Nyströmformer
Nyströmformer
Overview
The Nyströmformer model was proposed in Nyströmformer: A Nyström-Based Algorithm for Approximating Self-Attention by Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty, Mingxing Tan, Glenn Fung, Yin Li, and Vikas Singh.
The abstract from the paper is the following:
Transformers have emerged as a powerful tool for a broad range of natural language processing tasks. A key component that drives the impressive performance of Transformers is the self-attention mechanism that encodes the influence or dependence of other tokens on each specific token. While beneficial, the quadratic complexity of self-attention on the input sequence length has limited its application to longer sequences — a topic being actively studied in the community. To address this limitation, we propose Nyströmformer — a model that exhibits favorable scalability as a function of sequence length. Our idea is based on adapting the Nyström method to approximate standard self-attention with O(n) complexity. The scalability of Nyströmformer enables application to longer sequences with thousands of tokens. We perform evaluations on multiple downstream tasks on the GLUE benchmark and IMDB reviews with standard sequence length, and find that our Nyströmformer performs comparably, or in a few cases, even slightly better, than standard self-attention. On longer sequence tasks in the Long Range Arena (LRA) benchmark, Nyströmformer performs favorably relative to other efficient self-attention methods. Our code is available at this https URL.
This model was contributed by novice03. The original code can be found here.
Documentation resources
NystromformerConfig
class transformers.NystromformerConfig
( vocab_size = 30000hidden_size = 768num_hidden_layers = 12num_attention_heads = 12intermediate_size = 3072hidden_act = 'gelu_new'hidden_dropout_prob = 0.1attention_probs_dropout_prob = 0.1max_position_embeddings = 510type_vocab_size = 2segment_means_seq_len = 64num_landmarks = 64conv_kernel_size = 65inv_coeff_init_option = Falseinitializer_range = 0.02layer_norm_eps = 1e-05pad_token_id = 1bos_token_id = 0eos_token_id = 2**kwargs )
Parameters
vocab_size (
int
, optional, defaults to 30000) — Vocabulary size of the Nystromformer model. Defines the number of different tokens that can be represented by theinputs_ids
passed when calling NystromformerModel.hidden_size (
int
, optional, defaults to 768) — Dimension of the encoder layers and the pooler layer.num_hidden_layers (
int
, optional, defaults to 12) — Number of hidden layers in the Transformer encoder.num_attention_heads (
int
, optional, defaults to 12) — Number of attention heads for each attention layer in the Transformer encoder.intermediate_size (
int
, optional, defaults to 3072) — Dimension of the “intermediate” (i.e., feed-forward) layer in the Transformer encoder.hidden_act (
str
orfunction
, optional, defaults to"gelu"
) — The non-linear activation function (function or string) in the encoder and pooler. If string,"gelu"
,"relu"
,"selu"
and"gelu_new"
are supported.hidden_dropout_prob (
float
, optional, defaults to 0.1) — The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler.attention_probs_dropout_prob (
float
, optional, defaults to 0.1) — The dropout ratio for the attention probabilities.max_position_embeddings (
int
, optional, defaults to 512) — The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048).type_vocab_size (
int
, optional, defaults to 2) — The vocabulary size of thetoken_type_ids
passed when calling NystromformerModel.segment_means_seq_len (
int
, optional, defaults to 64) — Sequence length used in segment-means.num_landmarks (
int
, optional, defaults to 64) — The number of landmark (or Nystrom) points to use in Nystrom approximation of the softmax self-attention matrix.conv_kernel_size (
int
, optional, defaults to 65) — The kernel size of depthwise convolution used in Nystrom approximation.inv_coeff_init_option (
bool
, optional, defaults toFalse
) — Whether or not to use exact coefficient computation for the initial values for the iterative method of calculating the Moore-Penrose inverse of a matrix.initializer_range (
float
, optional, defaults to 0.02) — The standard deviation of the truncated_normal_initializer for initializing all weight matrices.layer_norm_eps (
float
, optional, defaults to 1e-12) — The epsilon used by the layer normalization layers.
This is the configuration class to store the configuration of a NystromformerModel. It is used to instantiate an Nystromformer model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the Nystromformer uw-madison/nystromformer-512 architecture.
Configuration objects inherit from PretrainedConfig and can be used to control the model outputs. Read the documentation from PretrainedConfig for more information.
Example:
Copied
NystromformerModel
class transformers.NystromformerModel
( config )
Parameters
config (NystromformerConfig) — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.
