Optional[bool] = Nonereturn_dict: typing.Optional[bool] = None ) → or tuple(torch.FloatTensor)

Indices can be obtained using . See and for details.

return_dict (bool, optional) — Whether or not to return a instead of a plain tuple.

or tuple(torch.FloatTensor)

A or a tuple of torch.FloatTensor (if return_dict=False is passed or when config.return_dict=False) comprising various elements depending on the configuration () and inputs.

The forward method, overrides the __call__ special method.

config () — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the method to load the model weights.

This model inherits from . Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)

This model is also a PyTorch subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.

( input_ids: typing.Optional[torch.Tensor] = Noneattention_mask: typing.Optional[torch.Tensor] = Nonelangs: typing.Optional[torch.Tensor] = Nonetoken_type_ids: typing.Optional[torch.Tensor] = Noneposition_ids: typing.Optional[torch.Tensor] = Nonelengths: typing.Optional[torch.Tensor] = Nonecache: typing.Union[typing.Dict[str, torch.Tensor], NoneType] = Nonehead_mask: typing.Optional[torch.Tensor] = Noneinputs_embeds: typing.Optional[torch.Tensor] = Nonelabels: typing.Optional[torch.Tensor] = Noneoutput_attentions: typing.Optional[bool] = Noneoutput_hidden_states: typing.Optional[bool] = Nonereturn_dict: typing.Optional[bool] = None ) → or tuple(torch.FloatTensor)

Indices can be obtained using . See and for details.

return_dict (bool, optional) — Whether or not to return a instead of a plain tuple.

or tuple(torch.FloatTensor)

A or a tuple of torch.FloatTensor (if return_dict=False is passed or when config.return_dict=False) comprising various elements depending on the configuration () and inputs.

The forward method, overrides the __call__ special method.

config () — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the method to load the model weights.

This model inherits from . Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)

This model is also a PyTorch subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.

( input_ids: typing.Optional[torch.Tensor] = Noneattention_mask: typing.Optional[torch.Tensor] = Nonelangs: typing.Optional[torch.Tensor] = Nonetoken_type_ids: typing.Optional[torch.Tensor] = Noneposition_ids: typing.Optional[torch.Tensor] = Nonelengths: typing.Optional[torch.Tensor] = Nonecache: typing.Union[typing.Dict[str, torch.Tensor], NoneType] = Nonehead_mask: typing.Optional[torch.Tensor] = Noneinputs_embeds: typing.Optional[torch.Tensor] = Nonelabels: typing.Optional[torch.Tensor] = Noneoutput_attentions: typing.Optional[bool] = Noneoutput_hidden_states: typing.Optional[bool] = Nonereturn_dict: typing.Optional[bool] = None ) → or tuple(torch.FloatTensor)

Indices can be obtained using . See and for details.

return_dict (bool, optional) — Whether or not to return a instead of a plain tuple.

or tuple(torch.FloatTensor)

A or a tuple of torch.FloatTensor (if return_dict=False is passed or when config.return_dict=False) comprising various elements depending on the configuration () and inputs.

The forward method, overrides the __call__ special method.

config () — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the method to load the model weights.

This model inherits from . Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)

This model is also a PyTorch subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.

( input_ids: typing.Optional[torch.Tensor] = Noneattention_mask: typing.Optional[torch.Tensor] = Nonelangs: typing.Optional[torch.Tensor] = Nonetoken_type_ids: typing.Optional[torch.Tensor] = Noneposition_ids: typing.Optional[torch.Tensor] = Nonelengths: typing.Optional[torch.Tensor] = Nonecache: typing.Union[typing.Dict[str, torch.Tensor], NoneType] = Nonehead_mask: typing.Optional[torch.Tensor] = Noneinputs_embeds: typing.Optional[torch.Tensor] = Nonelabels: typing.Optional[torch.Tensor] = Noneoutput_attentions: typing.Optional[bool] = Noneoutput_hidden_states: typing.Optional[bool] = Nonereturn_dict: typing.Optional[bool] = None ) → or tuple(torch.FloatTensor)

Indices can be obtained using . See and for details.

return_dict (bool, optional) — Whether or not to return a instead of a plain tuple.

or tuple(torch.FloatTensor)

A or a tuple of torch.FloatTensor (if return_dict=False is passed or when config.return_dict=False) comprising various elements depending on the configuration () and inputs.

