EulerAncestralDiscreteScheduler

EulerAncestralDiscreteScheduler

A scheduler that uses ancestral sampling with Euler method steps. This is a fast scheduler which can often generate good outputs in 20-30 steps. The scheduler is based on the original k-diffusion implementation by Katherine Crowson.

EulerAncestralDiscreteScheduler

class diffusers.EulerAncestralDiscreteScheduler

<source>

( num_train_timesteps: int = 1000beta_start: float = 0.0001beta_end: float = 0.02beta_schedule: str = 'linear'trained_betas: typing.Union[numpy.ndarray, typing.List[float], NoneType] = Noneprediction_type: str = 'epsilon'timestep_spacing: str = 'linspace'steps_offset: int = 0 )

Parameters

  • num_train_timesteps (int, defaults to 1000) β€” The number of diffusion steps to train the model.

  • beta_start (float, defaults to 0.0001) β€” The starting beta value of inference.

  • beta_end (float, defaults to 0.02) β€” The final beta value.

  • beta_schedule (str, defaults to "linear") β€” The beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from linear or scaled_linear.

  • trained_betas (np.ndarray, optional) β€” Pass an array of betas directly to the constructor to bypass beta_start and beta_end.

  • prediction_type (str, defaults to epsilon, optional) β€” Prediction type of the scheduler function; can be epsilon (predicts the noise of the diffusion process), sample (directly predicts the noisy sample) or v_prediction` (see section 2.4 of Imagen Video paper).

  • timestep_spacing (str, defaults to "linspace") β€” The way the timesteps should be scaled. Refer to Table 2 of the Common Diffusion Noise Schedules and Sample Steps are Flawed for more information.

  • steps_offset (int, defaults to 0) β€” An offset added to the inference steps. You can use a combination of offset=1 and set_alpha_to_one=False to make the last step use step 0 for the previous alpha product like in Stable Diffusion.

Ancestral sampling with Euler method steps.

This model inherits from SchedulerMixin and ConfigMixin. Check the superclass documentation for the generic methods the library implements for all schedulers such as loading and saving.

scale_model_input

<source>

( sample: FloatTensortimestep: typing.Union[float, torch.FloatTensor] ) β†’ torch.FloatTensor

Parameters

  • sample (torch.FloatTensor) β€” The input sample.

  • timestep (int, optional) β€” The current timestep in the diffusion chain.

Returns

torch.FloatTensor

A scaled input sample.

Ensures interchangeability with schedulers that need to scale the denoising model input depending on the current timestep. Scales the denoising model input by (sigma**2 + 1) ** 0.5 to match the Euler algorithm.

set_timesteps

<source>

( num_inference_steps: intdevice: typing.Union[str, torch.device] = None )

Parameters

  • num_inference_steps (int) β€” The number of diffusion steps used when generating samples with a pre-trained model.

  • device (str or torch.device, optional) β€” The device to which the timesteps should be moved to. If None, the timesteps are not moved.

Sets the discrete timesteps used for the diffusion chain (to be run before inference).

step

<source>

( model_output: FloatTensortimestep: typing.Union[float, torch.FloatTensor]sample: FloatTensorgenerator: typing.Optional[torch._C.Generator] = Nonereturn_dict: bool = True ) β†’ EulerAncestralDiscreteSchedulerOutput or tuple

Parameters

  • model_output (torch.FloatTensor) β€” The direct output from learned diffusion model.

  • timestep (float) β€” The current discrete timestep in the diffusion chain.

  • sample (torch.FloatTensor) β€” A current instance of a sample created by the diffusion process.

  • generator (torch.Generator, optional) β€” A random number generator.

  • return_dict (bool) β€” Whether or not to return a EulerAncestralDiscreteSchedulerOutput or tuple.

Returns

EulerAncestralDiscreteSchedulerOutput or tuple

If return_dict is True, EulerAncestralDiscreteSchedulerOutput is returned, otherwise a tuple is returned where the first element is the sample tensor.

Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion process from the learned model outputs (most often the predicted noise).

EulerAncestralDiscreteSchedulerOutput

class diffusers.schedulers.scheduling_euler_ancestral_discrete.EulerAncestralDiscreteSchedulerOutput

<source>

( prev_sample: FloatTensorpred_original_sample: typing.Optional[torch.FloatTensor] = None )

Parameters

  • prev_sample (torch.FloatTensor of shape (batch_size, num_channels, height, width) for images) β€” Computed sample (x_{t-1}) of previous timestep. prev_sample should be used as next model input in the denoising loop.

  • pred_original_sample (torch.FloatTensor of shape (batch_size, num_channels, height, width) for images) β€” The predicted denoised sample (x_{0}) based on the model output from the current timestep. pred_original_sample can be used to preview progress or for guidance.

Output class for the scheduler’s step function output.

Last updated