Cycle Diffusion
Last updated
Last updated
Cycle Diffusion is a text guided image-to-image generation model proposed in by Chen Henry Wu, Fernando De la Torre.
The abstract from the paper is:
Diffusion models have achieved unprecedented performance in generative modeling. The commonly-adopted formulation of the latent code of diffusion models is a sequence of gradually denoised samples, as opposed to the simpler (e.g., Gaussian) latent space of GANs, VAEs, and normalizing flows. This paper provides an alternative, Gaussian formulation of the latent space of various diffusion models, as well as an invertible DPM-Encoder that maps images into the latent space. While our formulation is purely based on the definition of diffusion models, we demonstrate several intriguing consequences. (1) Empirically, we observe that a common latent space emerges from two diffusion models trained independently on related domains. In light of this finding, we propose CycleDiffusion, which uses DPM-Encoder for unpaired image-to-image translation. Furthermore, applying CycleDiffusion to text-to-image diffusion models, we show that large-scale text-to-image diffusion models can be used as zero-shot image-to-image editors. (2) One can guide pre-trained diffusion models and GANs by controlling the latent codes in a unified, plug-and-play formulation based on energy-based models. Using the CLIP model and a face recognition model as guidance, we demonstrate that diffusion models have better coverage of low-density sub-populations and individuals than GANs.
Make sure to check out the Schedulers to learn how to explore the tradeoff between scheduler speed and quality, and see the section to learn how to efficiently load the same components into multiple pipelines.
( vae: AutoencoderKLtext_encoder: CLIPTextModeltokenizer: CLIPTokenizerunet: UNet2DConditionModelscheduler: DDIMSchedulersafety_checker: StableDiffusionSafetyCheckerfeature_extractor: CLIPImageProcessorrequires_safety_checker: bool = True )
Parameters
vae () β Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations.
text_encoder (CLIPTextModel
) β Frozen text-encoder ().
tokenizer (CLIPTokenizer
) β A CLIPTokenizer
to tokenize text.
unet () β A UNet2DConditionModel
to denoise the encoded image latents.
scheduler () β A scheduler to be used in combination with unet
to denoise the encoded image latents. Can only be an instance of .
safety_checker (StableDiffusionSafetyChecker
) β Classification module that estimates whether generated images could be considered offensive or harmful. Please refer to the for more details about a modelβs potential harms.
feature_extractor (CLIPImageProcessor
) β A CLIPImageProcessor
to extract features from generated images; used as inputs to the safety_checker
.
Pipeline for text-guided image to image generation using Stable Diffusion.
__call__
Parameters
prompt (str
or List[str]
) β The prompt or prompts to guide the image generation.
image (torch.FloatTensor
np.ndarray
, PIL.Image.Image
, List[torch.FloatTensor]
, List[PIL.Image.Image]
, or List[np.ndarray]
) β Image
or tensor representing an image batch to be used as the starting point. Can also accept image latents as image
, but if passing latents directly it is not encoded again.
strength (float
, optional, defaults to 0.8) β Indicates extent to transform the reference image
. Must be between 0 and 1. image
is used as a starting point and more noise is added the higher the strength
. The number of denoising steps depends on the amount of noise initially added. When strength
is 1, added noise is maximum and the denoising process runs for the full number of iterations specified in num_inference_steps
. A value of 1 essentially ignores image
.
num_inference_steps (int
, optional, defaults to 50) β The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. This parameter is modulated by strength
.
guidance_scale (float
, optional, defaults to 7.5) β A higher guidance scale value encourages the model to generate images closely linked to the text prompt
at the expense of lower image quality. Guidance scale is enabled when guidance_scale > 1
.
source_guidance_scale (float
, optional, defaults to 1) β Guidance scale for the source prompt. This is useful to control the amount of influence the source prompt has for encoding.
num_images_per_prompt (int
, optional, defaults to 1) β The number of images to generate per prompt.
prompt_embeds (torch.FloatTensor
, optional) β Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not provided, text embeddings are generated from the prompt
input argument.
negative_prompt_embeds (torch.FloatTensor
, optional) β Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not provided, negative_prompt_embeds
are generated from the negative_prompt
input argument.
output_type (str
, optional, defaults to "pil"
) β The output format of the generated image. Choose between PIL.Image
or np.array
.
callback (Callable
, optional) β A function that calls every callback_steps
steps during inference. The function is called with the following arguments: callback(step: int, timestep: int, latents: torch.FloatTensor)
.
callback_steps (int
, optional, defaults to 1) β The frequency at which the callback
function is called. If not specified, the callback is called at every step.