The forward method, overrides the __call__ special method.

config () — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the method to load the model weights.

This model inherits from . Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)

This model is also a PyTorch subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.

( input_ids: typing.Optional[torch.Tensor] = Noneattention_mask: typing.Optional[torch.Tensor] = Nonelangs: typing.Optional[torch.Tensor] = Nonetoken_type_ids: typing.Optional[torch.Tensor] = Noneposition_ids: typing.Optional[torch.Tensor] = Nonelengths: typing.Optional[torch.Tensor] = Nonecache: typing.Union[typing.Dict[str, torch.Tensor], NoneType] = Nonehead_mask: typing.Optional[torch.Tensor] = Noneinputs_embeds: typing.Optional[torch.Tensor] = Nonestart_positions: typing.Optional[torch.Tensor] = Noneend_positions: typing.Optional[torch.Tensor] = Noneoutput_attentions: typing.Optional[bool] = Noneoutput_hidden_states: typing.Optional[bool] = Nonereturn_dict: typing.Optional[bool] = None ) → or tuple(torch.FloatTensor)

Indices can be obtained using . See and for details.

return_dict (bool, optional) — Whether or not to return a instead of a plain tuple.

or tuple(torch.FloatTensor)

A or a tuple of torch.FloatTensor (if return_dict=False is passed or when config.return_dict=False) comprising various elements depending on the configuration () and inputs.

The forward method, overrides the __call__ special method.

A transformers.models.flaubert.modeling_flaubert.FlaubertForQuestionAnsweringOutput or a tuple of torch.FloatTensor (if return_dict=False is passed or when config.return_dict=False) comprising various elements depending on the configuration () and inputs.

config (): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the method to load the model weights.

The forward method, overrides the __call__ special method.

config () — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the method to load the model weights.

This model inherits from . Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)

This model is also a subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior.

Note that when creating models and layers with then you don’t need to worry about any of this, as you can just pass inputs like you would to any other Python function!

( input_ids: np.ndarray | tf.Tensor | None = Noneattention_mask: np.ndarray | tf.Tensor | None = Nonelangs: np.ndarray | tf.Tensor | None = Nonetoken_type_ids: np.ndarray | tf.Tensor | None = Noneposition_ids: np.ndarray | tf.Tensor | None = Nonelengths: np.ndarray | tf.Tensor | None = Nonecache: Optional[Dict[str, tf.Tensor]] = Nonehead_mask: np.ndarray | tf.Tensor | None = Noneinputs_embeds: tf.Tensor | None = Noneoutput_attentions: Optional[bool] = Noneoutput_hidden_states: Optional[bool] = Nonereturn_dict: Optional[bool] = Nonetraining: Optional[bool] = False ) → or tuple(tf.Tensor)

Indices can be obtained using . See and for details.

See usage examples detailed in the .

return_dict (bool, optional) — Whether or not to return a instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True.

or tuple(tf.Tensor)

A or a tuple of tf.Tensor (if return_dict=False is passed or when config.return_dict=False) comprising various elements depending on the configuration () and inputs.

The forward method, overrides the __call__ special method.

config () — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the method to load the model weights.

This model inherits from . Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)

This model is also a subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior.

Note that when creating models and layers with then you don’t need to worry about any of this, as you can just pass inputs like you would to any other Python function!

Indices can be obtained using . See and for details.

See usage examples detailed in the .

return_dict (bool, optional) — Whether or not to return a instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True.

A transformers.models.flaubert.modeling_tf_flaubert.TFFlaubertWithLMHeadModelOutput or a tuple of tf.Tensor (if return_dict=False is passed or when config.return_dict=False) comprising various elements depending on the configuration () and inputs.

The forward method, overrides the __call__ special method.

config () — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the method to load the model weights.

This model inherits from . Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)

This model is also a subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior.

Note that when creating models and layers with then you don’t need to worry about any of this, as you can just pass inputs like you would to any other Python function!

