Diffusers BOINC AI docs
  • 🌍GET STARTED
    • Diffusers
    • Quicktour
    • Effective and efficient diffusion
    • Installation
  • 🌍TUTORIALS
    • Overview
    • Understanding models and schedulers
    • AutoPipeline
    • Train a diffusion model
  • 🌍USING DIFFUSERS
    • 🌍LOADING & HUB
      • Overview
      • Load pipelines, models, and schedulers
      • Load and compare different schedulers
      • Load community pipelines
      • Load safetensors
      • Load different Stable Diffusion formats
      • Push files to the Hub
    • 🌍TASKS
      • Unconditional image generation
      • Text-to-image
      • Image-to-image
      • Inpainting
      • Depth-to-image
    • 🌍TECHNIQUES
      • Textual inversion
      • Distributed inference with multiple GPUs
      • Improve image quality with deterministic generation
      • Control image brightness
      • Prompt weighting
    • 🌍PIPELINES FOR INFERENCE
      • Overview
      • Stable Diffusion XL
      • ControlNet
      • Shap-E
      • DiffEdit
      • Distilled Stable Diffusion inference
      • Create reproducible pipelines
      • Community pipelines
      • How to contribute a community pipeline
    • 🌍TRAINING
      • Overview
      • Create a dataset for training
      • Adapt a model to a new task
      • Unconditional image generation
      • Textual Inversion
      • DreamBooth
      • Text-to-image
      • Low-Rank Adaptation of Large Language Models (LoRA)
      • ControlNet
      • InstructPix2Pix Training
      • Custom Diffusion
      • T2I-Adapters
    • 🌍TAKING DIFFUSERS BEYOND IMAGES
      • Other Modalities
  • 🌍OPTIMIZATION/SPECIAL HARDWARE
    • Overview
    • Memory and Speed
    • Torch2.0 support
    • Stable Diffusion in JAX/Flax
    • xFormers
    • ONNX
    • OpenVINO
    • Core ML
    • MPS
    • Habana Gaudi
    • Token Merging
  • 🌍CONCEPTUAL GUIDES
    • Philosophy
    • Controlled generation
    • How to contribute?
    • Diffusers' Ethical Guidelines
    • Evaluating Diffusion Models
  • 🌍API
    • 🌍MAIN CLASSES
      • Attention Processor
      • Diffusion Pipeline
      • Logging
      • Configuration
      • Outputs
      • Loaders
      • Utilities
      • VAE Image Processor
    • 🌍MODELS
      • Overview
      • UNet1DModel
      • UNet2DModel
      • UNet2DConditionModel
      • UNet3DConditionModel
      • VQModel
      • AutoencoderKL
      • AsymmetricAutoencoderKL
      • Tiny AutoEncoder
      • Transformer2D
      • Transformer Temporal
      • Prior Transformer
      • ControlNet
    • 🌍PIPELINES
      • Overview
      • AltDiffusion
      • Attend-and-Excite
      • Audio Diffusion
      • AudioLDM
      • AudioLDM 2
      • AutoPipeline
      • Consistency Models
      • ControlNet
      • ControlNet with Stable Diffusion XL
      • Cycle Diffusion
      • Dance Diffusion
      • DDIM
      • DDPM
      • DeepFloyd IF
      • DiffEdit
      • DiT
      • IF
      • PaInstructPix2Pix
      • Kandinsky
      • Kandinsky 2.2
      • Latent Diffusionge
      • MultiDiffusion
      • MusicLDM
      • PaintByExample
      • Parallel Sampling of Diffusion Models
      • Pix2Pix Zero
      • PNDM
      • RePaint
      • Score SDE VE
      • Self-Attention Guidance
      • Semantic Guidance
      • Shap-E
      • Spectrogram Diffusion
      • 🌍STABLE DIFFUSION
        • Overview
        • Text-to-image
        • Image-to-image
        • Inpainting
        • Depth-to-image
        • Image variation
        • Safe Stable Diffusion
        • Stable Diffusion 2
        • Stable Diffusion XL
        • Latent upscaler
        • Super-resolution
        • LDM3D Text-to-(RGB, Depth)
        • Stable Diffusion T2I-adapter
        • GLIGEN (Grounded Language-to-Image Generation)
      • Stable unCLIP
      • Stochastic Karras VE
      • Text-to-image model editing
      • Text-to-video
      • Text2Video-Zero
      • UnCLIP
      • Unconditional Latent Diffusion
      • UniDiffuser
      • Value-guided sampling
      • Versatile Diffusion
      • VQ Diffusion
      • Wuerstchen
    • 🌍SCHEDULERS
      • Overview
      • CMStochasticIterativeScheduler
      • DDIMInverseScheduler
      • DDIMScheduler
      • DDPMScheduler
      • DEISMultistepScheduler
      • DPMSolverMultistepInverse
      • DPMSolverMultistepScheduler
      • DPMSolverSDEScheduler
      • DPMSolverSinglestepScheduler
      • EulerAncestralDiscreteScheduler
      • EulerDiscreteScheduler
      • HeunDiscreteScheduler
      • IPNDMScheduler
      • KarrasVeScheduler
      • KDPM2AncestralDiscreteScheduler
      • KDPM2DiscreteScheduler
      • LMSDiscreteScheduler
      • PNDMScheduler
      • RePaintScheduler
      • ScoreSdeVeScheduler
      • ScoreSdeVpScheduler
      • UniPCMultistepScheduler
      • VQDiffusionScheduler
Powered by GitBook
On this page
  • DDPMScheduler
  • DDPMScheduler
  • DDPMSchedulerOutput
  1. API
  2. SCHEDULERS