The bare Nyströmformer Model transformer outputting raw hidden-states without any specific head on top. This model is a PyTorch torch.nn.Module sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
forward
( input_ids: typing.Optional[torch.LongTensor] = Noneattention_mask: typing.Optional[torch.FloatTensor] = Nonetoken_type_ids: typing.Optional[torch.LongTensor] = Noneposition_ids: typing.Optional[torch.LongTensor] = Nonehead_mask: typing.Optional[torch.FloatTensor] = Noneinputs_embeds: typing.Optional[torch.FloatTensor] = Noneoutput_attentions: typing.Optional[bool] = Noneoutput_hidden_states: typing.Optional[bool] = Nonereturn_dict: typing.Optional[bool] = None ) → transformers.modeling_outputs.BaseModelOutputWithPastAndCrossAttentions or tuple(torch.FloatTensor)
Parameters
input_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
) — Indices of input sequence tokens in the vocabulary.Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
attention_mask (
torch.FloatTensor
of shape(batch_size, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in[0, 1]
:1 for tokens that are not masked,
0 for tokens that are masked.
token_type_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in[0, 1]
:0 corresponds to a sentence A token,
1 corresponds to a sentence B token.
position_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range[0, config.max_position_embeddings - 1]
.head_mask (
torch.FloatTensor
of shape(num_heads,)
or(num_layers, num_heads)
, optional) — Mask to nullify selected heads of the self-attention modules. Mask values selected in[0, 1]
:1 indicates the head is not masked,
0 indicates the head is masked.
inputs_embeds (
torch.FloatTensor
of shape(batch_size, sequence_length, hidden_size)
, optional) — Optionally, instead of passinginput_ids
you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids indices into associated vectors than the model’s internal embedding lookup matrix.output_attentions (
bool
, optional) — Whether or not to return the attentions tensors of all attention layers. Seeattentions
under returned tensors for more detail.output_hidden_states (
bool
, optional) — Whether or not to return the hidden states of all layers. Seehidden_states
under returned tensors for more detail.return_dict (
bool
, optional) — Whether or not to return a ModelOutput instead of a plain tuple.
Returns
transformers.modeling_outputs.BaseModelOutputWithPastAndCrossAttentions or tuple(torch.FloatTensor)
A transformers.modeling_outputs.BaseModelOutputWithPastAndCrossAttentions or a tuple of torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various elements depending on the configuration (NystromformerConfig) and inputs.
last_hidden_state (
torch.FloatTensor
of shape(batch_size, sequence_length, hidden_size)
) — Sequence of hidden-states at the output of the last layer of the model.If
past_key_values
is used only the last hidden-state of the sequences of shape(batch_size, 1, hidden_size)
is output.past_key_values (
tuple(tuple(torch.FloatTensor))
, optional, returned whenuse_cache=True
is passed or whenconfig.use_cache=True
) — Tuple oftuple(torch.FloatTensor)
of lengthconfig.n_layers
, with each tuple having 2 tensors of shape(batch_size, num_heads, sequence_length, embed_size_per_head)
) and optionally ifconfig.is_encoder_decoder=True
2 additional tensors of shape(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
.Contains pre-computed hidden-states (key and values in the self-attention blocks and optionally if
config.is_encoder_decoder=True
in the cross-attention blocks) that can be used (seepast_key_values
input) to speed up sequential decoding.hidden_states (
tuple(torch.FloatTensor)
, optional, returned whenoutput_hidden_states=True
is passed or whenconfig.output_hidden_states=True
) — Tuple oftorch.FloatTensor
(one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size)
.Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (
tuple(torch.FloatTensor)
, optional, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) — Tuple oftorch.FloatTensor
(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length)
.Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
cross_attentions (
tuple(torch.FloatTensor)
, optional, returned whenoutput_attentions=True
andconfig.add_cross_attention=True
is passed or whenconfig.output_attentions=True
) — Tuple oftorch.FloatTensor
(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length)
.Attentions weights of the decoder’s cross-attention layer, after the attention softmax, used to compute the weighted average in the cross-attention heads.
The NystromformerModel forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.
Example:
Copied
NystromformerForMaskedLM
class transformers.NystromformerForMaskedLM
( config )
Parameters
config (NystromformerConfig) — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.