( input_ids: TFModelInputType | None = Noneattention_mask: np.ndarray | tf.Tensor | None = Nonelangs: np.ndarray | tf.Tensor | None = Nonetoken_type_ids: np.ndarray | tf.Tensor | None = Noneposition_ids: np.ndarray | tf.Tensor | None = Nonelengths: np.ndarray | tf.Tensor | None = Nonecache: Optional[Dict[str, tf.Tensor]] = Nonehead_mask: np.ndarray | tf.Tensor | None = Noneinputs_embeds: np.ndarray | tf.Tensor | None = Noneoutput_attentions: Optional[bool] = Noneoutput_hidden_states: Optional[bool] = Nonereturn_dict: Optional[bool] = Nonelabels: np.ndarray | tf.Tensor | None = Nonetraining: bool = False ) → or tuple(tf.Tensor)

Indices can be obtained using . See and for details.

See usage examples detailed in the .

return_dict (bool, optional) — Whether or not to return a instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True.

or tuple(tf.Tensor)

A or a tuple of tf.Tensor (if return_dict=False is passed or when config.return_dict=False) comprising various elements depending on the configuration () and inputs.

The forward method, overrides the __call__ special method.

config () — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the method to load the model weights.

This model inherits from . Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)

This model is also a subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior.

Note that when creating models and layers with then you don’t need to worry about any of this, as you can just pass inputs like you would to any other Python function!

( input_ids: TFModelInputType | None = Noneattention_mask: np.ndarray | tf.Tensor | None = Nonelangs: np.ndarray | tf.Tensor | None = Nonetoken_type_ids: np.ndarray | tf.Tensor | None = Noneposition_ids: np.ndarray | tf.Tensor | None = Nonelengths: np.ndarray | tf.Tensor | None = Nonecache: Optional[Dict[str, tf.Tensor]] = Nonehead_mask: np.ndarray | tf.Tensor | None = Noneinputs_embeds: np.ndarray | tf.Tensor | None = Noneoutput_attentions: Optional[bool] = Noneoutput_hidden_states: Optional[bool] = Nonereturn_dict: Optional[bool] = Nonelabels: np.ndarray | tf.Tensor | None = Nonetraining: bool = False ) → or tuple(tf.Tensor)

Indices can be obtained using . See and for details.

See usage examples detailed in the .

return_dict (bool, optional) — Whether or not to return a instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True.

or tuple(tf.Tensor)

A or a tuple of tf.Tensor (if return_dict=False is passed or when config.return_dict=False) comprising various elements depending on the configuration () and inputs.

The forward method, overrides the __call__ special method.

config () — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the method to load the model weights.

This model inherits from . Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)

This model is also a subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior.

Note that when creating models and layers with then you don’t need to worry about any of this, as you can just pass inputs like you would to any other Python function!

( input_ids: TFModelInputType | None = Noneattention_mask: np.ndarray | tf.Tensor | None = Nonelangs: np.ndarray | tf.Tensor | None = Nonetoken_type_ids: np.ndarray | tf.Tensor | None = Noneposition_ids: np.ndarray | tf.Tensor | None = Nonelengths: np.ndarray | tf.Tensor | None = Nonecache: Optional[Dict[str, tf.Tensor]] = Nonehead_mask: np.ndarray | tf.Tensor | None = Noneinputs_embeds: np.ndarray | tf.Tensor | None = Noneoutput_attentions: Optional[bool] = Noneoutput_hidden_states: Optional[bool] = Nonereturn_dict: Optional[bool] = Nonelabels: np.ndarray | tf.Tensor | None = Nonetraining: bool = False ) → or tuple(tf.Tensor)

Indices can be obtained using . See and for details.

See usage examples detailed in the .

return_dict (bool, optional) — Whether or not to return a instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True.

or tuple(tf.Tensor)

A or a tuple of tf.Tensor (if return_dict=False is passed or when config.return_dict=False) comprising various elements depending on the configuration () and inputs.

The forward method, overrides the __call__ special method.

config () — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the method to load the model weights.

This model inherits from . Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)

This model is also a subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior.

Note that when creating models and layers with then you don’t need to worry about any of this, as you can just pass inputs like you would to any other Python function!

