CLIP
Last updated
Last updated
The CLIP model was proposed in by Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, Ilya Sutskever. CLIP (Contrastive Language-Image Pre-Training) is a neural network trained on a variety of (image, text) pairs. It can be instructed in natural language to predict the most relevant text snippet, given an image, without directly optimizing for the task, similarly to the zero-shot capabilities of GPT-2 and 3.
The abstract from the paper is the following:
State-of-the-art computer vision systems are trained to predict a fixed set of predetermined object categories. This restricted form of supervision limits their generality and usability since additional labeled data is needed to specify any other visual concept. Learning directly from raw text about images is a promising alternative which leverages a much broader source of supervision. We demonstrate that the simple pre-training task of predicting which caption goes with which image is an efficient and scalable way to learn SOTA image representations from scratch on a dataset of 400 million (image, text) pairs collected from the internet. After pre-training, natural language is used to reference learned visual concepts (or describe new ones) enabling zero-shot transfer of the model to downstream tasks. We study the performance of this approach by benchmarking on over 30 different existing computer vision datasets, spanning tasks such as OCR, action recognition in videos, geo-localization, and many types of fine-grained object classification. The model transfers non-trivially to most tasks and is often competitive with a fully supervised baseline without the need for any dataset specific training. For instance, we match the accuracy of the original ResNet-50 on ImageNet zero-shot without needing to use any of the 1.28 million training examples it was trained on. We release our code and pre-trained model weights at this https URL.
CLIP is a multi-modal vision and language model. It can be used for image-text similarity and for zero-shot image classification. CLIP uses a ViT like transformer to get visual features and a causal language model to get the text features. Both the text and visual features are then projected to a latent space with identical dimension. The dot product between the projected image and text features is then used as a similar score.
To feed images to the Transformer encoder, each image is split into a sequence of fixed-size non-overlapping patches, which are then linearly embedded. A [CLS] token is added to serve as representation of an entire image. The authors also add absolute position embeddings, and feed the resulting sequence of vectors to a standard Transformer encoder. The can be used to resize (or rescale) and normalize images for the model.
The is used to encode the text. The wraps and into a single instance to both encode the text and prepare the images. The following example shows how to get the image-text similarity scores using and .
Copied
A list of official BOINC AI and community (indicated by 🌎) resources to help you get started with CLIP.
If you’re interested in submitting a resource to be included here, please feel free to open a Pull Request and we will review it. The resource should ideally demonstrate something new instead of duplicating an existing resource.
( text_config = Nonevision_config = Noneprojection_dim = 512logit_scale_init_value = 2.6592**kwargs )
Parameters
projection_dim (int
, optional, defaults to 512) — Dimentionality of text and vision projection layers.
logit_scale_init_value (float
, optional, defaults to 2.6592) — The inital value of the logit_scale paramter. Default is used as per the original CLIP implementation.
kwargs (optional) — Dictionary of keyword arguments.
Example:
Copied
from_text_vision_configs
Returns
An instance of a configuration object
( vocab_size = 49408hidden_size = 512intermediate_size = 2048projection_dim = 512num_hidden_layers = 12num_attention_heads = 8max_position_embeddings = 77hidden_act = 'quick_gelu'layer_norm_eps = 1e-05attention_dropout = 0.0initializer_range = 0.02initializer_factor = 1.0pad_token_id = 1bos_token_id = 49406eos_token_id = 49407**kwargs )
Parameters
hidden_size (int
, optional, defaults to 512) — Dimensionality of the encoder layers and the pooler layer.
intermediate_size (int
, optional, defaults to 2048) — Dimensionality of the “intermediate” (i.e., feed-forward) layer in the Transformer encoder.
num_hidden_layers (int
, optional, defaults to 12) — Number of hidden layers in the Transformer encoder.
num_attention_heads (int
, optional, defaults to 8) — Number of attention heads for each attention layer in the Transformer encoder.
max_position_embeddings (int
, optional, defaults to 77) — The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048).
hidden_act (str
or function
, optional, defaults to "quick_gelu"
) — The non-linear activation function (function or string) in the encoder and pooler. If string, "gelu"
, "relu"
, "selu"
and "gelu_new"
"quick_gelu"
are supported.
layer_norm_eps (float
, optional, defaults to 1e-5) — The epsilon used by the layer normalization layers.
attention_dropout (float
, optional, defaults to 0.0) — The dropout ratio for the attention probabilities.
initializer_range (float
, optional, defaults to 0.02) — The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
initializer_factor (float
, optional, defaults to 1) — A factor for initializing all weight matrices (should be kept to 1, used internally for initialization testing).
Example:
Copied
( hidden_size = 768intermediate_size = 3072projection_dim = 512num_hidden_layers = 12num_attention_heads = 12num_channels = 3image_size = 224patch_size = 32hidden_act = 'quick_gelu'layer_norm_eps = 1e-05attention_dropout = 0.0initializer_range = 0.02initializer_factor = 1.0**kwargs )
Parameters
hidden_size (int
, optional, defaults to 768) — Dimensionality of the encoder layers and the pooler layer.
intermediate_size (int
, optional, defaults to 3072) — Dimensionality of the “intermediate” (i.e., feed-forward) layer in the Transformer encoder.
num_hidden_layers (int
, optional, defaults to 12) — Number of hidden layers in the Transformer encoder.
num_attention_heads (int
, optional, defaults to 12) — Number of attention heads for each attention layer in the Transformer encoder.
image_size (int
, optional, defaults to 224) — The size (resolution) of each image.
patch_size (int
, optional, defaults to 32) — The size (resolution) of each patch.
hidden_act (str
or function
, optional, defaults to "quick_gelu"
) — The non-linear activation function (function or string) in the encoder and pooler. If string, "gelu"
, "relu"
, "selu"
and "gelu_new"
`"quick_gelu"
are supported.
layer_norm_eps (float
, optional, defaults to 1e-5) — The epsilon used by the layer normalization layers.
attention_dropout (float
, optional, defaults to 0.0) — The dropout ratio for the attention probabilities.
initializer_range (float
, optional, defaults to 0.02) — The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
initializer_factor (float
, optional, defaults to 1) — A factor for initializing all weight matrices (should be kept to 1, used internally for initialization testing).
Example:
Copied
( vocab_filemerges_fileerrors = 'replace'unk_token = '<|endoftext|>'bos_token = '<|startoftext|>'eos_token = '<|endoftext|>'pad_token = '<|endoftext|>'**kwargs )
Parameters
vocab_file (str
) — Path to the vocabulary file.
merges_file (str
) — Path to the merges file.
unk_token (str
, optional, defaults to <|endoftext|>
) — The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead.
bos_token (str
, optional, defaults to <|startoftext|>
) — The beginning of sequence token.
eos_token (str
, optional, defaults to <|endoftext|>
) — The end of sequence token.
