EulerDiscreteScheduler
EulerDiscreteScheduler
The Euler scheduler (Algorithm 2) is from the Elucidating the Design Space of Diffusion-Based Generative Models paper by Karras et al. This is a fast scheduler which can often generate good outputs in 20-30 steps. The scheduler is based on the original k-diffusion implementation by Katherine Crowson.
EulerDiscreteScheduler
class diffusers.EulerDiscreteScheduler
( num_train_timesteps: int = 1000beta_start: float = 0.0001beta_end: float = 0.02beta_schedule: str = 'linear'trained_betas: typing.Union[numpy.ndarray, typing.List[float], NoneType] = Noneprediction_type: str = 'epsilon'interpolation_type: str = 'linear'use_karras_sigmas: typing.Optional[bool] = Falsetimestep_spacing: str = 'linspace'steps_offset: int = 0 )
Parameters
num_train_timesteps (
int, defaults to 1000) β The number of diffusion steps to train the model.beta_start (
float, defaults to 0.0001) β The startingbetavalue of inference.beta_end (
float, defaults to 0.02) β The finalbetavalue.beta_schedule (
str, defaults to"linear") β The beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose fromlinearorscaled_linear.trained_betas (
np.ndarray, optional) β Pass an array of betas directly to the constructor to bypassbeta_startandbeta_end.prediction_type (
str, defaults toepsilon, optional) β Prediction type of the scheduler function; can beepsilon(predicts the noise of the diffusion process),sample(directly predicts the noisy sample) orv_prediction` (see section 2.4 of Imagen Video paper).interpolation_type(
str, defaults to"linear", optional) β The interpolation type to compute intermediate sigmas for the scheduler denoising steps. Should be on of"linear"or"log_linear".use_karras_sigmas (
bool, optional, defaults toFalse) β Whether to use Karras sigmas for step sizes in the noise schedule during the sampling process. IfTrue, the sigmas are determined according to a sequence of noise levels {Οi}.timestep_spacing (
str, defaults to"linspace") β The way the timesteps should be scaled. Refer to Table 2 of the Common Diffusion Noise Schedules and Sample Steps are Flawed for more information.steps_offset (
int, defaults to 0) β An offset added to the inference steps. You can use a combination ofoffset=1andset_alpha_to_one=Falseto make the last step use step 0 for the previous alpha product like in Stable Diffusion.
Euler scheduler.
This model inherits from SchedulerMixin and ConfigMixin. Check the superclass documentation for the generic methods the library implements for all schedulers such as loading and saving.
scale_model_input
( sample: FloatTensortimestep: typing.Union[float, torch.FloatTensor] ) β torch.FloatTensor
Parameters
sample (
torch.FloatTensor) β The input sample.timestep (
int, optional) β The current timestep in the diffusion chain.
Returns
torch.FloatTensor
A scaled input sample.
Ensures interchangeability with schedulers that need to scale the denoising model input depending on the current timestep. Scales the denoising model input by (sigma**2 + 1) ** 0.5 to match the Euler algorithm.
set_timesteps
( num_inference_steps: intdevice: typing.Union[str, torch.device] = None )
Parameters
num_inference_steps (
int) β The number of diffusion steps used when generating samples with a pre-trained model.device (
strortorch.device, optional) β The device to which the timesteps should be moved to. IfNone, the timesteps are not moved.
Sets the discrete timesteps used for the diffusion chain (to be run before inference).
step
( model_output: FloatTensortimestep: typing.Union[float, torch.FloatTensor]sample: FloatTensors_churn: float = 0.0s_tmin: float = 0.0s_tmax: float = infs_noise: float = 1.0generator: typing.Optional[torch._C.Generator] = Nonereturn_dict: bool = True ) β EulerDiscreteSchedulerOutput or tuple
Parameters
model_output (
torch.FloatTensor) β The direct output from learned diffusion model.timestep (
float) β The current discrete timestep in the diffusion chain.sample (
torch.FloatTensor) β A current instance of a sample created by the diffusion process.s_churn (
float) βs_tmin (
float) βs_tmax (
float) βs_noise (
float, defaults to 1.0) β Scaling factor for noise added to the sample.generator (
torch.Generator, optional) β A random number generator.return_dict (
bool) β Whether or not to return a EulerDiscreteSchedulerOutput or tuple.
Returns
EulerDiscreteSchedulerOutput or tuple
If return_dict is True, EulerDiscreteSchedulerOutput is returned, otherwise a tuple is returned where the first element is the sample tensor.
Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion process from the learned model outputs (most often the predicted noise).
EulerDiscreteSchedulerOutput
class diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteSchedulerOutput
( prev_sample: FloatTensorpred_original_sample: typing.Optional[torch.FloatTensor] = None )
Parameters
prev_sample (
torch.FloatTensorof shape(batch_size, num_channels, height, width)for images) β Computed sample(x_{t-1})of previous timestep.prev_sampleshould be used as next model input in the denoising loop.pred_original_sample (
torch.FloatTensorof shape(batch_size, num_channels, height, width)for images) β The predicted denoised sample(x_{0})based on the model output from the current timestep.pred_original_samplecan be used to preview progress or for guidance.
Output class for the schedulerβs step function output.
Last updated