Diffusers BOINC AI docs
  • 🌍GET STARTED
    • Diffusers
    • Quicktour
    • Effective and efficient diffusion
    • Installation
  • 🌍TUTORIALS
    • Overview
    • Understanding models and schedulers
    • AutoPipeline
    • Train a diffusion model
  • 🌍USING DIFFUSERS
    • 🌍LOADING & HUB
      • Overview
      • Load pipelines, models, and schedulers
      • Load and compare different schedulers
      • Load community pipelines
      • Load safetensors
      • Load different Stable Diffusion formats
      • Push files to the Hub
    • 🌍TASKS
      • Unconditional image generation
      • Text-to-image
      • Image-to-image
      • Inpainting
      • Depth-to-image
    • 🌍TECHNIQUES
      • Textual inversion
      • Distributed inference with multiple GPUs
      • Improve image quality with deterministic generation
      • Control image brightness
      • Prompt weighting
    • 🌍PIPELINES FOR INFERENCE
      • Overview
      • Stable Diffusion XL
      • ControlNet
      • Shap-E
      • DiffEdit
      • Distilled Stable Diffusion inference
      • Create reproducible pipelines
      • Community pipelines
      • How to contribute a community pipeline
    • 🌍TRAINING
      • Overview
      • Create a dataset for training
      • Adapt a model to a new task
      • Unconditional image generation
      • Textual Inversion
      • DreamBooth
      • Text-to-image
      • Low-Rank Adaptation of Large Language Models (LoRA)
      • ControlNet
      • InstructPix2Pix Training
      • Custom Diffusion
      • T2I-Adapters
    • 🌍TAKING DIFFUSERS BEYOND IMAGES
      • Other Modalities
  • 🌍OPTIMIZATION/SPECIAL HARDWARE
    • Overview
    • Memory and Speed
    • Torch2.0 support
    • Stable Diffusion in JAX/Flax
    • xFormers
    • ONNX
    • OpenVINO
    • Core ML
    • MPS
    • Habana Gaudi
    • Token Merging
  • 🌍CONCEPTUAL GUIDES
    • Philosophy
    • Controlled generation
    • How to contribute?
    • Diffusers' Ethical Guidelines
    • Evaluating Diffusion Models
  • 🌍API
    • 🌍MAIN CLASSES
      • Attention Processor
      • Diffusion Pipeline
      • Logging
      • Configuration
      • Outputs
      • Loaders
      • Utilities
      • VAE Image Processor
    • 🌍MODELS
      • Overview
      • UNet1DModel
      • UNet2DModel
      • UNet2DConditionModel
      • UNet3DConditionModel
      • VQModel
      • AutoencoderKL
      • AsymmetricAutoencoderKL
      • Tiny AutoEncoder
      • Transformer2D
      • Transformer Temporal
      • Prior Transformer
      • ControlNet
    • 🌍PIPELINES
      • Overview
      • AltDiffusion
      • Attend-and-Excite
      • Audio Diffusion
      • AudioLDM
      • AudioLDM 2
      • AutoPipeline
      • Consistency Models
      • ControlNet
      • ControlNet with Stable Diffusion XL
      • Cycle Diffusion
      • Dance Diffusion
      • DDIM
      • DDPM
      • DeepFloyd IF
      • DiffEdit
      • DiT
      • IF
      • PaInstructPix2Pix
      • Kandinsky
      • Kandinsky 2.2
      • Latent Diffusionge
      • MultiDiffusion
      • MusicLDM
      • PaintByExample
      • Parallel Sampling of Diffusion Models
      • Pix2Pix Zero
      • PNDM
      • RePaint
      • Score SDE VE
      • Self-Attention Guidance
      • Semantic Guidance
      • Shap-E
      • Spectrogram Diffusion
      • 🌍STABLE DIFFUSION
        • Overview
        • Text-to-image
        • Image-to-image
        • Inpainting
        • Depth-to-image
        • Image variation
        • Safe Stable Diffusion
        • Stable Diffusion 2
        • Stable Diffusion XL
        • Latent upscaler
        • Super-resolution
        • LDM3D Text-to-(RGB, Depth)
        • Stable Diffusion T2I-adapter
        • GLIGEN (Grounded Language-to-Image Generation)
      • Stable unCLIP
      • Stochastic Karras VE
      • Text-to-image model editing
      • Text-to-video
      • Text2Video-Zero
      • UnCLIP
      • Unconditional Latent Diffusion
      • UniDiffuser
      • Value-guided sampling
      • Versatile Diffusion
      • VQ Diffusion
      • Wuerstchen
    • 🌍SCHEDULERS
      • Overview
      • CMStochasticIterativeScheduler
      • DDIMInverseScheduler
      • DDIMScheduler
      • DDPMScheduler
      • DEISMultistepScheduler
      • DPMSolverMultistepInverse
      • DPMSolverMultistepScheduler
      • DPMSolverSDEScheduler
      • DPMSolverSinglestepScheduler
      • EulerAncestralDiscreteScheduler
      • EulerDiscreteScheduler
      • HeunDiscreteScheduler
      • IPNDMScheduler
      • KarrasVeScheduler
      • KDPM2AncestralDiscreteScheduler
      • KDPM2DiscreteScheduler
      • LMSDiscreteScheduler
      • PNDMScheduler
      • RePaintScheduler
      • ScoreSdeVeScheduler
      • ScoreSdeVpScheduler
      • UniPCMultistepScheduler
      • VQDiffusionScheduler
Powered by GitBook
On this page
  • KDPM2AncestralDiscreteScheduler
  • KDPM2AncestralDiscreteScheduler
  • SchedulerOutput
  1. API
  2. SCHEDULERS