Nyströmformer Model with a language modeling
head on top. This model is a PyTorch torch.nn.Module sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
forward
( input_ids: typing.Optional[torch.LongTensor] = Noneattention_mask: typing.Optional[torch.FloatTensor] = Nonetoken_type_ids: typing.Optional[torch.LongTensor] = Noneposition_ids: typing.Optional[torch.LongTensor] = Nonehead_mask: typing.Optional[torch.FloatTensor] = Noneinputs_embeds: typing.Optional[torch.FloatTensor] = Nonelabels: typing.Optional[torch.LongTensor] = Noneoutput_attentions: typing.Optional[bool] = Noneoutput_hidden_states: typing.Optional[bool] = Nonereturn_dict: typing.Optional[bool] = None ) → transformers.modeling_outputs.MaskedLMOutput or tuple(torch.FloatTensor)
Parameters
input_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
) — Indices of input sequence tokens in the vocabulary.Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
attention_mask (
torch.FloatTensor
of shape(batch_size, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in[0, 1]
:1 for tokens that are not masked,
0 for tokens that are masked.
token_type_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in[0, 1]
:0 corresponds to a sentence A token,
1 corresponds to a sentence B token.
position_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range[0, config.max_position_embeddings - 1]
.head_mask (
torch.FloatTensor
of shape(num_heads,)
or(num_layers, num_heads)
, optional) — Mask to nullify selected heads of the self-attention modules. Mask values selected in[0, 1]
:1 indicates the head is not masked,
0 indicates the head is masked.
inputs_embeds (
torch.FloatTensor
of shape(batch_size, sequence_length, hidden_size)
, optional) — Optionally, instead of passinginput_ids
you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids indices into associated vectors than the model’s internal embedding lookup matrix.output_attentions (
bool
, optional) — Whether or not to return the attentions tensors of all attention layers. Seeattentions
under returned tensors for more detail.output_hidden_states (
bool
, optional) — Whether or not to return the hidden states of all layers. Seehidden_states
under returned tensors for more detail.return_dict (
bool
, optional) — Whether or not to return a ModelOutput instead of a plain tuple.labels (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional) — Labels for computing the masked language modeling loss. Indices should be in[-100, 0, ..., config.vocab_size]
(seeinput_ids
docstring) Tokens with indices set to-100
are ignored (masked), the loss is only computed for the tokens with labels in[0, ..., config.vocab_size]
.
Returns
transformers.modeling_outputs.MaskedLMOutput or tuple(torch.FloatTensor)
A transformers.modeling_outputs.MaskedLMOutput or a tuple of torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various elements depending on the configuration (NystromformerConfig) and inputs.
loss (
torch.FloatTensor
of shape(1,)
, optional, returned whenlabels
is provided) — Masked language modeling (MLM) loss.logits (
torch.FloatTensor
of shape(batch_size, sequence_length, config.vocab_size)
) — Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).hidden_states (
tuple(torch.FloatTensor)
, optional, returned whenoutput_hidden_states=True
is passed or whenconfig.output_hidden_states=True
) — Tuple oftorch.FloatTensor
(one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size)
.Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (
tuple(torch.FloatTensor)
, optional, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) — Tuple oftorch.FloatTensor
(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length)
.Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
The NystromformerForMaskedLM forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.
Example:
Copied
NystromformerForSequenceClassification
class transformers.NystromformerForSequenceClassification
( config )
Parameters
config (NystromformerConfig) — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.
Nyströmformer Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks.
This model is a PyTorch torch.nn.Module sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
forward
( input_ids: typing.Optional[torch.LongTensor] = Noneattention_mask: typing.Optional[torch.FloatTensor] = Nonetoken_type_ids: typing.Optional[torch.LongTensor] = Noneposition_ids: typing.Optional[torch.LongTensor] = Nonehead_mask: typing.Optional[torch.FloatTensor] = Noneinputs_embeds: typing.Optional[torch.FloatTensor] = Nonelabels: typing.Optional[torch.LongTensor] = Noneoutput_attentions: typing.Optional[bool] = Noneoutput_hidden_states: typing.Optional[bool] = Nonereturn_dict: typing.Optional[bool] = None ) → transformers.modeling_outputs.SequenceClassifierOutput or tuple(torch.FloatTensor)
Parameters
input_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
) — Indices of input sequence tokens in the vocabulary.Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
attention_mask (
torch.FloatTensor
of shape(batch_size, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in[0, 1]
:1 for tokens that are not masked,
0 for tokens that are masked.
