UNet2DConditionModel
Last updated
Last updated
The model was originally introduced by Ronneberger et al for biomedical image segmentation, but it is also commonly used in π Diffusers because it outputs images that are the same size as the input. It is one of the most important components of a diffusion system because it facilitates the actual diffusion process. There are several variants of the UNet model in π Diffusers, depending on itβs number of dimensions and whether it is a conditional model or not. This is a 2D UNet conditional model.
The abstract from the paper is:
There is large consent that successful training of deep networks requires many thousand annotated training samples. In this paper, we present a network and training strategy that relies on the strong use of data augmentation to use the available annotated samples more efficiently. The architecture consists of a contracting path to capture context and a symmetric expanding path that enables precise localization. We show that such a network can be trained end-to-end from very few images and outperforms the prior best method (a sliding-window convolutional network) on the ISBI challenge for segmentation of neuronal structures in electron microscopic stacks. Using the same network trained on transmitted light microscopy images (phase contrast and DIC) we won the ISBI cell tracking challenge 2015 in these categories by a large margin. Moreover, the network is fast. Segmentation of a 512x512 image takes less than a second on a recent GPU. The full implementation (based on Caffe) and the trained networks are available at .
( sample_size: typing.Optional[int] = Nonein_channels: int = 4out_channels: int = 4center_input_sample: bool = Falseflip_sin_to_cos: bool = Truefreq_shift: int = 0down_block_types: typing.Tuple[str] = ('CrossAttnDownBlock2D', 'CrossAttnDownBlock2D', 'CrossAttnDownBlock2D', 'DownBlock2D')mid_block_type: typing.Optional[str] = 'UNetMidBlock2DCrossAttn'up_block_types: typing.Tuple[str] = ('UpBlock2D', 'CrossAttnUpBlock2D', 'CrossAttnUpBlock2D', 'CrossAttnUpBlock2D')only_cross_attention: typing.Union[bool, typing.Tuple[bool]] = Falseblock_out_channels: typing.Tuple[int] = (320, 640, 1280, 1280)layers_per_block: typing.Union[int, typing.Tuple[int]] = 2downsample_padding: int = 1mid_block_scale_factor: float = 1dropout: float = 0.0act_fn: str = 'silu'norm_num_groups: typing.Optional[int] = 32norm_eps: float = 1e-05cross_attention_dim: typing.Union[int, typing.Tuple[int]] = 1280transformer_layers_per_block: typing.Union[int, typing.Tuple[int]] = 1encoder_hid_dim: typing.Optional[int] = Noneencoder_hid_dim_type: typing.Optional[str] = Noneattention_head_dim: typing.Union[int, typing.Tuple[int]] = 8num_attention_heads: typing.Union[int, typing.Tuple[int], NoneType] = Nonedual_cross_attention: bool = Falseuse_linear_projection: bool = Falseclass_embed_type: typing.Optional[str] = Noneaddition_embed_type: typing.Optional[str] = Noneaddition_time_embed_dim: typing.Optional[int] = Nonenum_class_embeds: typing.Optional[int] = Noneupcast_attention: bool = Falseresnet_time_scale_shift: str = 'default'resnet_skip_time_act: bool = Falseresnet_out_scale_factor: int = 1.0time_embedding_type: str = 'positional'time_embedding_dim: typing.Optional[int] = Nonetime_embedding_act_fn: typing.Optional[str] = Nonetimestep_post_act: typing.Optional[str] = Nonetime_cond_proj_dim: typing.Optional[int] = Noneconv_in_kernel: int = 3conv_out_kernel: int = 3projection_class_embeddings_input_dim: typing.Optional[int] = Noneattention_type: str = 'default'class_embeddings_concat: bool = Falsemid_block_only_cross_attention: typing.Optional[bool] = Nonecross_attention_norm: typing.Optional[str] = Noneaddition_embed_type_num_heads = 64 )
Parameters
sample_size (int
or Tuple[int, int]
, optional, defaults to None
) β Height and width of input/output sample.
in_channels (int
, optional, defaults to 4) β Number of channels in the input sample.
out_channels (int
, optional, defaults to 4) β Number of channels in the output.
center_input_sample (bool
, optional, defaults to False
) β Whether to center the input sample.
flip_sin_to_cos (bool
, optional, defaults to False
) β Whether to flip the sin to cos in the time embedding.
freq_shift (int
, optional, defaults to 0) β The frequency shift to apply to the time embedding.
down_block_types (Tuple[str]
, optional, defaults to ("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")
) β The tuple of downsample blocks to use.
