Latent upscaler
Last updated
Last updated
The Stable Diffusion latent upscaler model was created by in collaboration with . It is used to enhance the output image resolution by a factor of 2 (see this demo for a demonstration of the original implementation).
Make sure to check out the Stable Diffusion section to learn how to explore the tradeoff between scheduler speed and quality, and how to reuse pipeline components efficiently!
If youβre interested in using one of the official checkpoints for a task, explore the , , and Hub organizations!
( vae: AutoencoderKLtext_encoder: CLIPTextModeltokenizer: CLIPTokenizerunet: UNet2DConditionModelscheduler: EulerDiscreteScheduler )
Parameters
vae () β Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations.
text_encoder (CLIPTextModel
) β Frozen text-encoder ().
tokenizer (CLIPTokenizer
) β A CLIPTokenizer
to tokenize text.
unet () β A UNet2DConditionModel
to denoise the encoded image latents.
scheduler () β A to be used in combination with unet
to denoise the encoded image latents.
Pipeline for upscaling Stable Diffusion output image resolution by a factor of 2.
__call__
Parameters
prompt (str
or List[str]
) β The prompt or prompts to guide image upscaling.
image (torch.FloatTensor
, PIL.Image.Image
, np.ndarray
, List[torch.FloatTensor]
, List[PIL.Image.Image]
, or List[np.ndarray]
) β Image
or tensor representing an image batch to be upscaled. If itβs a tensor, it can be either a latent output from a Stable Diffusion model or an image tensor in the range [-1, 1]
. It is considered a latent
if image.shape[1]
is 4
; otherwise, it is considered to be an image representation and encoded using this pipelineβs vae
encoder.
num_inference_steps (int
, optional, defaults to 50) β The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference.
guidance_scale (float
, optional, defaults to 7.5) β A higher guidance scale value encourages the model to generate images closely linked to the text prompt
at the expense of lower image quality. Guidance scale is enabled when guidance_scale > 1
.
negative_prompt (str
or List[str]
, optional) β The prompt or prompts to guide what to not include in image generation. If not defined, you need to pass negative_prompt_embeds
instead. Ignored when not using guidance (guidance_scale < 1
).
latents (torch.FloatTensor
, optional) β Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor is generated by sampling using the supplied random generator
.
output_type (str
, optional, defaults to "pil"
) β The output format of the generated image. Choose between PIL.Image
or np.array
.
callback (Callable
, optional) β A function that calls every callback_steps
steps during inference. The function is called with the following arguments: callback(step: int, timestep: int, latents: torch.FloatTensor)
.
callback_steps (int
, optional, defaults to 1) β The frequency at which the callback
function is called. If not specified, the callback is called at every step.
Returns
The call function to the pipeline for generation.
Examples:
Copied
enable_sequential_cpu_offload
( gpu_id: int = 0device: typing.Union[torch.device, str] = 'cuda' )
Offloads all models to CPU using π Accelerate, significantly reducing memory usage. When called, the state dicts of all torch.nn.Module
components (except those in self._exclude_from_cpu_offload
) are saved to CPU and then moved to torch.device('meta')
and loaded to GPU only when their specific submodule has its forward
method called. Offloading happens on a submodule basis. Memory savings are higher than with enable_model_cpu_offload
, but performance is lower.
enable_attention_slicing
( slice_size: typing.Union[str, int, NoneType] = 'auto' )
Parameters
slice_size (str
or int
, optional, defaults to "auto"
) β When "auto"
, halves the input to the attention heads, so attention will be computed in two steps. If "max"
, maximum amount of memory will be saved by running only one slice at a time. If a number is provided, uses as many slices as attention_head_dim // slice_size
. In this case, attention_head_dim
must be a multiple of slice_size
.
Enable sliced attention computation. When this option is enabled, the attention module splits the input tensor in slices to compute attention in several steps. For more than one attention head, the computation is performed sequentially over each head. This is useful to save some memory in exchange for a small speed decrease.
β οΈ Donβt enable attention slicing if youβre already using scaled_dot_product_attention
(SDPA) from PyTorch 2.0 or xFormers. These attention computations are already very memory efficient so you wonβt need to enable this function. If you enable attention slicing with SDPA or xFormers, it can lead to serious slow downs!
Examples:
Copied
disable_attention_slicing
( )
Disable sliced attention computation. If enable_attention_slicing
was previously called, attention is computed in one step.
enable_xformers_memory_efficient_attention
( attention_op: typing.Optional[typing.Callable] = None )
Parameters
β οΈ When memory efficient attention and sliced attention are both enabled, memory efficient attention takes precedent.
Examples:
Copied
disable_xformers_memory_efficient_attention
( )
( images: typing.Union[typing.List[PIL.Image.Image], numpy.ndarray]nsfw_content_detected: typing.Optional[typing.List[bool]] )
Parameters
images (List[PIL.Image.Image]
or np.ndarray
) β List of denoised PIL images of length batch_size
or NumPy array of shape (batch_size, height, width, num_channels)
.
nsfw_content_detected (List[bool]
) β List indicating whether the corresponding generated image contains βnot-safe-for-workβ (nsfw) content or None
if safety checking could not be performed.
Output class for Stable Diffusion pipelines.
This model inherits from . Check the superclass documentation for the generic methods implemented for all pipelines (downloading, saving, running on a particular device, etc.).
( prompt: typing.Union[str, typing.List[str]]image: typing.Union[PIL.Image.Image, numpy.ndarray, torch.FloatTensor, typing.List[PIL.Image.Image], typing.List[numpy.ndarray], typing.List[torch.FloatTensor]] = Nonenum_inference_steps: int = 75guidance_scale: float = 9.0negative_prompt: typing.Union[str, typing.List[str], NoneType] = Nonegenerator: typing.Union[torch._C.Generator, typing.List[torch._C.Generator], NoneType] = Nonelatents: typing.Optional[torch.FloatTensor] = Noneoutput_type: typing.Optional[str] = 'pil'return_dict: bool = Truecallback: typing.Union[typing.Callable[[int, int, torch.FloatTensor], NoneType], NoneType] = Nonecallback_steps: int = 1 ) β or tuple
eta (float
, optional, defaults to 0.0) β Corresponds to parameter eta (Ξ·) from the paper. Only applies to the , and is ignored in other schedulers.
generator (torch.Generator
or List[torch.Generator]
, optional) β A to make generation deterministic.
return_dict (bool
, optional, defaults to True
) β Whether or not to return a instead of a plain tuple.
or tuple
If return_dict
is True
, is returned, otherwise a tuple
is returned where the first element is a list with the generated images.
attention_op (Callable
, optional) β Override the default None
operator for use as op
argument to the function of xFormers.
Enable memory efficient attention from . When this option is enabled, you should observe lower GPU memory usage and a potential speed up during inference. Speed up during training is not guaranteed.
Disable memory efficient attention from .