Self-Attention Guidance
Self-Attention Guidance
Improving Sample Quality of Diffusion Models Using Self-Attention Guidance is by Susung Hong et al.
The abstract from the paper is:
Denoising diffusion models (DDMs) have attracted attention for their exceptional generation quality and diversity. This success is largely attributed to the use of class- or text-conditional diffusion guidance methods, such as classifier and classifier-free guidance. In this paper, we present a more comprehensive perspective that goes beyond the traditional guidance methods. From this generalized perspective, we introduce novel condition- and training-free strategies to enhance the quality of generated images. As a simple solution, blur guidance improves the suitability of intermediate samples for their fine-scale information and structures, enabling diffusion models to generate higher quality samples with a moderate guidance scale. Improving upon this, Self-Attention Guidance (SAG) uses the intermediate self-attention maps of diffusion models to enhance their stability and efficacy. Specifically, SAG adversarially blurs only the regions that diffusion models attend to at each iteration and guides them accordingly. Our experimental results show that our SAG improves the performance of various diffusion models, including ADM, IDDPM, Stable Diffusion, and DiT. Moreover, combining SAG with conventional guidance methods leads to further improvement.
You can find additional information about Self-Attention Guidance on the project page, original codebase, and try it out in a demo or notebook.
Make sure to check out the Schedulers guide to learn how to explore the tradeoff between scheduler speed and quality, and see the reuse components across pipelines section to learn how to efficiently load the same components into multiple pipelines.
StableDiffusionSAGPipeline
class diffusers.StableDiffusionSAGPipeline
( vae: AutoencoderKLtext_encoder: CLIPTextModeltokenizer: CLIPTokenizerunet: UNet2DConditionModelscheduler: KarrasDiffusionSchedulerssafety_checker: StableDiffusionSafetyCheckerfeature_extractor: CLIPImageProcessorrequires_safety_checker: bool = True )
Parameters
vae (AutoencoderKL) β Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations.
text_encoder (
CLIPTextModel
) β Frozen text-encoder (clip-vit-large-patch14).tokenizer (
CLIPTokenizer
) β ACLIPTokenizer
to tokenize text.unet (UNet2DConditionModel) β A
UNet2DConditionModel
to denoise the encoded image latents.scheduler (SchedulerMixin) β A scheduler to be used in combination with
unet
to denoise the encoded image latents. Can be one of DDIMScheduler, LMSDiscreteScheduler, or PNDMScheduler.safety_checker (
StableDiffusionSafetyChecker
) β Classification module that estimates whether generated images could be considered offensive or harmful. Please refer to the model card for more details about a modelβs potential harms.feature_extractor (
CLIPImageProcessor
) β ACLIPImageProcessor
to extract features from generated images; used as inputs to thesafety_checker
.
Pipeline for text-to-image generation using Stable Diffusion.
This model inherits from DiffusionPipeline. Check the superclass documentation for the generic methods implemented for all pipelines (downloading, saving, running on a particular device, etc.).
__call__
( prompt: typing.Union[str, typing.List[str]] = Noneheight: typing.Optional[int] = Nonewidth: typing.Optional[int] = Nonenum_inference_steps: int = 50guidance_scale: float = 7.5sag_scale: float = 0.75negative_prompt: typing.Union[str, typing.List[str], NoneType] = Nonenum_images_per_prompt: typing.Optional[int] = 1eta: float = 0.0generator: typing.Union[torch._C.Generator, typing.List[torch._C.Generator], NoneType] = Nonelatents: typing.Optional[torch.FloatTensor] = Noneprompt_embeds: typing.Optional[torch.FloatTensor] = Nonenegative_prompt_embeds: typing.Optional[torch.FloatTensor] = Noneoutput_type: typing.Optional[str] = 'pil'return_dict: bool = Truecallback: typing.Union[typing.Callable[[int, int, torch.FloatTensor], NoneType], NoneType] = Nonecallback_steps: typing.Optional[int] = 1cross_attention_kwargs: typing.Union[typing.Dict[str, typing.Any], NoneType] = None ) β StableDiffusionPipelineOutput or tuple
Parameters
prompt (
str
orList[str]
, optional) β The prompt or prompts to guide image generation. If not defined, you need to passprompt_embeds
.height (
int
, optional, defaults toself.unet.config.sample_size * self.vae_scale_factor
) β The height in pixels of the generated image.width (
int
, optional, defaults toself.unet.config.sample_size * self.vae_scale_factor
) β The width in pixels of the generated image.num_inference_steps (
int
, optional, defaults to 50) β The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference.guidance_scale (
float