Construct a CLIP tokenizer. Based on byte-level Byte-Pair-Encoding.
build_inputs_with_special_tokens
( token_ids_0: typing.List[int]token_ids_1: typing.Optional[typing.List[int]] = None ) → List[int]
Parameters
token_ids_0 (List[int]
) — List of IDs to which the special tokens will be added.
token_ids_1 (List[int]
, optional) — Optional second list of IDs for sequence pairs.
Returns
List[int]
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. A CLIP sequence has the following format:
single sequence: <|startoftext|> X <|endoftext|>
Pairs of sequences are not the expected use case, but they will be handled without a separator.
get_special_tokens_mask
( token_ids_0: typing.List[int]token_ids_1: typing.Optional[typing.List[int]] = Nonealready_has_special_tokens: bool = False ) → List[int]
Parameters
token_ids_0 (List[int]
) — List of IDs.
token_ids_1 (List[int]
, optional) — Optional second list of IDs for sequence pairs.
already_has_special_tokens (bool
, optional, defaults to False
) — Whether or not the token list is already formatted with special tokens for the model.
Returns
List[int]
A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer prepare_for_model
method.
create_token_type_ids_from_sequences
( token_ids_0: typing.List[int]token_ids_1: typing.Optional[typing.List[int]] = None ) → List[int]
Parameters
token_ids_0 (List[int]
) — List of IDs.
token_ids_1 (List[int]
, optional) — Optional second list of IDs for sequence pairs.
Returns
List[int]
List of zeros.
Create a mask from the two sequences passed. CLIP does not make use of token type ids, therefore a list of zeros is returned.
save_vocabulary
( save_directory: strfilename_prefix: typing.Optional[str] = None )
( vocab_file = Nonemerges_file = Nonetokenizer_file = Noneunk_token = '<|endoftext|>'bos_token = '<|startoftext|>'eos_token = '<|endoftext|>'pad_token = '<|endoftext|>'**kwargs )
Parameters
vocab_file (str
) — Path to the vocabulary file.
merges_file (str
) — Path to the merges file.
unk_token (str
, optional, defaults to <|endoftext|>
) — The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead.
bos_token (str
, optional, defaults to <|startoftext|>
) — The beginning of sequence token.
eos_token (str
, optional, defaults to <|endoftext|>
) — The end of sequence token.
Construct a “fast” CLIP tokenizer (backed by BOINC AI’s tokenizers library). Based on byte-level Byte-Pair-Encoding.
build_inputs_with_special_tokens
( token_ids_0: typing.List[int]token_ids_1: typing.Optional[typing.List[int]] = None ) → List[int]
Parameters
token_ids_0 (List[int]
) — List of IDs to which the special tokens will be added.
token_ids_1 (List[int]
, optional) — Optional second list of IDs for sequence pairs.
Returns
List[int]
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. A CLIP sequence has the following format:
single sequence: <|startoftext|> X <|endoftext|>
Pairs of sequences are not the expected use case, but they will be handled without a separator.
create_token_type_ids_from_sequences
( token_ids_0: typing.List[int]token_ids_1: typing.Optional[typing.List[int]] = None ) → List[int]
Parameters
token_ids_0 (List[int]
) — List of IDs.
token_ids_1 (List[int]
, optional) — Optional second list of IDs for sequence pairs.
Returns
List[int]
List of zeros.
Create a mask from the two sequences passed. CLIP does not make use of token type ids, therefore a list of zeros is returned.
( do_resize: bool = Truesize: typing.Dict[str, int] = Noneresample: Resampling = <Resampling.BICUBIC: 3>do_center_crop: bool = Truecrop_size: typing.Dict[str, int] = Nonedo_rescale: bool = Truerescale_factor: typing.Union[int, float] = 0.00392156862745098do_normalize: bool = Trueimage_mean: typing.Union[float, typing.List[float], NoneType] = Noneimage_std: typing.Union[float, typing.List[float], NoneType] = Nonedo_convert_rgb: bool = True**kwargs )
Parameters
do_resize (bool
, optional, defaults to True
) — Whether to resize the image’s (height, width) dimensions to the specified size
. Can be overridden by do_resize
in the preprocess
method.
size (Dict[str, int]
optional, defaults to {"shortest_edge" -- 224}
): Size of the image after resizing. The shortest edge of the image is resized to size[“shortest_edge”], with the longest edge resized to keep the input aspect ratio. Can be overridden by size
in the preprocess
method.
resample (PILImageResampling
, optional, defaults to PILImageResampling.BICUBIC
) — Resampling filter to use if resizing the image. Can be overridden by resample
in the preprocess
method.
do_center_crop (bool
, optional, defaults to True
) — Whether to center crop the image to the specified crop_size
. Can be overridden by do_center_crop
in the preprocess
method.
crop_size (Dict[str, int]
optional, defaults to 224) — Size of the output image after applying center_crop
. Can be overridden by crop_size
in the preprocess
method.
do_rescale (bool
, optional, defaults to True
) — Whether to rescale the image by the specified scale rescale_factor
. Can be overridden by do_rescale
in the preprocess
method.
rescale_factor (int
or float
, optional, defaults to 1/255
) — Scale factor to use if rescaling the image. Can be overridden by rescale_factor
in the preprocess
method. do_normalize — Whether to normalize the image. Can be overridden by do_normalize
in the preprocess
method.
image_mean (float
or List[float]
, optional, defaults to [0.48145466, 0.4578275, 0.40821073]
) — Mean to use if normalizing the image. This is a float or list of floats the length of the number of channels in the image. Can be overridden by the image_mean
parameter in the preprocess
method.
image_std (float
or List[float]
, optional, defaults to [0.26862954, 0.26130258, 0.27577711]
) — Standard deviation to use if normalizing the image. This is a float or list of floats the length of the number of channels in the image. Can be overridden by the image_std
parameter in the preprocess
method. Can be overridden by the image_std
parameter in the preprocess
method.
do_convert_rgb (bool
, optional, defaults to True
) — Whether to convert the image to RGB.