token_type_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in[0, 1]
:0 corresponds to a sentence A token,
1 corresponds to a sentence B token.
position_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range[0, config.max_position_embeddings - 1]
.head_mask (
torch.FloatTensor
of shape(num_heads,)
or(num_layers, num_heads)
, optional) — Mask to nullify selected heads of the self-attention modules. Mask values selected in[0, 1]
:1 indicates the head is not masked,
0 indicates the head is masked.
inputs_embeds (
torch.FloatTensor
of shape(batch_size, sequence_length, hidden_size)
, optional) — Optionally, instead of passinginput_ids
you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids indices into associated vectors than the model’s internal embedding lookup matrix.output_attentions (
bool
, optional) — Whether or not to return the attentions tensors of all attention layers. Seeattentions
under returned tensors for more detail.output_hidden_states (
bool
, optional) — Whether or not to return the hidden states of all layers. Seehidden_states
under returned tensors for more detail.return_dict (
bool
, optional) — Whether or not to return a ModelOutput instead of a plain tuple.labels (
torch.LongTensor
of shape(batch_size,)
, optional) — Labels for computing the sequence classification/regression loss. Indices should be in[0, ..., config.num_labels - 1]
. Ifconfig.num_labels == 1
a regression loss is computed (Mean-Square loss), Ifconfig.num_labels > 1
a classification loss is computed (Cross-Entropy).
Returns
transformers.modeling_outputs.SequenceClassifierOutput or tuple(torch.FloatTensor)
A transformers.modeling_outputs.SequenceClassifierOutput or a tuple of torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various elements depending on the configuration (NystromformerConfig) and inputs.
loss (
torch.FloatTensor
of shape(1,)
, optional, returned whenlabels
is provided) — Classification (or regression if config.num_labels==1) loss.logits (
torch.FloatTensor
of shape(batch_size, config.num_labels)
) — Classification (or regression if config.num_labels==1) scores (before SoftMax).hidden_states (
tuple(torch.FloatTensor)
, optional, returned whenoutput_hidden_states=True
is passed or whenconfig.output_hidden_states=True
) — Tuple oftorch.FloatTensor
(one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size)
.Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (
tuple(torch.FloatTensor)
, optional, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) — Tuple oftorch.FloatTensor
(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length)
.Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
The NystromformerForSequenceClassification forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.
Example of single-label classification:
Copied
Example of multi-label classification:
Copied
NystromformerForMultipleChoice
class transformers.NystromformerForMultipleChoice
( config )
Parameters
config (NystromformerConfig) — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.
Nyströmformer Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a softmax) e.g. for RocStories/SWAG tasks.
This model is a PyTorch torch.nn.Module sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
forward
( input_ids: typing.Optional[torch.LongTensor] = Noneattention_mask: typing.Optional[torch.FloatTensor] = Nonetoken_type_ids: typing.Optional[torch.LongTensor] = Noneposition_ids: typing.Optional[torch.LongTensor] = Nonehead_mask: typing.Optional[torch.FloatTensor] = Noneinputs_embeds: typing.Optional[torch.FloatTensor] = Nonelabels: typing.Optional[torch.LongTensor] = Noneoutput_attentions: typing.Optional[bool] = Noneoutput_hidden_states: typing.Optional[bool] = Nonereturn_dict: typing.Optional[bool] = None ) → transformers.modeling_outputs.MultipleChoiceModelOutput or tuple(torch.FloatTensor)
Parameters
input_ids (
torch.LongTensor
of shape(batch_size, num_choices, sequence_length)
) — Indices of input sequence tokens in the vocabulary.Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
attention_mask (
torch.FloatTensor
of shape(batch_size, num_choices, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in[0, 1]
:1 for tokens that are not masked,
0 for tokens that are masked.
token_type_ids (
torch.LongTensor
of shape(batch_size, num_choices, sequence_length)
, optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in[0, 1]
:0 corresponds to a sentence A token,
1 corresponds to a sentence B token.
position_ids (
torch.LongTensor
of shape(batch_size, num_choices, sequence_length)
, optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range[0, config.max_position_embeddings - 1]
.head_mask (
torch.FloatTensor
of shape(num_heads,)
or(num_layers, num_heads)
, optional) — Mask to nullify selected heads of the self-attention modules. Mask values selected in[0, 1]
:1 indicates the head is not masked,
0 indicates the head is masked.