Returns
The call function to the pipeline for generation.
Example:
Copied
encode_prompt
( promptdevicenum_images_per_promptdo_classifier_free_guidancenegative_prompt = Noneprompt_embeds: typing.Optional[torch.FloatTensor] = Nonenegative_prompt_embeds: typing.Optional[torch.FloatTensor] = Nonelora_scale: typing.Optional[float] = None )
Parameters
prompt (str
or List[str]
, optional) β prompt to be encoded device β (torch.device
): torch device
num_images_per_prompt (int
) β number of images that should be generated per prompt
do_classifier_free_guidance (bool
) β whether to use classifier free guidance or not
negative_prompt (str
or List[str]
, optional) β The prompt or prompts not to guide the image generation. If not defined, one has to pass negative_prompt_embeds
instead. Ignored when not using guidance (i.e., ignored if guidance_scale
is less than 1
).
prompt_embeds (torch.FloatTensor
, optional) β Pre-generated text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, text embeddings will be generated from prompt
input argument.
negative_prompt_embeds (torch.FloatTensor
, optional) β Pre-generated negative text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, negative_prompt_embeds will be generated from negative_prompt
input argument.
lora_scale (float
, optional) β A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
Encodes the prompt into text encoder hidden states.
( images: typing.Union[typing.List[PIL.Image.Image], numpy.ndarray]nsfw_content_detected: typing.Optional[typing.List[bool]] )
Parameters
images (List[PIL.Image.Image]
or np.ndarray
) β List of denoised PIL images of length batch_size
or NumPy array of shape (batch_size, height, width, num_channels)
.
nsfw_content_detected (List[bool]
) β List indicating whether the corresponding generated image contains βnot-safe-for-workβ (nsfw) content or None
if safety checking could not be performed.
Output class for Stable Diffusion pipelines.
This model inherits from . Check the superclass documentation for the generic methods implemented for all pipelines (downloading, saving, running on a particular device, etc.).
( prompt: typing.Union[str, typing.List[str]]source_prompt: typing.Union[str, typing.List[str]]image: typing.Union[PIL.Image.Image, numpy.ndarray, torch.FloatTensor, typing.List[PIL.Image.Image], typing.List[numpy.ndarray], typing.List[torch.FloatTensor]] = Nonestrength: float = 0.8num_inference_steps: typing.Optional[int] = 50guidance_scale: typing.Optional[float] = 7.5source_guidance_scale: typing.Optional[float] = 1num_images_per_prompt: typing.Optional[int] = 1eta: typing.Optional[float] = 0.1generator: typing.Union[torch._C.Generator, typing.List[torch._C.Generator], NoneType] = Noneprompt_embeds: typing.Optional[torch.FloatTensor] = Noneoutput_type: typing.Optional[str] = 'pil'return_dict: bool = Truecallback: typing.Union[typing.Callable[[int, int, torch.FloatTensor], NoneType], NoneType] = Nonecallback_steps: int = 1cross_attention_kwargs: typing.Union[typing.Dict[str, typing.Any], NoneType] = None ) β or tuple
eta (float
, optional, defaults to 0.0) β Corresponds to parameter eta (Ξ·) from the paper. Only applies to the , and is ignored in other schedulers.
generator (torch.Generator
or List[torch.Generator]
, optional) β A to make generation deterministic.
return_dict (bool
, optional, defaults to True
) β Whether or not to return a instead of a plain tuple.
cross_attention_kwargs (dict
, optional) β A kwargs dictionary that if specified is passed along to the AttentionProcessor
as defined in .
or tuple
If return_dict
is True
, is returned, otherwise a tuple
is returned where the first element is a list with the generated images and the second element is a list of bool
s indicating whether the corresponding generated image contains βnot-safe-for-workβ (nsfw) content.