Constructs a CLIP image processor.
preprocess
( images: typing.Union[ForwardRef('PIL.Image.Image'), numpy.ndarray, ForwardRef('torch.Tensor'), typing.List[ForwardRef('PIL.Image.Image')], typing.List[numpy.ndarray], typing.List[ForwardRef('torch.Tensor')]]do_resize: bool = Nonesize: typing.Dict[str, int] = Noneresample: Resampling = Nonedo_center_crop: bool = Nonecrop_size: int = Nonedo_rescale: bool = Nonerescale_factor: float = Nonedo_normalize: bool = Noneimage_mean: typing.Union[float, typing.List[float], NoneType] = Noneimage_std: typing.Union[float, typing.List[float], NoneType] = Nonedo_convert_rgb: bool = Nonereturn_tensors: typing.Union[str, transformers.utils.generic.TensorType, NoneType] = Nonedata_format: typing.Optional[transformers.image_utils.ChannelDimension] = <ChannelDimension.FIRST: 'channels_first'>input_data_format: typing.Union[str, transformers.image_utils.ChannelDimension, NoneType] = None**kwargs )
Parameters
images (ImageInput
) — Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If passing in images with pixel values between 0 and 1, set do_rescale=False
.
do_resize (bool
, optional, defaults to self.do_resize
) — Whether to resize the image.
size (Dict[str, int]
, optional, defaults to self.size
) — Size of the image after resizing. Shortest edge of the image is resized to size[“shortest_edge”], with the longest edge resized to keep the input aspect ratio.
resample (int
, optional, defaults to self.resample
) — Resampling filter to use if resizing the image. This can be one of the enum PILImageResampling
. Only has an effect if do_resize
is set to True
.
do_center_crop (bool
, optional, defaults to self.do_center_crop
) — Whether to center crop the image.
crop_size (Dict[str, int]
, optional, defaults to self.crop_size
) — Size of the center crop. Only has an effect if do_center_crop
is set to True
.
do_rescale (bool
, optional, defaults to self.do_rescale
) — Whether to rescale the image.
rescale_factor (float
, optional, defaults to self.rescale_factor
) — Rescale factor to rescale the image by if do_rescale
is set to True
.
do_normalize (bool
, optional, defaults to self.do_normalize
) — Whether to normalize the image.
image_mean (float
or List[float]
, optional, defaults to self.image_mean
) — Image mean to use for normalization. Only has an effect if do_normalize
is set to True
.
image_std (float
or List[float]
, optional, defaults to self.image_std
) — Image standard deviation to use for normalization. Only has an effect if do_normalize
is set to True
.
do_convert_rgb (bool
, optional, defaults to self.do_convert_rgb
) — Whether to convert the image to RGB.
return_tensors (str
or TensorType
, optional) — The type of tensors to return. Can be one of:
Unset: Return a list of np.ndarray
.
TensorType.TENSORFLOW
or 'tf'
: Return a batch of type tf.Tensor
.
TensorType.PYTORCH
or 'pt'
: Return a batch of type torch.Tensor
.
TensorType.NUMPY
or 'np'
: Return a batch of type np.ndarray
.
TensorType.JAX
or 'jax'
: Return a batch of type jax.numpy.ndarray
.
data_format (ChannelDimension
or str
, optional, defaults to ChannelDimension.FIRST
) — The channel dimension format for the output image. Can be one of:
"channels_first"
or ChannelDimension.FIRST
: image in (num_channels, height, width) format.
"channels_last"
or ChannelDimension.LAST
: image in (height, width, num_channels) format.
Unset: Use the channel dimension format of the input image.
input_data_format (ChannelDimension
or str
, optional) — The channel dimension format for the input image. If unset, the channel dimension format is inferred from the input image. Can be one of:
"channels_first"
or ChannelDimension.FIRST
: image in (num_channels, height, width) format.
"channels_last"
or ChannelDimension.LAST
: image in (height, width, num_channels) format.
"none"
or ChannelDimension.NONE
: image in (height, width) format.
Preprocess an image or batch of images.
( *args**kwargs )
( image_processor = Nonetokenizer = None**kwargs )
Parameters
Constructs a CLIP processor which wraps a CLIP image processor and a CLIP tokenizer into a single processor.
batch_decode
( *args**kwargs )
decode
( *args**kwargs )
( config: CLIPConfig )
Parameters
forward
( input_ids: typing.Optional[torch.LongTensor] = Nonepixel_values: typing.Optional[torch.FloatTensor] = Noneattention_mask: typing.Optional[torch.Tensor] = Noneposition_ids: typing.Optional[torch.LongTensor] = Nonereturn_loss: typing.Optional[bool] = Noneoutput_attentions: typing.Optional[bool] = Noneoutput_hidden_states: typing.Optional[bool] = Nonereturn_dict: typing.Optional[bool] = None ) → transformers.models.clip.modeling_clip.CLIPOutput
or tuple(torch.FloatTensor)
Parameters
input_ids (torch.LongTensor
of shape (batch_size, sequence_length)
) — Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it.
attention_mask (torch.Tensor
of shape (batch_size, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]
:
1 for tokens that are not masked,
0 for tokens that are masked.
position_ids (torch.LongTensor
of shape (batch_size, sequence_length)
, optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1]
.
return_loss (bool
, optional) — Whether or not to return the contrastive loss.
output_attentions (bool
, optional) — Whether or not to return the attentions tensors of all attention layers. See attentions
under returned tensors for more detail.
output_hidden_states (bool
, optional) — Whether or not to return the hidden states of all layers. See hidden_states
under returned tensors for more detail.
Returns
transformers.models.clip.modeling_clip.CLIPOutput
or tuple(torch.FloatTensor)
A transformers.models.clip.modeling_clip.CLIPOutput
or a tuple of torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various elements depending on the configuration (<class 'transformers.models.clip.configuration_clip.CLIPConfig'>
) and inputs.
loss (torch.FloatTensor
of shape (1,)
, optional, returned when return_loss
is True
) — Contrastive loss for image-text similarity.
logits_per_image:(torch.FloatTensor
of shape (image_batch_size, text_batch_size)
) — The scaled dot product scores between image_embeds
and text_embeds
. This represents the image-text similarity scores.
logits_per_text:(torch.FloatTensor
of shape (text_batch_size, image_batch_size)
) — The scaled dot product scores between text_embeds
and image_embeds
. This represents the text-image similarity scores.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.
Examples:
Copied
get_text_features
( input_ids: typing.Optional[torch.Tensor] = Noneattention_mask: typing.Optional[torch.Tensor] = Noneposition_ids: typing.Optional[torch.Tensor] = Noneoutput_attentions: typing.Optional[bool] = Noneoutput_hidden_states: typing.Optional[bool] = Nonereturn_dict: typing.Optional[bool] = None ) → text_features (torch.FloatTensor
of shape (batch_size, output_dim
)
Parameters
input_ids (torch.LongTensor
of shape (batch_size, sequence_length)
) — Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it.
attention_mask (torch.Tensor
of shape (batch_size, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]
:
1 for tokens that are not masked,
0 for tokens that are masked.
position_ids (torch.LongTensor
of shape (batch_size, sequence_length)
, optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1]
.
output_attentions (bool
, optional) — Whether or not to return the attentions tensors of all attention layers. See attentions
under returned tensors for more detail.
output_hidden_states (bool
, optional) — Whether or not to return the hidden states of all layers. See hidden_states
under returned tensors for more detail.
Returns
text_features (torch.FloatTensor
of shape (batch_size, output_dim
)
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.