mid_block_type (str
, optional, defaults to "UNetMidBlock2DCrossAttn"
) β Block type for middle of UNet, it can be either UNetMidBlock2DCrossAttn
or UNetMidBlock2DSimpleCrossAttn
. If None
, the mid block layer is skipped.
up_block_types (Tuple[str]
, optional, defaults to ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D")
) β The tuple of upsample blocks to use.
only_cross_attention(bool
or Tuple[bool]
, optional, default to False
) β Whether to include self-attention in the basic transformer blocks, see BasicTransformerBlock
.
block_out_channels (Tuple[int]
, optional, defaults to (320, 640, 1280, 1280)
) β The tuple of output channels for each block.
layers_per_block (int
, optional, defaults to 2) β The number of layers per block.
downsample_padding (int
, optional, defaults to 1) β The padding to use for the downsampling convolution.
mid_block_scale_factor (float
, optional, defaults to 1.0) β The scale factor to use for the mid block.
dropout (float
, optional, defaults to 0.0) β The dropout probability to use.
act_fn (str
, optional, defaults to "silu"
) β The activation function to use.
norm_num_groups (int
, optional, defaults to 32) β The number of groups to use for the normalization. If None
, normalization and activation layers is skipped in post-processing.
norm_eps (float
, optional, defaults to 1e-5) β The epsilon to use for the normalization.
cross_attention_dim (int
or Tuple[int]
, optional, defaults to 1280) β The dimension of the cross attention features.
transformer_layers_per_block (int
or Tuple[int]
, optional, defaults to 1) β The number of transformer blocks of type BasicTransformerBlock
. Only relevant for CrossAttnDownBlock2D
, CrossAttnUpBlock2D
, UNetMidBlock2DCrossAttn
.
encoder_hid_dim (int
, optional, defaults to None) β If encoder_hid_dim_type
is defined, encoder_hidden_states
will be projected from encoder_hid_dim
dimension to cross_attention_dim
.
encoder_hid_dim_type (str
, optional, defaults to None
) β If given, the encoder_hidden_states
and potentially other embeddings are down-projected to text embeddings of dimension cross_attention
according to encoder_hid_dim_type
.
attention_head_dim (int
, optional, defaults to 8) β The dimension of the attention heads.
num_attention_heads (int
, optional) β The number of attention heads. If not defined, defaults to attention_head_dim
resnet_time_scale_shift (str
, optional, defaults to "default"
) β Time scale shift config for ResNet blocks (see ResnetBlock2D
). Choose from default
or scale_shift
.
class_embed_type (str
, optional, defaults to None
) β The type of class embedding to use which is ultimately summed with the time embeddings. Choose from None
, "timestep"
, "identity"
, "projection"
, or "simple_projection"
.
addition_embed_type (str
, optional, defaults to None
) β Configures an optional embedding which will be summed with the time embeddings. Choose from None
or βtextβ. βtextβ will use the TextTimeEmbedding
layer. addition_time_embed_dim β (int
, optional, defaults to None
): Dimension for the timestep embeddings.
num_class_embeds (int
, optional, defaults to None
) β Input dimension of the learnable embedding matrix to be projected to time_embed_dim
, when performing class conditioning with class_embed_type
equal to None
.
time_embedding_type (str
, optional, defaults to positional
) β The type of position embedding to use for timesteps. Choose from positional
or fourier
.
time_embedding_dim (int
, optional, defaults to None
) β An optional override for the dimension of the projected time embedding.
time_embedding_act_fn (str
, optional, defaults to None
) β Optional activation function to use only once on the time embeddings before they are passed to the rest of the UNet. Choose from silu
, mish
, gelu
, and swish
.
timestep_post_act (str
, optional, defaults to None
) β The second activation function to use in timestep embedding. Choose from silu
, mish
and gelu
.
time_cond_proj_dim (int
, optional, defaults to None
) β The dimension of cond_proj
layer in the timestep embedding.
conv_in_kernel (int
, optional, default to 3
) β The kernel size of conv_in
layer.
conv_out_kernel (int
, optional, default to 3
) β The kernel size of conv_out
layer.
projection_class_embeddings_input_dim (int
, optional) β The dimension of the class_labels
input when class_embed_type="projection"
. Required when class_embed_type="projection"
.
class_embeddings_concat (bool
, optional, defaults to False
) β Whether to concatenate the time embeddings with the class embeddings.
mid_block_only_cross_attention (bool
, optional, defaults to None
) β Whether to use cross attention with the mid block when using the UNetMidBlock2DSimpleCrossAttn
. If only_cross_attention
is given as a single boolean and mid_block_only_cross_attention
is None
, the only_cross_attention
value is used as the value for mid_block_only_cross_attention
. Default to False
otherwise.