DDPMScheduler

PreviousDDIMSchedulerNextDEISMultistepScheduler

Last updated 1 year ago

DDPMScheduler

(DDPM) by Jonathan Ho, Ajay Jain and Pieter Abbeel proposes a diffusion based model of the same name. In the context of the 🌍 Diffusers library, DDPM refers to the discrete denoising scheduler from the paper as well as the pipeline.

The abstract from the paper is:

We present high quality image synthesis results using diffusion probabilistic models, a class of latent variable models inspired by considerations from nonequilibrium thermodynamics. Our best results are obtained by training on a weighted variational bound designed according to a novel connection between diffusion probabilistic models and denoising score matching with Langevin dynamics, and our models naturally admit a progressive lossy decompression scheme that can be interpreted as a generalization of autoregressive decoding. On the unconditional CIFAR10 dataset, we obtain an Inception score of 9.46 and a state-of-the-art FID score of 3.17. On 256x256 LSUN, we obtain sample quality similar to ProgressiveGAN.

DDPMScheduler

class diffusers.DDPMScheduler

( num_train_timesteps: int = 1000beta_start: float = 0.0001beta_end: float = 0.02beta_schedule: str = 'linear'trained_betas: typing.Union[numpy.ndarray, typing.List[float], NoneType] = Nonevariance_type: str = 'fixed_small'clip_sample: bool = Trueprediction_type: str = 'epsilon'thresholding: bool = Falsedynamic_thresholding_ratio: float = 0.995clip_sample_range: float = 1.0sample_max_value: float = 1.0timestep_spacing: str = 'leading'steps_offset: int = 0 )

Parameters

  • num_train_timesteps (int, defaults to 1000) β€” The number of diffusion steps to train the model.

  • beta_start (float, defaults to 0.0001) β€” The starting beta value of inference.

  • beta_end (float, defaults to 0.02) β€” The final beta value.

  • beta_schedule (str, defaults to "linear") β€” The beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from linear, scaled_linear, or squaredcos_cap_v2.

  • variance_type (str, defaults to "fixed_small") β€” Clip the variance when adding noise to the denoised sample. Choose from fixed_small, fixed_small_log, fixed_large, fixed_large_log, learned or learned_range.

  • clip_sample (bool, defaults to True) β€” Clip the predicted sample for numerical stability.

  • clip_sample_range (float, defaults to 1.0) β€” The maximum magnitude for sample clipping. Valid only when clip_sample=True.