Examples:
Copied
get_image_features
( pixel_values: typing.Optional[torch.FloatTensor] = Noneoutput_attentions: typing.Optional[bool] = Noneoutput_hidden_states: typing.Optional[bool] = Nonereturn_dict: typing.Optional[bool] = None ) → image_features (torch.FloatTensor
of shape (batch_size, output_dim
)
Parameters
output_attentions (bool
, optional) — Whether or not to return the attentions tensors of all attention layers. See attentions
under returned tensors for more detail.
output_hidden_states (bool
, optional) — Whether or not to return the hidden states of all layers. See hidden_states
under returned tensors for more detail.
Returns
image_features (torch.FloatTensor
of shape (batch_size, output_dim
)
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.
Examples:
Copied
( config: CLIPTextConfig )
Parameters
forward
Parameters
input_ids (torch.LongTensor
of shape (batch_size, sequence_length)
) — Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it.
attention_mask (torch.Tensor
of shape (batch_size, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]
:
1 for tokens that are not masked,
0 for tokens that are masked.
position_ids (torch.LongTensor
of shape (batch_size, sequence_length)
, optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1]
.
output_attentions (bool
, optional) — Whether or not to return the attentions tensors of all attention layers. See attentions
under returned tensors for more detail.
output_hidden_states (bool
, optional) — Whether or not to return the hidden states of all layers. See hidden_states
under returned tensors for more detail.
Returns
last_hidden_state (torch.FloatTensor
of shape (batch_size, sequence_length, hidden_size)
) — Sequence of hidden-states at the output of the last layer of the model.
pooler_output (torch.FloatTensor
of shape (batch_size, hidden_size)
) — Last layer hidden-state of the first token of the sequence (classification token) after further processing through the layers used for the auxiliary pretraining task. E.g. for BERT-family of models, this returns the classification token after processing through a linear layer and a tanh activation function. The linear layer weights are trained from the next sentence prediction (classification) objective during pretraining.
hidden_states (tuple(torch.FloatTensor)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of torch.FloatTensor
(one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size)
.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (tuple(torch.FloatTensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of torch.FloatTensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.
Examples:
Copied
( config: CLIPTextConfig )
Parameters
CLIP Text Model with a projection layer on top (a linear layer on top of the pooled output).
forward
( input_ids: typing.Optional[torch.Tensor] = Noneattention_mask: typing.Optional[torch.Tensor] = Noneposition_ids: typing.Optional[torch.Tensor] = Noneoutput_attentions: typing.Optional[bool] = Noneoutput_hidden_states: typing.Optional[bool] = Nonereturn_dict: typing.Optional[bool] = None ) → transformers.models.clip.modeling_clip.CLIPTextModelOutput
or tuple(torch.FloatTensor)
Parameters
input_ids (torch.LongTensor
of shape (batch_size, sequence_length)
) — Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it.
attention_mask (torch.Tensor
of shape (batch_size, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]
:
1 for tokens that are not masked,
0 for tokens that are masked.
position_ids (torch.LongTensor
of shape (batch_size, sequence_length)
, optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1]
.
output_attentions (bool
, optional) — Whether or not to return the attentions tensors of all attention layers. See attentions
under returned tensors for more detail.
output_hidden_states (bool
, optional) — Whether or not to return the hidden states of all layers. See hidden_states
under returned tensors for more detail.
Returns
transformers.models.clip.modeling_clip.CLIPTextModelOutput
or tuple(torch.FloatTensor)
A transformers.models.clip.modeling_clip.CLIPTextModelOutput
or a tuple of torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various elements depending on the configuration (<class 'transformers.models.clip.configuration_clip.CLIPTextConfig'>
) and inputs.
text_embeds (torch.FloatTensor
of shape (batch_size, output_dim)
optional returned when model is initialized with with_projection=True
) — The text embeddings obtained by applying the projection layer to the pooler_output.
last_hidden_state (torch.FloatTensor
of shape (batch_size, sequence_length, hidden_size)
) — Sequence of hidden-states at the output of the last layer of the model.
hidden_states (tuple(torch.FloatTensor)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of torch.FloatTensor
(one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size)
.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (tuple(torch.FloatTensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of torch.FloatTensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.
Examples:
Copied
( config: CLIPVisionConfig )
Parameters
CLIP Vision Model with a projection layer on top (a linear layer on top of the pooled output).
forward
( pixel_values: typing.Optional[torch.FloatTensor] = Noneoutput_attentions: typing.Optional[bool] = Noneoutput_hidden_states: typing.Optional[bool] = Nonereturn_dict: typing.Optional[bool] = None ) → transformers.models.clip.modeling_clip.CLIPVisionModelOutput
or tuple(torch.FloatTensor)
Parameters
output_attentions (bool
, optional) — Whether or not to return the attentions tensors of all attention layers. See attentions
under returned tensors for more detail.
output_hidden_states (bool
, optional) — Whether or not to return the hidden states of all layers. See hidden_states
under returned tensors for more detail.
Returns
transformers.models.clip.modeling_clip.CLIPVisionModelOutput
or tuple(torch.FloatTensor)
A transformers.models.clip.modeling_clip.CLIPVisionModelOutput
or a tuple of torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various elements depending on the configuration (<class 'transformers.models.clip.configuration_clip.CLIPVisionConfig'>
) and inputs.
image_embeds (torch.FloatTensor
of shape (batch_size, output_dim)
optional returned when model is initialized with with_projection=True
) — The image embeddings obtained by applying the projection layer to the pooler_output.
last_hidden_state (torch.FloatTensor
of shape (batch_size, sequence_length, hidden_size)
) — Sequence of hidden-states at the output of the last layer of the model.
hidden_states (tuple(torch.FloatTensor)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of torch.FloatTensor
(one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size)
.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (tuple(torch.FloatTensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of torch.FloatTensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.
Examples:
Copied
( config: CLIPVisionConfig )
Parameters
forward
Parameters
output_attentions (bool
, optional) — Whether or not to return the attentions tensors of all attention layers. See attentions
under returned tensors for more detail.
output_hidden_states (bool
, optional) — Whether or not to return the hidden states of all layers. See hidden_states
under returned tensors for more detail.
Returns
last_hidden_state (torch.FloatTensor
of shape (batch_size, sequence_length, hidden_size)
) — Sequence of hidden-states at the output of the last layer of the model.
pooler_output (torch.FloatTensor
of shape (batch_size, hidden_size)
) — Last layer hidden-state of the first token of the sequence (classification token) after further processing through the layers used for the auxiliary pretraining task. E.g. for BERT-family of models, this returns the classification token after processing through a linear layer and a tanh activation function. The linear layer weights are trained from the next sentence prediction (classification) objective during pretraining.
hidden_states (tuple(torch.FloatTensor)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of torch.FloatTensor
(one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size)
.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (tuple(torch.FloatTensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of torch.FloatTensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.
Examples:
Copied
( *args**kwargs )
Parameters
TensorFlow models and layers in transformers
accept two formats as input:
having all inputs as keyword arguments (like PyTorch models), or
having all inputs as a list, tuple or dict in the first positional argument.