, optional, defaults to 7.5) β A higher guidance scale value encourages the model to generate images closely linked to the textprompt
at the expense of lower image quality. Guidance scale is enabled whenguidance_scale > 1
.sag_scale (
float
, optional, defaults to 0.75) β Chosen between [0, 1.0] for better quality.negative_prompt (
str
orList[str]
, optional) β The prompt or prompts to guide what to not include in image generation. If not defined, you need to passnegative_prompt_embeds
instead. Ignored when not using guidance (guidance_scale < 1
).num_images_per_prompt (
int
, optional, defaults to 1) β The number of images to generate per prompt.eta (
float
, optional, defaults to 0.0) β Corresponds to parameter eta (Ξ·) from the DDIM paper. Only applies to the DDIMScheduler, and is ignored in other schedulers.generator (
torch.Generator
orList[torch.Generator]
, optional) β Atorch.Generator
to make generation deterministic.latents (
torch.FloatTensor
, optional) β Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor is generated by sampling using the supplied randomgenerator
.prompt_embeds (
torch.FloatTensor
, optional) β Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not provided, text embeddings are generated from theprompt
input argument.negative_prompt_embeds (
torch.FloatTensor
, optional) β Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not provided,negative_prompt_embeds
are generated from thenegative_prompt
input argument.output_type (
str
, optional, defaults to"pil"
) β The output format of the generated image. Choose betweenPIL.Image
ornp.array
.return_dict (
bool
, optional, defaults toTrue
) β Whether or not to return a StableDiffusionPipelineOutput instead of a plain tuple.callback (
Callable
, optional) β A function that calls everycallback_steps
steps during inference. The function is called with the following arguments:callback(step: int, timestep: int, latents: torch.FloatTensor)
.callback_steps (
int
, optional, defaults to 1) β The frequency at which thecallback
function is called. If not specified, the callback is called at every step.cross_attention_kwargs (
dict
, optional) β A kwargs dictionary that if specified is passed along to theAttentionProcessor
as defined inself.processor
.
Returns
StableDiffusionPipelineOutput or tuple
If return_dict
is True
, StableDiffusionPipelineOutput is returned, otherwise a tuple
is returned where the first element is a list with the generated images and the second element is a list of bool
s indicating whether the corresponding generated image contains βnot-safe-for-workβ (nsfw) content.
The call function to the pipeline for generation.
Examples:
Copied
disable_vae_slicing
( )
Disable sliced VAE decoding. If enable_vae_slicing
was previously enabled, this method will go back to computing decoding in one step.
enable_vae_slicing
( )
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
encode_prompt
( promptdevicenum_images_per_promptdo_classifier_free_guidancenegative_prompt = Noneprompt_embeds: typing.Optional[torch.FloatTensor] = Nonenegative_prompt_embeds: typing.Optional[torch.FloatTensor] = Nonelora_scale: typing.Optional[float] = None )
Parameters
prompt (
str
orList[str]
, optional) β prompt to be encoded device β (torch.device
): torch devicenum_images_per_prompt (
int
) β number of images that should be generated per promptdo_classifier_free_guidance (
bool
) β whether to use classifier free guidance or notnegative_prompt (
str
orList[str]
, optional) β The prompt or prompts not to guide the image generation. If not defined, one has to passnegative_prompt_embeds
instead. Ignored when not using guidance (i.e., ignored ifguidance_scale
is less than1
).prompt_embeds (
torch.FloatTensor
, optional) β Pre-generated text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, text embeddings will be generated fromprompt
input argument.negative_prompt_embeds (
torch.FloatTensor
, optional) β Pre-generated negative text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, negative_prompt_embeds will be generated fromnegative_prompt
input argument.lora_scale (
float
, optional) β A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
Encodes the prompt into text encoder hidden states.
StableDiffusionOutput
class diffusers.pipelines.stable_diffusion.StableDiffusionPipelineOutput
( images: typing.Union[typing.List[PIL.Image.Image], numpy.ndarray]nsfw_content_detected: typing.Optional[typing.List[bool]] )
Parameters
images (
List[PIL.Image.Image]
ornp.ndarray
) β List of denoised PIL images of lengthbatch_size
or NumPy array of shape(batch_size, height, width, num_channels)
.nsfw_content_detected (
List[bool]
) β List indicating whether the corresponding generated image contains βnot-safe-for-workβ (nsfw) content orNone
if safety checking could not be performed.
Output class for Stable Diffusion pipelines.
Last updated