  • prediction_type (str, defaults to epsilon, optional) β€” Prediction type of the scheduler function; can be epsilon (predicts the noise of the diffusion process), sample (directly predicts the noisy sample) or v_prediction` (see section 2.4 of paper).

  • thresholding (bool, defaults to False) β€” Whether to use the β€œdynamic thresholding” method. This is unsuitable for latent-space diffusion models such as Stable Diffusion.

  • dynamic_thresholding_ratio (float, defaults to 0.995) β€” The ratio for the dynamic thresholding method. Valid only when thresholding=True.

  • sample_max_value (float, defaults to 1.0) β€” The threshold value for dynamic thresholding. Valid only when thresholding=True.

  • timestep_spacing (str, defaults to "leading") β€” The way the timesteps should be scaled. Refer to Table 2 of the for more information.

  • steps_offset (int, defaults to 0) β€” An offset added to the inference steps. You can use a combination of offset=1 and set_alpha_to_one=False to make the last step use step 0 for the previous alpha product like in Stable Diffusion.

DDPMScheduler explores the connections between denoising score matching and Langevin dynamics sampling.

scale_model_input

( sample: FloatTensortimestep: typing.Optional[int] = None ) β†’ torch.FloatTensor

Parameters

  • sample (torch.FloatTensor) β€” The input sample.

  • timestep (int, optional) β€” The current timestep in the diffusion chain.

Returns

torch.FloatTensor

A scaled input sample.

Ensures interchangeability with schedulers that need to scale the denoising model input depending on the current timestep.

set_timesteps

( num_inference_steps: typing.Optional[int] = Nonedevice: typing.Union[str, torch.device] = Nonetimesteps: typing.Optional[typing.List[int]] = None )

Parameters

  • num_inference_steps (int) β€” The number of diffusion steps used when generating samples with a pre-trained model. If used, timesteps must be None.

  • device (str or torch.device, optional) β€” The device to which the timesteps should be moved to. If None, the timesteps are not moved.

  • timesteps (List[int], optional) β€” Custom timesteps used to support arbitrary spacing between timesteps. If None, then the default timestep spacing strategy of equal spacing between timesteps is used. If timesteps is passed, num_inference_steps must be None.

Sets the discrete timesteps used for the diffusion chain (to be run before inference).

step

Parameters

  • model_output (torch.FloatTensor) β€” The direct output from learned diffusion model.

  • timestep (float) β€” The current discrete timestep in the diffusion chain.

  • sample (torch.FloatTensor) β€” A current instance of a sample created by the diffusion process.

  • generator (torch.Generator, optional) β€” A random number generator.

Returns

Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion process from the learned model outputs (most often the predicted noise).

DDPMSchedulerOutput

class diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput

( prev_sample: FloatTensorpred_original_sample: typing.Optional[torch.FloatTensor] = None )

Parameters

  • prev_sample (torch.FloatTensor of shape (batch_size, num_channels, height, width) for images) β€” Computed sample (x_{t-1}) of previous timestep. prev_sample should be used as next model input in the denoising loop.

  • pred_original_sample (torch.FloatTensor of shape (batch_size, num_channels, height, width) for images) β€” The predicted denoised sample (x_{0}) based on the model output from the current timestep. pred_original_sample can be used to preview progress or for guidance.

Output class for the scheduler’s step function output.

This model inherits from and . Check the superclass documentation for the generic methods the library implements for all schedulers such as loading and saving.

( model_output: FloatTensortimestep: intsample: FloatTensorgenerator = Nonereturn_dict: bool = True ) β†’ or tuple

return_dict (bool, optional, defaults to True) β€” Whether or not to return a or tuple.

or tuple

If return_dict is True, is returned, otherwise a tuple is returned where the first element is the sample tensor.

🌍
🌍
Denoising Diffusion Probabilistic Models
<source>
Imagen Video
Common Diffusion Noise Schedules and Sample Steps are Flawed
SchedulerMixin
ConfigMixin
<source>
<source>
<source>
DDPMSchedulerOutput
DDPMSchedulerOutput
DDPMSchedulerOutput
DDPMSchedulerOutput
<source>