The reason the second format is supported is that Keras methods prefer this format when passing inputs to models and layers. Because of this support, when using methods like model.fit()
things should “just work” for you - just pass your inputs and labels in any format that model.fit()
supports! If, however, you want to use the second format outside of Keras methods like fit()
and predict()
, such as when creating your own layers or models with the Keras Functional
API, there are three possibilities you can use to gather all the input Tensors in the first positional argument:
a single Tensor with input_ids
only and nothing else: model(input_ids)
a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: model([input_ids, attention_mask])
or model([input_ids, attention_mask, token_type_ids])
a dictionary with one or several input Tensors associated to the input names given in the docstring: model({"input_ids": input_ids, "token_type_ids": token_type_ids})
call
( input_ids: TFModelInputType | None = Nonepixel_values: TFModelInputType | None = Noneattention_mask: np.ndarray | tf.Tensor | None = Noneposition_ids: np.ndarray | tf.Tensor | None = Nonereturn_loss: Optional[bool] = Noneoutput_attentions: Optional[bool] = Noneoutput_hidden_states: Optional[bool] = Nonereturn_dict: Optional[bool] = Nonetraining: bool = False ) → transformers.models.clip.modeling_tf_clip.TFCLIPOutput
or tuple(tf.Tensor)
Parameters
input_ids (np.ndarray
, tf.Tensor
, List[tf.Tensor]
`Dict[str, tf.Tensor]
or Dict[str, np.ndarray]
and each example must have the shape (batch_size, sequence_length)
) — Indices of input sequence tokens in the vocabulary.
attention_mask (np.ndarray
or tf.Tensor
of shape (batch_size, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]
:
1 for tokens that are not masked,
0 for tokens that are masked.
position_ids (np.ndarray
or tf.Tensor
of shape (batch_size, sequence_length)
, optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1]
.
return_loss (bool
, optional) — Whether or not to return the contrastive loss.
output_attentions (bool
, optional) — Whether or not to return the attentions tensors of all attention layers. See attentions
under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead.
output_hidden_states (bool
, optional) — Whether or not to return the hidden states of all layers. See hidden_states
under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead.
training (bool
, optional, defaults to `False“) — Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation).
Returns
transformers.models.clip.modeling_tf_clip.TFCLIPOutput
or tuple(tf.Tensor)
A transformers.models.clip.modeling_tf_clip.TFCLIPOutput
or a tuple of tf.Tensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various elements depending on the configuration (<class 'transformers.models.clip.configuration_clip.CLIPConfig'>
) and inputs.
loss (tf.Tensor
of shape (1,)
, optional, returned when return_loss
is True
) — Contrastive loss for image-text similarity.
logits_per_image:(tf.Tensor
of shape (image_batch_size, text_batch_size)
) — The scaled dot product scores between image_embeds
and text_embeds
. This represents the image-text similarity scores.
logits_per_text:(tf.Tensor
of shape (text_batch_size, image_batch_size)
) — The scaled dot product scores between text_embeds
and image_embeds
. This represents the text-image similarity scores.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.
Examples:
Copied
get_text_features
( input_ids: TFModelInputType | None = Noneattention_mask: np.ndarray | tf.Tensor | None = Noneposition_ids: np.ndarray | tf.Tensor | None = Noneoutput_attentions: Optional[bool] = Noneoutput_hidden_states: Optional[bool] = Nonereturn_dict: Optional[bool] = Nonetraining: bool = False ) → text_features (tf.Tensor
of shape (batch_size, output_dim
)
Parameters
input_ids (np.ndarray
, tf.Tensor
, List[tf.Tensor]
`Dict[str, tf.Tensor]
or Dict[str, np.ndarray]
and each example must have the shape (batch_size, sequence_length)
) — Indices of input sequence tokens in the vocabulary.
attention_mask (np.ndarray
or tf.Tensor
of shape (batch_size, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]
:
1 for tokens that are not masked,
0 for tokens that are masked.
position_ids (np.ndarray
or tf.Tensor
of shape (batch_size, sequence_length)
, optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1]
.
output_attentions (bool
, optional) — Whether or not to return the attentions tensors of all attention layers. See attentions
under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead.
output_hidden_states (bool
, optional) — Whether or not to return the hidden states of all layers. See hidden_states
under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead.
training (bool
, optional, defaults to `False“) — Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation).
Returns
text_features (tf.Tensor
of shape (batch_size, output_dim
)
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.
Examples:
Copied
get_image_features
( pixel_values: TFModelInputType | None = Noneoutput_attentions: Optional[bool] = Noneoutput_hidden_states: Optional[bool] = Nonereturn_dict: Optional[bool] = Nonetraining: bool = False ) → image_features (tf.Tensor
of shape (batch_size, output_dim
)
Parameters
output_hidden_states (bool
, optional) — Whether or not to return the hidden states of all layers. See hidden_states
under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead.
training (bool
, optional, defaults to `False“) — Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation).
Returns
image_features (tf.Tensor
of shape (batch_size, output_dim
)
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.
Examples:
Copied
( *args**kwargs )
call
Parameters
input_ids (np.ndarray
, tf.Tensor
, List[tf.Tensor]
`Dict[str, tf.Tensor]
or Dict[str, np.ndarray]
and each example must have the shape (batch_size, sequence_length)
) — Indices of input sequence tokens in the vocabulary.
attention_mask (np.ndarray
or tf.Tensor
of shape (batch_size, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]
:
1 for tokens that are not masked,
0 for tokens that are masked.
position_ids (np.ndarray
or tf.Tensor
of shape (batch_size, sequence_length)
, optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1]
.
output_attentions (bool
, optional) — Whether or not to return the attentions tensors of all attention layers. See attentions
under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead.
output_hidden_states (bool
, optional) — Whether or not to return the hidden states of all layers. See hidden_states
under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead.
training (bool
, optional, defaults to `False“) — Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation).
Returns
last_hidden_state (tf.Tensor
of shape (batch_size, sequence_length, hidden_size)
) — Sequence of hidden-states at the output of the last layer of the model.
pooler_output (tf.Tensor
of shape (batch_size, hidden_size)
) — Last layer hidden-state of the first token of the sequence (classification token) further processed by a Linear layer and a Tanh activation function. The Linear layer weights are trained from the next sentence prediction (classification) objective during pretraining.
This output is usually not a good summary of the semantic content of the input, you’re often better with averaging or pooling the sequence of hidden-states for the whole input sequence.
hidden_states (tuple(tf.Tensor)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of tf.Tensor
(one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size)
.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (tuple(tf.Tensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of tf.Tensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.
Examples:
Copied
( *args**kwargs )
call
Parameters
output_hidden_states (bool
, optional) — Whether or not to return the hidden states of all layers. See hidden_states
under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead.
training (bool
, optional, defaults to `False“) — Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation).