( input_ids: TFModelInputType | None = Noneattention_mask: np.ndarray | tf.Tensor | None = Nonelangs: np.ndarray | tf.Tensor | None = Nonetoken_type_ids: np.ndarray | tf.Tensor | None = Noneposition_ids: np.ndarray | tf.Tensor | None = Nonelengths: np.ndarray | tf.Tensor | None = Nonecache: Optional[Dict[str, tf.Tensor]] = Nonehead_mask: np.ndarray | tf.Tensor | None = Noneinputs_embeds: np.ndarray | tf.Tensor | None = Noneoutput_attentions: Optional[bool] = Noneoutput_hidden_states: Optional[bool] = Nonereturn_dict: Optional[bool] = Nonestart_positions: np.ndarray | tf.Tensor | None = Noneend_positions: np.ndarray | tf.Tensor | None = Nonetraining: bool = False ) → or tuple(tf.Tensor)

Indices can be obtained using . See and for details.

See usage examples detailed in the .

return_dict (bool, optional) — Whether or not to return a instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True.

or tuple(tf.Tensor)

A or a tuple of tf.Tensor (if return_dict=False is passed or when config.return_dict=False) comprising various elements depending on the configuration () and inputs.

The forward method, overrides the __call__ special method.

🌍
🌍
🌍
<source>
FlaubertModel
TFFlaubertModel
the multilingual models page
FlaubertModel
TFFlaubertModel
flaubert/flaubert_base_uncased
PretrainedConfig
PretrainedConfig
<source>
PreTrainedTokenizer
<source>
input IDs
<source>
<source>
token type IDs
<source>
<source>
<source>
transformers.modeling_outputs.BaseModelOutput
AutoTokenizer
PreTrainedTokenizer.encode()
PreTrainedTokenizer.call()
What are input IDs?
What are attention masks?
What are token type IDs?
What are position IDs?
ModelOutput
transformers.modeling_outputs.BaseModelOutput
transformers.modeling_outputs.BaseModelOutput
FlaubertConfig
FlaubertModel
<source>
FlaubertConfig
from_pretrained()
PreTrainedModel
torch.nn.Module
<source>
transformers.modeling_outputs.MaskedLMOutput
AutoTokenizer
PreTrainedTokenizer.encode()
PreTrainedTokenizer.call()
What are input IDs?
What are attention masks?
What are token type IDs?
What are position IDs?
ModelOutput
transformers.modeling_outputs.MaskedLMOutput
transformers.modeling_outputs.MaskedLMOutput
FlaubertConfig
FlaubertWithLMHeadModel
<source>
FlaubertConfig
from_pretrained()
PreTrainedModel
torch.nn.Module
<source>
transformers.modeling_outputs.SequenceClassifierOutput
AutoTokenizer
PreTrainedTokenizer.encode()
PreTrainedTokenizer.call()
What are input IDs?
What are attention masks?
What are token type IDs?
What are position IDs?
ModelOutput
transformers.modeling_outputs.SequenceClassifierOutput
transformers.modeling_outputs.SequenceClassifierOutput
FlaubertConfig
FlaubertForSequenceClassification
<source>
FlaubertConfig
from_pretrained()
PreTrainedModel
torch.nn.Module
<source>
transformers.modeling_outputs.MultipleChoiceModelOutput
AutoTokenizer
PreTrainedTokenizer.encode()
PreTrainedTokenizer.call()
What are input IDs?
What are attention masks?
What are token type IDs?
What are position IDs?
ModelOutput
transformers.modeling_outputs.MultipleChoiceModelOutput
transformers.modeling_outputs.MultipleChoiceModelOutput
FlaubertConfig
FlaubertForMultipleChoice
<source>
FlaubertConfig
from_pretrained()
PreTrainedModel
torch.nn.Module
<source>
transformers.modeling_outputs.TokenClassifierOutput
AutoTokenizer
PreTrainedTokenizer.encode()
PreTrainedTokenizer.call()
What are input IDs?
What are attention masks?
What are token type IDs?
What are position IDs?
ModelOutput
transformers.modeling_outputs.TokenClassifierOutput
transformers.modeling_outputs.TokenClassifierOutput
FlaubertConfig
FlaubertForTokenClassification
<source>
FlaubertConfig
from_pretrained()
PreTrainedModel
torch.nn.Module