A conditional 2D UNet model that takes a noisy sample, conditional state, and a timestep and returns a sample shaped output.
forward
Parameters
sample (torch.FloatTensor
) β The noisy input tensor with the following shape (batch, channel, height, width)
.
timestep (torch.FloatTensor
or float
or int
) β The number of timesteps to denoise an input.
encoder_hidden_states (torch.FloatTensor
) β The encoder hidden states with shape (batch, sequence_length, feature_dim)
.
encoder_attention_mask (torch.Tensor
) β A cross-attention mask of shape (batch, sequence_length)
is applied to encoder_hidden_states
. If True
the mask is kept, otherwise if False
it is discarded. Mask will be converted into a bias, which adds large negative values to the attention scores corresponding to βdiscardβ tokens.
cross_attention_kwargs (dict
, optional) β A kwargs dictionary that if specified is passed along to the AttnProcessor
. added_cond_kwargs β (dict
, optional): A kwargs dictionary containin additional embeddings that if specified are added to the embeddings that are passed along to the UNet blocks.
Returns
set_attention_slice
( slice_size )
Parameters
slice_size (str
or int
or list(int)
, optional, defaults to "auto"
) β When "auto"
, input to the attention heads is halved, so attention is computed in two steps. If "max"
, maximum amount of memory is saved by running only one slice at a time. If a number is provided, uses as many slices as attention_head_dim // slice_size
. In this case, attention_head_dim
must be a multiple of slice_size
.
Enable sliced attention computation.
When this option is enabled, the attention module splits the input tensor in slices to compute attention in several steps. This is useful for saving some memory in exchange for a small decrease in speed.
set_attn_processor
( processor: typing.Union[diffusers.models.attention_processor.AttnProcessor, diffusers.models.attention_processor.AttnProcessor2_0, diffusers.models.attention_processor.XFormersAttnProcessor, diffusers.models.attention_processor.SlicedAttnProcessor, diffusers.models.attention_processor.AttnAddedKVProcessor, diffusers.models.attention_processor.SlicedAttnAddedKVProcessor, diffusers.models.attention_processor.AttnAddedKVProcessor2_0, diffusers.models.attention_processor.XFormersAttnAddedKVProcessor, diffusers.models.attention_processor.CustomDiffusionAttnProcessor, diffusers.models.attention_processor.CustomDiffusionXFormersAttnProcessor, diffusers.models.attention_processor.LoRAAttnProcessor, diffusers.models.attention_processor.LoRAAttnProcessor2_0, diffusers.models.attention_processor.LoRAXFormersAttnProcessor, diffusers.models.attention_processor.LoRAAttnAddedKVProcessor, typing.Dict[str, typing.Union[diffusers.models.attention_processor.AttnProcessor, diffusers.models.attention_processor.AttnProcessor2_0, diffusers.models.attention_processor.XFormersAttnProcessor, diffusers.models.attention_processor.SlicedAttnProcessor, diffusers.models.attention_processor.AttnAddedKVProcessor, diffusers.models.attention_processor.SlicedAttnAddedKVProcessor, diffusers.models.attention_processor.AttnAddedKVProcessor2_0, diffusers.models.attention_processor.XFormersAttnAddedKVProcessor, diffusers.models.attention_processor.CustomDiffusionAttnProcessor, diffusers.models.attention_processor.CustomDiffusionXFormersAttnProcessor, diffusers.models.attention_processor.LoRAAttnProcessor, diffusers.models.attention_processor.LoRAAttnProcessor2_0, diffusers.models.attention_processor.LoRAXFormersAttnProcessor, diffusers.models.attention_processor.LoRAAttnAddedKVProcessor]]] )
Parameters
processor (dict
of AttentionProcessor
or only AttentionProcessor
) β The instantiated processor class or a dictionary of processor classes that will be set as the processor for all Attention
layers.
If processor
is a dict, the key needs to define the path to the corresponding cross attention processor. This is strongly recommended when setting trainable attention processors.
Sets the attention processor to use to compute attention.
set_default_attn_processor
( )
Disables custom attention processors and sets the default attention implementation.
( sample: FloatTensor = None )
Parameters
sample (torch.FloatTensor
of shape (batch_size, num_channels, height, width)
) β The hidden states output conditioned on encoder_hidden_states
input. Output of last layer of model.