Returns
last_hidden_state (tf.Tensor
of shape (batch_size, sequence_length, hidden_size)
) — Sequence of hidden-states at the output of the last layer of the model.
pooler_output (tf.Tensor
of shape (batch_size, hidden_size)
) — Last layer hidden-state of the first token of the sequence (classification token) further processed by a Linear layer and a Tanh activation function. The Linear layer weights are trained from the next sentence prediction (classification) objective during pretraining.
This output is usually not a good summary of the semantic content of the input, you’re often better with averaging or pooling the sequence of hidden-states for the whole input sequence.
hidden_states (tuple(tf.Tensor)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of tf.Tensor
(one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size)
.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (tuple(tf.Tensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of tf.Tensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.
Examples:
Copied
( config: CLIPConfiginput_shape: typing.Optional[typing.Tuple] = Noneseed: int = 0dtype: dtype = <class 'jax.numpy.float32'>_do_init: bool = True**kwargs )
Parameters
dtype (jax.numpy.dtype
, optional, defaults to jax.numpy.float32
) — The data type of the computation. Can be one of jax.numpy.float32
, jax.numpy.float16
(on GPUs) and jax.numpy.bfloat16
(on TPUs).
This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If specified all the computation will be performed with the given dtype
.
Note that this only specifies the dtype of the computation and does not influence the dtype of model parameters.
Finally, this model supports inherent JAX features such as:
__call__
( input_idspixel_valuesattention_mask = Noneposition_ids = Noneparams: dict = Nonedropout_rng: PRNGKey = Nonetrain: bool = Falseoutput_attentions: typing.Optional[bool] = Noneoutput_hidden_states: typing.Optional[bool] = Nonereturn_dict: typing.Optional[bool] = None ) → transformers.models.clip.modeling_flax_clip.FlaxCLIPOutput
or tuple(torch.FloatTensor)
Parameters
input_ids (numpy.ndarray
of shape (batch_size, sequence_length)
) — Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it.
attention_mask (numpy.ndarray
of shape (batch_size, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]
:
1 for tokens that are not masked,
0 for tokens that are masked.
position_ids (numpy.ndarray
of shape (batch_size, sequence_length)
, optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1]
.
output_attentions (bool
, optional) — Whether or not to return the attentions tensors of all attention layers. See attentions
under returned tensors for more detail.
output_hidden_states (bool
, optional) — Whether or not to return the hidden states of all layers. See hidden_states
under returned tensors for more detail.
Returns
transformers.models.clip.modeling_flax_clip.FlaxCLIPOutput
or tuple(torch.FloatTensor)
A transformers.models.clip.modeling_flax_clip.FlaxCLIPOutput
or a tuple of torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various elements depending on the configuration (<class 'transformers.models.clip.configuration_clip.CLIPConfig'>
) and inputs.
logits_per_image:(jnp.ndarray
of shape (image_batch_size, text_batch_size)
) — The scaled dot product scores between image_embeds
and text_embeds
. This represents the image-text similarity scores.
logits_per_text:(jnp.ndarray
of shape (text_batch_size, image_batch_size)
) — The scaled dot product scores between text_embeds
and image_embeds
. This represents the text-image similarity scores.
The FlaxCLIPPreTrainedModel
forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.
Example:
Copied
get_text_features
( input_idsattention_mask = Noneposition_ids = Noneparams: dict = Nonedropout_rng: PRNGKey = Nonetrain = False ) → text_features (jnp.ndarray
of shape (batch_size, output_dim
)
Parameters
input_ids (numpy.ndarray
of shape (batch_size, sequence_length)
) — Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it.
Returns
text_features (jnp.ndarray
of shape (batch_size, output_dim
)
Examples:
Copied
get_image_features
( pixel_valuesparams: dict = Nonedropout_rng: PRNGKey = Nonetrain = False ) → image_features (jnp.ndarray
of shape (batch_size, output_dim
)
Parameters
Returns
image_features (jnp.ndarray
of shape (batch_size, output_dim
)
Examples:
Copied
( config: CLIPTextConfiginput_shape = (1, 1)seed: int = 0dtype: dtype = <class 'jax.numpy.float32'>_do_init: bool = True**kwargs )
__call__
Parameters
input_ids (numpy.ndarray
of shape (batch_size, sequence_length)
) — Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it.
attention_mask (numpy.ndarray
of shape (batch_size, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]
:
1 for tokens that are not masked,
0 for tokens that are masked.
position_ids (numpy.ndarray
of shape (batch_size, sequence_length)
, optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1]
.
output_attentions (bool
, optional) — Whether or not to return the attentions tensors of all attention layers. See attentions
under returned tensors for more detail.
output_hidden_states (bool
, optional) — Whether or not to return the hidden states of all layers. See hidden_states
under returned tensors for more detail.
Returns
last_hidden_state (jnp.ndarray
of shape (batch_size, sequence_length, hidden_size)
) — Sequence of hidden-states at the output of the last layer of the model.
pooler_output (jnp.ndarray
of shape (batch_size, hidden_size)
) — Last layer hidden-state of the first token of the sequence (classification token) further processed by a Linear layer and a Tanh activation function. The Linear layer weights are trained from the next sentence prediction (classification) objective during pretraining.
hidden_states (tuple(jnp.ndarray)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of jnp.ndarray
(one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size)
.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (tuple(jnp.ndarray)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of jnp.ndarray
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
The FlaxCLIPTextPreTrainedModel
forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.
Example:
Copied
( config: CLIPTextConfiginput_shape = (1, 1)seed: int = 0dtype: dtype = <class 'jax.numpy.float32'>_do_init: bool = True**kwargs )
__call__
( input_idsattention_mask = Noneposition_ids = Noneparams: dict = Nonedropout_rng: PRNGKey = Nonetrain: bool = Falseoutput_attentions: typing.Optional[bool] = Noneoutput_hidden_states: typing.Optional[bool] = Nonereturn_dict: typing.Optional[bool] = None ) → transformers.models.clip.modeling_flax_clip.FlaxCLIPTextModelOutput
or tuple(torch.FloatTensor)
Parameters
input_ids (numpy.ndarray
of shape (batch_size, sequence_length)
) — Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it.
attention_mask (numpy.ndarray
of shape (batch_size, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]
:
1 for tokens that are not masked,
0 for tokens that are masked.
position_ids (numpy.ndarray
of shape (batch_size, sequence_length)
, optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1]
.
output_attentions (bool
, optional) — Whether or not to return the attentions tensors of all attention layers. See attentions
under returned tensors for more detail.
output_hidden_states (bool
, optional) — Whether or not to return the hidden states of all layers. See hidden_states
under returned tensors for more detail.
Returns
transformers.models.clip.modeling_flax_clip.FlaxCLIPTextModelOutput
or tuple(torch.FloatTensor)
A transformers.models.clip.modeling_flax_clip.FlaxCLIPTextModelOutput
or a tuple of torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various elements depending on the configuration (<class 'transformers.models.clip.configuration_clip.CLIPTextConfig'>
) and inputs.
last_hidden_state (jnp.ndarray
of shape (batch_size, sequence_length, hidden_size)
) — Sequence of hidden-states at the output of the last layer of the model.
hidden_states (tuple(jnp.ndarray)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of jnp.ndarray
(one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size)
.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (tuple(jnp.ndarray)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of jnp.ndarray
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
The FlaxCLIPTextPreTrainedModel
forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.