KDPM2AncestralDiscreteScheduler

PreviousKarrasVeSchedulerNextKDPM2DiscreteScheduler

Last updated 1 year ago

KDPM2AncestralDiscreteScheduler

The KDPM2DiscreteScheduler with ancestral sampling is inspired by the paper, and the scheduler is ported from and created by .

The original codebase can be found at .

KDPM2AncestralDiscreteScheduler

class diffusers.KDPM2AncestralDiscreteScheduler

( num_train_timesteps: int = 1000beta_start: float = 0.00085beta_end: float = 0.012beta_schedule: str = 'linear'trained_betas: typing.Union[numpy.ndarray, typing.List[float], NoneType] = Noneprediction_type: str = 'epsilon'timestep_spacing: str = 'linspace'steps_offset: int = 0 )

Parameters

  • num_train_timesteps (int, defaults to 1000) β€” The number of diffusion steps to train the model.

  • beta_start (float, defaults to 0.00085) β€” The starting beta value of inference.

  • beta_end (float, defaults to 0.012) β€” The final beta value.

  • beta_schedule (str, defaults to "linear") β€” The beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from linear or scaled_linear.

  • trained_betas (np.ndarray, optional) β€” Pass an array of betas directly to the constructor to bypass beta_start and beta_end.

  • prediction_type (str, defaults to epsilon, optional) β€” Prediction type of the scheduler function; can be epsilon (predicts the noise of the diffusion process), sample (directly predicts the noisy sample) or v_prediction` (see section 2.4 of paper).

  • timestep_spacing (str, defaults to "linspace") β€” The way the timesteps should be scaled. Refer to Table 2 of the for more information.

  • steps_offset (int, defaults to 0) β€” An offset added to the inference steps. You can use a combination of offset=1 and set_alpha_to_one=False to make the last step use step 0 for the previous alpha product like in Stable Diffusion.

scale_model_input

( sample: FloatTensortimestep: typing.Union[float, torch.FloatTensor] ) β†’ torch.FloatTensor

Parameters

  • sample (torch.FloatTensor) β€” The input sample.

  • timestep (int, optional) β€” The current timestep in the diffusion chain.

Returns

torch.FloatTensor

A scaled input sample.

Ensures interchangeability with schedulers that need to scale the denoising model input depending on the current timestep.

set_timesteps

( num_inference_steps: intdevice: typing.Union[str, torch.device] = Nonenum_train_timesteps: typing.Optional[int] = None )

Parameters

  • num_inference_steps (int) β€” The number of diffusion steps used when generating samples with a pre-trained model.

  • device (str or torch.device, optional) β€” The device to which the timesteps should be moved to. If None, the timesteps are not moved.

Sets the discrete timesteps used for the diffusion chain (to be run before inference).

step

Parameters

  • model_output (torch.FloatTensor) β€” The direct output from learned diffusion model.

  • timestep (float) β€” The current discrete timestep in the diffusion chain.

  • sample (torch.FloatTensor) β€” A current instance of a sample created by the diffusion process.

  • generator (torch.Generator, optional) β€” A random number generator.

Returns

If return_dict is True, ~schedulers.scheduling_ddim.SchedulerOutput is returned, otherwise a tuple is returned where the first element is the sample tensor.

Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion process from the learned model outputs (most often the predicted noise).

SchedulerOutput

class diffusers.schedulers.scheduling_utils.SchedulerOutput

( prev_sample: FloatTensor )

Parameters

  • prev_sample (torch.FloatTensor of shape (batch_size, num_channels, height, width) for images) β€” Computed sample (x_{t-1}) of previous timestep. prev_sample should be used as next model input in the denoising loop.

Base class for the output of a scheduler’s step function.

KDPM2DiscreteScheduler with ancestral sampling is inspired by the DPMSolver2 and Algorithm 2 from the paper.

This model inherits from and . Check the superclass documentation for the generic methods the library implements for all schedulers such as loading and saving.

( model_output: typing.Union[torch.FloatTensor, numpy.ndarray]timestep: typing.Union[float, torch.FloatTensor]sample: typing.Union[torch.FloatTensor, numpy.ndarray]generator: typing.Optional[torch._C.Generator] = Nonereturn_dict: bool = True ) β†’ or tuple

return_dict (bool) β€” Whether or not to return a or tuple.

or tuple

🌍
🌍
Elucidating the Design Space of Diffusion-Based Generative Models
Katherine Crowson
crowsonkb/k-diffusion
<source>
Imagen Video
Common Diffusion Noise Schedules and Sample Steps are Flawed
Elucidating the Design Space of Diffusion-Based Generative Models
SchedulerMixin
ConfigMixin
<source>
<source>
<source>
SchedulerOutput
SchedulerOutput
SchedulerOutput
<source>