( sample_size: int = 32in_channels: int = 4out_channels: int = 4down_block_types: typing.Tuple[str] = ('CrossAttnDownBlock2D', 'CrossAttnDownBlock2D', 'CrossAttnDownBlock2D', 'DownBlock2D')up_block_types: typing.Tuple[str] = ('UpBlock2D', 'CrossAttnUpBlock2D', 'CrossAttnUpBlock2D', 'CrossAttnUpBlock2D')only_cross_attention: typing.Union[bool, typing.Tuple[bool]] = Falseblock_out_channels: typing.Tuple[int] = (320, 640, 1280, 1280)layers_per_block: int = 2attention_head_dim: typing.Union[int, typing.Tuple[int]] = 8num_attention_heads: typing.Union[int, typing.Tuple[int], NoneType] = Nonecross_attention_dim: int = 1280dropout: float = 0.0use_linear_projection: bool = Falsedtype: dtype = <class 'jax.numpy.float32'>flip_sin_to_cos: bool = Truefreq_shift: int = 0use_memory_efficient_attention: bool = Falseparent: typing.Union[typing.Type[flax.linen.module.Module], typing.Type[flax.core.scope.Scope], typing.Type[flax.linen.module._Sentinel], NoneType] = <flax.linen.module._Sentinel object at 0x7f3306dc42e0>name: typing.Optional[str] = None )
Parameters
sample_size (int
, optional) β The size of the input sample.
in_channels (int
, optional, defaults to 4) β The number of channels in the input sample.
out_channels (int
, optional, defaults to 4) β The number of channels in the output.
down_block_types (Tuple[str]
, optional, defaults to ("FlaxCrossAttnDownBlock2D", "FlaxCrossAttnDownBlock2D", "FlaxCrossAttnDownBlock2D", "FlaxDownBlock2D")
) β The tuple of downsample blocks to use.
up_block_types (Tuple[str]
, optional, defaults to ("FlaxUpBlock2D", "FlaxCrossAttnUpBlock2D", "FlaxCrossAttnUpBlock2D", "FlaxCrossAttnUpBlock2D")
) β The tuple of upsample blocks to use.
block_out_channels (Tuple[int]
, optional, defaults to (320, 640, 1280, 1280)
) β The tuple of output channels for each block.
layers_per_block (int
, optional, defaults to 2) β The number of layers per block.
attention_head_dim (int
or Tuple[int]
, optional, defaults to 8) β The dimension of the attention heads.
num_attention_heads (int
or Tuple[int]
, optional) β The number of attention heads.
cross_attention_dim (int
, optional, defaults to 768) β The dimension of the cross attention features.
dropout (float
, optional, defaults to 0) β Dropout probability for down, up and bottleneck blocks.
flip_sin_to_cos (bool
, optional, defaults to True
) β Whether to flip the sin to cos in the time embedding.
freq_shift (int
, optional, defaults to 0) β The frequency shift to apply to the time embedding.
A conditional 2D UNet model that takes a noisy sample, conditional state, and a timestep and returns a sample shaped output.
Inherent JAX features such as the following are supported:
( sample: Array )
Parameters
sample (jnp.ndarray
of shape (batch_size, num_channels, height, width)
) β The hidden states output conditioned on encoder_hidden_states
input. Output of last layer of model.
replace
( **updates )
βReturns a new object replacing the specified fields with new values.
This model inherits from . Check the superclass documentation for itβs generic methods implemented for all models (such as downloading or saving).
( sample: FloatTensortimestep: typing.Union[torch.Tensor, float, int]encoder_hidden_states: Tensorclass_labels: typing.Optional[torch.Tensor] = Nonetimestep_cond: typing.Optional[torch.Tensor] = Noneattention_mask: typing.Optional[torch.Tensor] = Nonecross_attention_kwargs: typing.Union[typing.Dict[str, typing.Any], NoneType] = Noneadded_cond_kwargs: typing.Union[typing.Dict[str, torch.Tensor], NoneType] = Nonedown_block_additional_residuals: typing.Optional[typing.Tuple[torch.Tensor]] = Nonemid_block_additional_residual: typing.Optional[torch.Tensor] = Noneencoder_attention_mask: typing.Optional[torch.Tensor] = Nonereturn_dict: bool = True ) β or tuple
return_dict (bool
, optional, defaults to True
) β Whether or not to return a instead of a plain tuple.
or tuple
If return_dict
is True, an is returned, otherwise a tuple
is returned where the first element is the sample tensor.
The forward method.
The output of .
use_memory_efficient_attention (bool
, optional, defaults to False
) β Enable memory efficient attention as described .
This model inherits from . Check the superclass documentation for itβs generic methods implemented for all models (such as downloading or saving).
This model is also a Flax Linen subclass. Use it as a regular Flax Linen module and refer to the Flax documentation for all matters related to its general usage and behavior.
The output of .