Example:
Copied
( config: CLIPVisionConfiginput_shape: typing.Optional[typing.Tuple] = Noneseed: int = 0dtype: dtype = <class 'jax.numpy.float32'>_do_init: bool = True**kwargs )
__call__
Parameters
output_attentions (bool
, optional) — Whether or not to return the attentions tensors of all attention layers. See attentions
under returned tensors for more detail.
output_hidden_states (bool
, optional) — Whether or not to return the hidden states of all layers. See hidden_states
under returned tensors for more detail.
Returns
last_hidden_state (jnp.ndarray
of shape (batch_size, sequence_length, hidden_size)
) — Sequence of hidden-states at the output of the last layer of the model.
pooler_output (jnp.ndarray
of shape (batch_size, hidden_size)
) — Last layer hidden-state of the first token of the sequence (classification token) further processed by a Linear layer and a Tanh activation function. The Linear layer weights are trained from the next sentence prediction (classification) objective during pretraining.
hidden_states (tuple(jnp.ndarray)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of jnp.ndarray
(one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size)
.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (tuple(jnp.ndarray)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of jnp.ndarray
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
The FlaxCLIPVisionPreTrainedModel
forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.
Example:
Copied
This model was contributed by . The original code can be found .
A blog post on .
CLIP is supported by this .
text_config (dict
, optional) — Dictionary of configuration options used to initialize .
vision_config (dict
, optional) — Dictionary of configuration options used to initialize .
is the configuration class to store the configuration of a . It is used to instantiate a CLIP model according to the specified arguments, defining the text model and vision model configs. Instantiating a configuration with the defaults will yield a similar configuration to that of the CLIP architecture.
Configuration objects inherit from and can be used to control the model outputs. Read the documentation from for more information.
( text_config: CLIPTextConfigvision_config: CLIPVisionConfig**kwargs ) →
Instantiate a (or a derived class) from clip text model configuration and clip vision model configuration.
vocab_size (int
, optional, defaults to 49408) — Vocabulary size of the CLIP text model. Defines the number of different tokens that can be represented by the inputs_ids
passed when calling .
This is the configuration class to store the configuration of a . It is used to instantiate a CLIP text encoder according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the text encoder of the CLIP architecture.
Configuration objects inherit from and can be used to control the model outputs. Read the documentation from for more information.
This is the configuration class to store the configuration of a . It is used to instantiate a CLIP vision encoder according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the vision encoder of the CLIP architecture.
Configuration objects inherit from and can be used to control the model outputs. Read the documentation from for more information.
errors (str
, optional, defaults to "replace"
) — Paradigm to follow when decoding bytes to UTF-8. See for more information.
This tokenizer inherits from which contains most of the main methods. Users should refer to this superclass for more information regarding those methods.
List of with the appropriate special tokens.
This tokenizer inherits from which contains most of the main methods. Users should refer to this superclass for more information regarding those methods.
List of with the appropriate special tokens.
image_processor () — The image processor is a required input.
tokenizer () — The tokenizer is a required input.
offers all the functionalities of and . See the __call__()
and for more information.
This method forwards all its arguments to CLIPTokenizerFast’s . Please refer to the docstring of this method for more information.
This method forwards all its arguments to CLIPTokenizerFast’s . Please refer to the docstring of this method for more information.
config () — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the method to load the model weights.
This model inherits from . Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)
This model is also a PyTorch subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
Indices can be obtained using . See and for details.
pixel_values (torch.FloatTensor
of shape (batch_size, num_channels, height, width)
) — Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using . See for details.
return_dict (bool
, optional) — Whether or not to return a instead of a plain tuple.
text_embeds(torch.FloatTensor
of shape (batch_size, output_dim
) — The text embeddings obtained by applying the projection layer to the pooled output of .
image_embeds(torch.FloatTensor
of shape (batch_size, output_dim
) — The image embeddings obtained by applying the projection layer to the pooled output of .
text_model_output(BaseModelOutputWithPooling
): The output of the .
vision_model_output(BaseModelOutputWithPooling
): The output of the .
The forward method, overrides the __call__
special method.
Indices can be obtained using . See and for details.
return_dict (bool
, optional) — Whether or not to return a instead of a plain tuple.
The text embeddings obtained by applying the projection layer to the pooled output of .
The forward method, overrides the __call__
special method.
pixel_values (torch.FloatTensor
of shape (batch_size, num_channels, height, width)
) — Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using . See for details.
return_dict (bool
, optional) — Whether or not to return a instead of a plain tuple.
The image embeddings obtained by applying the projection layer to the pooled output of .
The forward method, overrides the __call__
special method.
config () — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the method to load the model weights.
The text model from CLIP without any head or projection on top. This model inherits from . Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)
This model is also a PyTorch subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
( input_ids: typing.Optional[torch.Tensor] = Noneattention_mask: typing.Optional[torch.Tensor] = Noneposition_ids: typing.Optional[torch.Tensor] = Noneoutput_attentions: typing.Optional[bool] = Noneoutput_hidden_states: typing.Optional[bool] = Nonereturn_dict: typing.Optional[bool] = None ) → or tuple(torch.FloatTensor)
Indices can be obtained using . See and for details.
return_dict (bool
, optional) — Whether or not to return a instead of a plain tuple.
or tuple(torch.FloatTensor)
A or a tuple of torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various elements depending on the configuration (<class 'transformers.models.clip.configuration_clip.CLIPTextConfig'>
) and inputs.
The forward method, overrides the __call__
special method.
config () — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the method to load the model weights.
This model inherits from . Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)
This model is also a PyTorch subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
Indices can be obtained using . See and for details.
return_dict (bool
, optional) — Whether or not to return a instead of a plain tuple.
The forward method, overrides the __call__
special method.
config () — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the method to load the model weights.
This model inherits from . Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)
This model is also a PyTorch subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
pixel_values (torch.FloatTensor
of shape (batch_size, num_channels, height, width)
) — Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using . See for details.
return_dict (bool
, optional) — Whether or not to return a instead of a plain tuple.
The forward method, overrides the __call__
special method.
config () — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the method to load the model weights.
The vision model from CLIP without any head or projection on top. This model inherits from . Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)
This model is also a PyTorch subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
( pixel_values: typing.Optional[torch.FloatTensor] = Noneoutput_attentions: typing.Optional[bool] = Noneoutput_hidden_states: typing.Optional[bool] = Nonereturn_dict: typing.Optional[bool] = None ) → or tuple(torch.FloatTensor)
pixel_values (torch.FloatTensor
of shape (batch_size, num_channels, height, width)
) — Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using . See for details.
return_dict (bool
, optional) — Whether or not to return a instead of a plain tuple.
or tuple(torch.FloatTensor)
A or a tuple of torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various elements depending on the configuration (<class 'transformers.models.clip.configuration_clip.CLIPVisionConfig'>
) and inputs.