<source>
transformers.modeling_outputs.QuestionAnsweringModelOutput
AutoTokenizer
PreTrainedTokenizer.encode()
PreTrainedTokenizer.call()
What are input IDs?
What are attention masks?
What are token type IDs?
What are position IDs?
ModelOutput
transformers.modeling_outputs.QuestionAnsweringModelOutput
transformers.modeling_outputs.QuestionAnsweringModelOutput
FlaubertConfig
FlaubertForQuestionAnsweringSimple
<source>
<source>
FlaubertConfig
FlaubertConfig
from_pretrained()
FlaubertForQuestionAnswering
<source>
FlaubertConfig
from_pretrained()
TFPreTrainedModel
tf.keras.Model
subclassing
<source>
transformers.modeling_tf_outputs.TFBaseModelOutput
AutoTokenizer
PreTrainedTokenizer.call()
PreTrainedTokenizer.encode()
What are input IDs?
What are attention masks?
multilingual documentation
What are token type IDs?
What are position IDs?
ModelOutput
transformers.modeling_tf_outputs.TFBaseModelOutput
transformers.modeling_tf_outputs.TFBaseModelOutput
FlaubertConfig
TFFlaubertModel
<source>
FlaubertConfig
from_pretrained()
TFPreTrainedModel
tf.keras.Model
subclassing
<source>
AutoTokenizer
PreTrainedTokenizer.call()
PreTrainedTokenizer.encode()
What are input IDs?
What are attention masks?
multilingual documentation
What are token type IDs?
What are position IDs?
ModelOutput
FlaubertConfig
TFFlaubertWithLMHeadModel
<source>
FlaubertConfig
from_pretrained()
TFPreTrainedModel
tf.keras.Model
subclassing
<source>
transformers.modeling_tf_outputs.TFSequenceClassifierOutput
AutoTokenizer
PreTrainedTokenizer.call()
PreTrainedTokenizer.encode()
What are input IDs?
What are attention masks?
multilingual documentation
What are token type IDs?
What are position IDs?
ModelOutput
transformers.modeling_tf_outputs.TFSequenceClassifierOutput
transformers.modeling_tf_outputs.TFSequenceClassifierOutput
FlaubertConfig
TFFlaubertForSequenceClassification
<source>
FlaubertConfig
from_pretrained()
TFPreTrainedModel
tf.keras.Model
subclassing
<source>
transformers.modeling_tf_outputs.TFMultipleChoiceModelOutput
AutoTokenizer
PreTrainedTokenizer.call()
PreTrainedTokenizer.encode()
What are input IDs?
What are attention masks?
multilingual documentation
What are token type IDs?
What are position IDs?
ModelOutput
transformers.modeling_tf_outputs.TFMultipleChoiceModelOutput
transformers.modeling_tf_outputs.TFMultipleChoiceModelOutput
FlaubertConfig
TFFlaubertForMultipleChoice
<source>
FlaubertConfig
from_pretrained()
TFPreTrainedModel
tf.keras.Model
subclassing
<source>
transformers.modeling_tf_outputs.TFTokenClassifierOutput
AutoTokenizer
PreTrainedTokenizer.call()
PreTrainedTokenizer.encode()
What are input IDs?
What are attention masks?
multilingual documentation
What are token type IDs?
What are position IDs?
ModelOutput
transformers.modeling_tf_outputs.TFTokenClassifierOutput
transformers.modeling_tf_outputs.TFTokenClassifierOutput
FlaubertConfig
TFFlaubertForTokenClassification
<source>
FlaubertConfig
from_pretrained()
TFPreTrainedModel
tf.keras.Model
subclassing
<source>
transformers.modeling_tf_outputs.TFQuestionAnsweringModelOutput
AutoTokenizer
PreTrainedTokenizer.call()
PreTrainedTokenizer.encode()
What are input IDs?
What are attention masks?
multilingual documentation
What are token type IDs?
What are position IDs?
ModelOutput
transformers.modeling_tf_outputs.TFQuestionAnsweringModelOutput
transformers.modeling_tf_outputs.TFQuestionAnsweringModelOutput
FlaubertConfig
TFFlaubertForQuestionAnsweringSimple
FlauBERT: Unsupervised Language Model Pre-training for French
formiel
here
Text classification task guide
Token classification task guide
Question answering task guide
Masked language modeling task guide
Multiple choice task guide