inputs_embeds (
torch.FloatTensor
of shape(batch_size, num_choices, sequence_length, hidden_size)
, optional) — Optionally, instead of passinginput_ids
you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids indices into associated vectors than the model’s internal embedding lookup matrix.output_attentions (
bool
, optional) — Whether or not to return the attentions tensors of all attention layers. Seeattentions
under returned tensors for more detail.output_hidden_states (
bool
, optional) — Whether or not to return the hidden states of all layers. Seehidden_states
under returned tensors for more detail.return_dict (
bool
, optional) — Whether or not to return a ModelOutput instead of a plain tuple.labels (
torch.LongTensor
of shape(batch_size,)
, optional) — Labels for computing the multiple choice classification loss. Indices should be in[0, ..., num_choices-1]
wherenum_choices
is the size of the second dimension of the input tensors. (Seeinput_ids
above)
Returns
transformers.modeling_outputs.MultipleChoiceModelOutput or tuple(torch.FloatTensor)
A transformers.modeling_outputs.MultipleChoiceModelOutput or a tuple of torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various elements depending on the configuration (NystromformerConfig) and inputs.
loss (
torch.FloatTensor
of shape (1,), optional, returned whenlabels
is provided) — Classification loss.logits (
torch.FloatTensor
of shape(batch_size, num_choices)
) — num_choices is the second dimension of the input tensors. (see input_ids above).Classification scores (before SoftMax).
hidden_states (
tuple(torch.FloatTensor)
, optional, returned whenoutput_hidden_states=True
is passed or whenconfig.output_hidden_states=True
) — Tuple oftorch.FloatTensor
(one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size)
.Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (
tuple(torch.FloatTensor)
, optional, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) — Tuple oftorch.FloatTensor
(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length)
.Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
The NystromformerForMultipleChoice forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.
Example:
Copied
NystromformerForTokenClassification
class transformers.NystromformerForTokenClassification
( config )
Parameters
config (NystromformerConfig) — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.
Nyströmformer Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks.
This model is a PyTorch torch.nn.Module sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
forward
( input_ids: typing.Optional[torch.LongTensor] = Noneattention_mask: typing.Optional[torch.FloatTensor] = Nonetoken_type_ids: typing.Optional[torch.LongTensor] = Noneposition_ids: typing.Optional[torch.LongTensor] = Nonehead_mask: typing.Optional[torch.FloatTensor] = Noneinputs_embeds: typing.Optional[torch.FloatTensor] = Nonelabels: typing.Optional[torch.LongTensor] = Noneoutput_attentions: typing.Optional[bool] = Noneoutput_hidden_states: typing.Optional[bool] = Nonereturn_dict: typing.Optional[bool] = None ) → transformers.modeling_outputs.TokenClassifierOutput or tuple(torch.FloatTensor)
Parameters
input_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
) — Indices of input sequence tokens in the vocabulary.Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
attention_mask (
torch.FloatTensor
of shape(batch_size, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in[0, 1]
:1 for tokens that are not masked,
0 for tokens that are masked.
token_type_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in[0, 1]
:0 corresponds to a sentence A token,
1 corresponds to a sentence B token.
position_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range[0, config.max_position_embeddings - 1]
.head_mask (
torch.FloatTensor
of shape(num_heads,)
or(num_layers, num_heads)
, optional) — Mask to nullify selected heads of the self-attention modules. Mask values selected in[0, 1]
:1 indicates the head is not masked,
0 indicates the head is masked.
inputs_embeds (
torch.FloatTensor
of shape(batch_size, sequence_length, hidden_size)
, optional) — Optionally, instead of passinginput_ids
you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids indices into associated vectors than the model’s internal embedding lookup matrix.output_attentions (
bool
, optional) — Whether or not to return the attentions tensors of all attention layers. Seeattentions
under returned tensors for more detail.output_hidden_states (
bool
, optional) — Whether or not to return the hidden states of all layers. Seehidden_states
under returned tensors for more detail.return_dict (
bool
, optional) — Whether or not to return a ModelOutput instead of a plain tuple.labels (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional) — Labels for computing the token classification loss. Indices should be in[0, ..., config.num_labels - 1]
.