The forward method, overrides the __call__
special method.
config () — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the method to load the model weights.
This model inherits from . Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)
This model is also a subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior.
Note that when creating models and layers with then you don’t need to worry about any of this, as you can just pass inputs like you would to any other Python function!
Indices can be obtained using . See and for details.
pixel_values (np.ndarray
, tf.Tensor
, List[tf.Tensor]
Dict[str, tf.Tensor]
or Dict[str, np.ndarray]
and each example must have the shape (batch_size, num_channels, height, width)
) — Pixel values. Pixel values can be obtained using . See for details.
return_dict (bool
, optional) — Whether or not to return a instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True.
text_embeds(tf.Tensor
of shape (batch_size, output_dim
) — The text embeddings obtained by applying the projection layer to the pooled output of .
image_embeds(tf.Tensor
of shape (batch_size, output_dim
) — The image embeddings obtained by applying the projection layer to the pooled output of .
text_model_output(~modeling_tf_utils.TFBaseModelOutputWithPooling
): The output of the .
vision_model_output(~modeling_tf_utils.TFBaseModelOutputWithPooling
): The output of the .
The forward method, overrides the __call__
special method.
Indices can be obtained using . See and for details.
return_dict (bool
, optional) — Whether or not to return a instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True.
The text embeddings obtained by applying the projection layer to the pooled output of .
The forward method, overrides the __call__
special method.
pixel_values (np.ndarray
, tf.Tensor
, List[tf.Tensor]
`Dict[str, tf.Tensor]
or Dict[str, np.ndarray]
and each example must have the shape (batch_size, num_channels, height, width)
) — Pixel values. Pixel values can be obtained using . See for details. output_attentions (bool
, optional): Whether or not to return the attentions tensors of all attention layers. See attentions
under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead.
return_dict (bool
, optional) — Whether or not to return a instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True.
The image embeddings obtained by applying the projection layer to the pooled output of .
The forward method, overrides the __call__
special method.
( input_ids: TFModelInputType | None = Noneattention_mask: np.ndarray | tf.Tensor | None = Noneposition_ids: np.ndarray | tf.Tensor | None = Noneoutput_attentions: Optional[bool] = Noneoutput_hidden_states: Optional[bool] = Nonereturn_dict: Optional[bool] = Nonetraining: Optional[bool] = False ) → or tuple(tf.Tensor)
Indices can be obtained using . See and for details.
return_dict (bool
, optional) — Whether or not to return a instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True.
or tuple(tf.Tensor)
A or a tuple of tf.Tensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various elements depending on the configuration (<class 'transformers.models.clip.configuration_clip.CLIPTextConfig'>
) and inputs.
The forward method, overrides the __call__
special method.
( pixel_values: TFModelInputType | None = Noneoutput_attentions: Optional[bool] = Noneoutput_hidden_states: Optional[bool] = Nonereturn_dict: Optional[bool] = Nonetraining: Optional[bool] = False ) → or tuple(tf.Tensor)
pixel_values (np.ndarray
, tf.Tensor
, List[tf.Tensor]
`Dict[str, tf.Tensor]
or Dict[str, np.ndarray]
and each example must have the shape (batch_size, num_channels, height, width)
) — Pixel values. Pixel values can be obtained using . See for details. output_attentions (bool
, optional): Whether or not to return the attentions tensors of all attention layers. See attentions
under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead.
return_dict (bool
, optional) — Whether or not to return a instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True.
or tuple(tf.Tensor)
A or a tuple of tf.Tensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various elements depending on the configuration (<class 'transformers.models.clip.configuration_clip.CLIPVisionConfig'>
) and inputs.
The forward method, overrides the __call__
special method.
config () — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the method to load the model weights.
If you wish to change the dtype of the model parameters, see and .
This model inherits from . Check the superclass documentation for the generic methods the library implements for all its model (such as downloading, saving and converting weights from PyTorch models)
This model is also a Flax Linen subclass. Use it as a regular Flax linen Module and refer to the Flax documentation for all matter related to general usage and behavior.
Indices can be obtained using . See and for details.
pixel_values (numpy.ndarray
of shape (batch_size, num_channels, height, width)
) — Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using . See for details.
return_dict (bool
, optional) — Whether or not to return a instead of a plain tuple.
text_embeds(jnp.ndarray
of shape (batch_size, output_dim
) — The text embeddings obtained by applying the projection layer to the pooled output of .
image_embeds(jnp.ndarray
of shape (batch_size, output_dim
) — The image embeddings obtained by applying the projection layer to the pooled output of .
text_model_output(FlaxBaseModelOutputWithPooling
): The output of the .
vision_model_output(FlaxBaseModelOutputWithPooling
): The output of the .
Indices can be obtained using . See and for details.
The text embeddings obtained by applying the projection layer to the pooled output of .
pixel_values (numpy.ndarray
of shape (batch_size, num_channels, height, width)
) — Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using . See for details.
The image embeddings obtained by applying the projection layer to the pooled output of
( input_idsattention_mask = Noneposition_ids = Noneparams: dict = Nonedropout_rng: PRNGKey = Nonetrain: bool = Falseoutput_attentions: typing.Optional[bool] = Noneoutput_hidden_states: typing.Optional[bool] = Nonereturn_dict: typing.Optional[bool] = None ) → or tuple(torch.FloatTensor)
Indices can be obtained using . See and for details.
return_dict (bool
, optional) — Whether or not to return a instead of a plain tuple.
or tuple(torch.FloatTensor)
A or a tuple of torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various elements depending on the configuration (<class 'transformers.models.clip.configuration_clip.CLIPTextConfig'>
) and inputs.
Indices can be obtained using . See and for details.
return_dict (bool
, optional) — Whether or not to return a instead of a plain tuple.
text_embeds (jnp.ndarray
of shape (batch_size, output_dim
) — The text embeddings obtained by applying the projection layer to the pooled output of .
( pixel_valuesparams: dict = Nonedropout_rng: PRNGKey = Nonetrain: bool = Falseoutput_attentions: typing.Optional[bool] = Noneoutput_hidden_states: typing.Optional[bool] = Nonereturn_dict: typing.Optional[bool] = None ) → or tuple(torch.FloatTensor)
pixel_values (numpy.ndarray
of shape (batch_size, num_channels, height, width)
) — Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using . See for details.
return_dict (bool
, optional) — Whether or not to return a instead of a plain tuple.
or tuple(torch.FloatTensor)
A or a tuple of torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various elements depending on the configuration (<class 'transformers.models.clip.configuration_clip.CLIPVisionConfig'>
) and inputs.