Transformer Temporal
Transformer Temporal
A Transformer model for video-like data.
TransformerTemporalModel
class diffusers.models.TransformerTemporalModel
( num_attention_heads: int = 16attention_head_dim: int = 88in_channels: typing.Optional[int] = Noneout_channels: typing.Optional[int] = Nonenum_layers: int = 1dropout: float = 0.0norm_num_groups: int = 32cross_attention_dim: typing.Optional[int] = Noneattention_bias: bool = Falsesample_size: typing.Optional[int] = Noneactivation_fn: str = 'geglu'norm_elementwise_affine: bool = Truedouble_self_attention: bool = True )
Parameters
num_attention_heads (
int, optional, defaults to 16) β The number of heads to use for multi-head attention.attention_head_dim (
int, optional, defaults to 88) β The number of channels in each head.in_channels (
int, optional) β The number of channels in the input and output (specify if the input is continuous).num_layers (
int, optional, defaults to 1) β The number of layers of Transformer blocks to use.dropout (
float, optional, defaults to 0.0) β The dropout probability to use.cross_attention_dim (
int, optional) β The number ofencoder_hidden_statesdimensions to use.sample_size (
int, optional) β The width of the latent images (specify if the input is discrete). This is fixed during training since it is used to learn a number of position embeddings.activation_fn (
str, optional, defaults to"geglu") β Activation function to use in feed-forward.attention_bias (
bool, optional) β Configure if theTransformerBlockattention should contain a bias parameter.double_self_attention (
bool, optional) β Configure if eachTransformerBlockshould contain two self-attention layers.
A Transformer model for video-like data.
forward
( hidden_statesencoder_hidden_states = Nonetimestep = Noneclass_labels = Nonenum_frames = 1cross_attention_kwargs = Nonereturn_dict: bool = True ) β TransformerTemporalModelOutput or tuple
Parameters
hidden_states (
torch.LongTensorof shape(batch size, num latent pixels)if discrete,torch.FloatTensorof shape(batch size, channel, height, width)if continuous) β Input hidden_states.encoder_hidden_states (
torch.LongTensorof shape(batch size, encoder_hidden_states dim), optional) β Conditional embeddings for cross attention layer. If not given, cross-attention defaults to self-attention.timestep (
torch.long, optional) β Used to indicate denoising step. Optional timestep to be applied as an embedding inAdaLayerNorm.class_labels (
torch.LongTensorof shape(batch size, num classes), optional) β Used to indicate class labels conditioning. Optional class labels to be applied as an embedding inAdaLayerZeroNorm.return_dict (
bool, optional, defaults toTrue) β Whether or not to return a UNet2DConditionOutput instead of a plain tuple.
Returns
TransformerTemporalModelOutput or tuple
If return_dict is True, an TransformerTemporalModelOutput is returned, otherwise a tuple where the first element is the sample tensor.
The TransformerTemporal forward method.
TransformerTemporalModelOutput
class diffusers.models.transformer_temporal.TransformerTemporalModelOutput
( sample: FloatTensor )
Parameters
sample (
torch.FloatTensorof shape(batch_size x num_frames, num_channels, height, width)) β The hidden states output conditioned onencoder_hidden_statesinput.
The output of TransformerTemporalModel.
Last updated