Returns
transformers.modeling_outputs.TokenClassifierOutput or tuple(torch.FloatTensor)
A transformers.modeling_outputs.TokenClassifierOutput or a tuple of torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various elements depending on the configuration (NystromformerConfig) and inputs.
loss (
torch.FloatTensor
of shape(1,)
, optional, returned whenlabels
is provided) — Classification loss.logits (
torch.FloatTensor
of shape(batch_size, sequence_length, config.num_labels)
) — Classification scores (before SoftMax).hidden_states (
tuple(torch.FloatTensor)
, optional, returned whenoutput_hidden_states=True
is passed or whenconfig.output_hidden_states=True
) — Tuple oftorch.FloatTensor
(one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size)
.Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (
tuple(torch.FloatTensor)
, optional, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) — Tuple oftorch.FloatTensor
(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length)
.Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
The NystromformerForTokenClassification forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.
Example:
Copied
NystromformerForQuestionAnswering
class transformers.NystromformerForQuestionAnswering
( config )
Parameters
config (NystromformerConfig) — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.
Nyströmformer Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of the hidden-states output to compute span start logits
and span end logits
).
This model is a PyTorch torch.nn.Module sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
forward
( input_ids: typing.Optional[torch.LongTensor] = Noneattention_mask: typing.Optional[torch.FloatTensor] = Nonetoken_type_ids: typing.Optional[torch.LongTensor] = Noneposition_ids: typing.Optional[torch.LongTensor] = Nonehead_mask: typing.Optional[torch.FloatTensor] = Noneinputs_embeds: typing.Optional[torch.FloatTensor] = Nonestart_positions: typing.Optional[torch.LongTensor] = Noneend_positions: typing.Optional[torch.LongTensor] = Noneoutput_attentions: typing.Optional[bool] = Noneoutput_hidden_states: typing.Optional[bool] = Nonereturn_dict: typing.Optional[bool] = None ) → transformers.modeling_outputs.QuestionAnsweringModelOutput or tuple(torch.FloatTensor)
Parameters
input_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
) — Indices of input sequence tokens in the vocabulary.Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
attention_mask (
torch.FloatTensor
of shape(batch_size, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in[0, 1]
:1 for tokens that are not masked,
0 for tokens that are masked.
token_type_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional) — Segment token indices to indicate first and second portions of the inputs. Indices are selected in[0, 1]
:0 corresponds to a sentence A token,
1 corresponds to a sentence B token.
position_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range[0, config.max_position_embeddings - 1]
.head_mask (
torch.FloatTensor
of shape(num_heads,)
or(num_layers, num_heads)
, optional) — Mask to nullify selected heads of the self-attention modules. Mask values selected in[0, 1]
:1 indicates the head is not masked,
0 indicates the head is masked.
inputs_embeds (
torch.FloatTensor
of shape(batch_size, sequence_length, hidden_size)
, optional) — Optionally, instead of passinginput_ids
you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids indices into associated vectors than the model’s internal embedding lookup matrix.output_attentions (
bool
, optional) — Whether or not to return the attentions tensors of all attention layers. Seeattentions
under returned tensors for more detail.output_hidden_states (
bool
, optional) — Whether or not to return the hidden states of all layers. Seehidden_states
under returned tensors for more detail.return_dict (
bool
, optional) — Whether or not to return a ModelOutput instead of a plain tuple.start_positions (
torch.LongTensor
of shape(batch_size,)
, optional) — Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (sequence_length
). Position outside of the sequence are not taken into account for computing the loss.end_positions (
torch.LongTensor
of shape(batch_size,)
, optional) — Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (sequence_length
). Position outside of the sequence are not taken into account for computing the loss.
Returns
transformers.modeling_outputs.QuestionAnsweringModelOutput or tuple(torch.FloatTensor)
A transformers.modeling_outputs.QuestionAnsweringModelOutput or a tuple of torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various elements depending on the configuration (NystromformerConfig) and inputs.
loss (
torch.FloatTensor
of shape(1,)
, optional, returned whenlabels
is provided) — Total span extraction loss is the sum of a Cross-Entropy for the start and end positions.start_logits (
torch.FloatTensor
of shape(batch_size, sequence_length)
) — Span-start scores (before SoftMax).end_logits (
torch.FloatTensor
of shape(batch_size, sequence_length)
) — Span-end scores (before SoftMax).hidden_states (
tuple(torch.FloatTensor)
, optional, returned whenoutput_hidden_states=True
is passed or whenconfig.output_hidden_states=True
) — Tuple oftorch.FloatTensor
(one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size)
.Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (
tuple(torch.FloatTensor)
, optional, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) — Tuple oftorch.FloatTensor
(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length)
.Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
The NystromformerForQuestionAnswering forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.
Example:
Copied
Last updated