Diffusers BOINC AI docs
  • 🌍GET STARTED
    • Diffusers
    • Quicktour
    • Effective and efficient diffusion
    • Installation
  • 🌍TUTORIALS
    • Overview
    • Understanding models and schedulers
    • AutoPipeline
    • Train a diffusion model
  • 🌍USING DIFFUSERS
    • 🌍LOADING & HUB
      • Overview
      • Load pipelines, models, and schedulers
      • Load and compare different schedulers
      • Load community pipelines
      • Load safetensors
      • Load different Stable Diffusion formats
      • Push files to the Hub
    • 🌍TASKS
      • Unconditional image generation
      • Text-to-image
      • Image-to-image
      • Inpainting
      • Depth-to-image
    • 🌍TECHNIQUES
      • Textual inversion
      • Distributed inference with multiple GPUs
      • Improve image quality with deterministic generation
      • Control image brightness
      • Prompt weighting
    • 🌍PIPELINES FOR INFERENCE
      • Overview
      • Stable Diffusion XL
      • ControlNet
      • Shap-E
      • DiffEdit
      • Distilled Stable Diffusion inference
      • Create reproducible pipelines
      • Community pipelines
      • How to contribute a community pipeline
    • 🌍TRAINING
      • Overview
      • Create a dataset for training
      • Adapt a model to a new task
      • Unconditional image generation
      • Textual Inversion
      • DreamBooth
      • Text-to-image
      • Low-Rank Adaptation of Large Language Models (LoRA)
      • ControlNet
      • InstructPix2Pix Training
      • Custom Diffusion
      • T2I-Adapters
    • 🌍TAKING DIFFUSERS BEYOND IMAGES
      • Other Modalities
  • 🌍OPTIMIZATION/SPECIAL HARDWARE
    • Overview
    • Memory and Speed
    • Torch2.0 support
    • Stable Diffusion in JAX/Flax
    • xFormers
    • ONNX
    • OpenVINO
    • Core ML
    • MPS
    • Habana Gaudi
    • Token Merging
  • 🌍CONCEPTUAL GUIDES
    • Philosophy
    • Controlled generation
    • How to contribute?
    • Diffusers' Ethical Guidelines
    • Evaluating Diffusion Models
  • 🌍API
    • 🌍MAIN CLASSES
      • Attention Processor
      • Diffusion Pipeline
      • Logging
      • Configuration
      • Outputs
      • Loaders
      • Utilities
      • VAE Image Processor
    • 🌍MODELS
      • Overview
      • UNet1DModel
      • UNet2DModel
      • UNet2DConditionModel
      • UNet3DConditionModel
      • VQModel
      • AutoencoderKL
      • AsymmetricAutoencoderKL
      • Tiny AutoEncoder
      • Transformer2D
      • Transformer Temporal
      • Prior Transformer
      • ControlNet
    • 🌍PIPELINES
      • Overview
      • AltDiffusion
      • Attend-and-Excite
      • Audio Diffusion
      • AudioLDM
      • AudioLDM 2
      • AutoPipeline
      • Consistency Models
      • ControlNet
      • ControlNet with Stable Diffusion XL
      • Cycle Diffusion
      • Dance Diffusion
      • DDIM
      • DDPM
      • DeepFloyd IF
      • DiffEdit
      • DiT
      • IF
      • PaInstructPix2Pix
      • Kandinsky
      • Kandinsky 2.2
      • Latent Diffusionge
      • MultiDiffusion
      • MusicLDM
      • PaintByExample
      • Parallel Sampling of Diffusion Models
      • Pix2Pix Zero
      • PNDM
      • RePaint
      • Score SDE VE
      • Self-Attention Guidance
      • Semantic Guidance
      • Shap-E
      • Spectrogram Diffusion
      • 🌍STABLE DIFFUSION
        • Overview
        • Text-to-image
        • Image-to-image
        • Inpainting
        • Depth-to-image
        • Image variation
        • Safe Stable Diffusion
        • Stable Diffusion 2
        • Stable Diffusion XL
        • Latent upscaler
        • Super-resolution
        • LDM3D Text-to-(RGB, Depth)
        • Stable Diffusion T2I-adapter
        • GLIGEN (Grounded Language-to-Image Generation)
      • Stable unCLIP
      • Stochastic Karras VE
      • Text-to-image model editing
      • Text-to-video
      • Text2Video-Zero
      • UnCLIP
      • Unconditional Latent Diffusion
      • UniDiffuser
      • Value-guided sampling
      • Versatile Diffusion
      • VQ Diffusion
      • Wuerstchen
    • 🌍SCHEDULERS
      • Overview
      • CMStochasticIterativeScheduler
      • DDIMInverseScheduler
      • DDIMScheduler
      • DDPMScheduler
      • DEISMultistepScheduler
      • DPMSolverMultistepInverse
      • DPMSolverMultistepScheduler
      • DPMSolverSDEScheduler
      • DPMSolverSinglestepScheduler
      • EulerAncestralDiscreteScheduler
      • EulerDiscreteScheduler
      • HeunDiscreteScheduler
      • IPNDMScheduler
      • KarrasVeScheduler
      • KDPM2AncestralDiscreteScheduler
      • KDPM2DiscreteScheduler
      • LMSDiscreteScheduler
      • PNDMScheduler
      • RePaintScheduler
      • ScoreSdeVeScheduler
      • ScoreSdeVpScheduler
      • UniPCMultistepScheduler
      • VQDiffusionScheduler
Powered by GitBook
On this page
  • Self-Attention Guidance
  • StableDiffusionSAGPipeline
  • StableDiffusionOutput
  1. API
  2. PIPELINES

Self-Attention Guidance

PreviousScore SDE VENextSemantic Guidance

Last updated 1 year ago

Self-Attention Guidance

is by Susung Hong et al.

The abstract from the paper is:

Denoising diffusion models (DDMs) have attracted attention for their exceptional generation quality and diversity. This success is largely attributed to the use of class- or text-conditional diffusion guidance methods, such as classifier and classifier-free guidance. In this paper, we present a more comprehensive perspective that goes beyond the traditional guidance methods. From this generalized perspective, we introduce novel condition- and training-free strategies to enhance the quality of generated images. As a simple solution, blur guidance improves the suitability of intermediate samples for their fine-scale information and structures, enabling diffusion models to generate higher quality samples with a moderate guidance scale. Improving upon this, Self-Attention Guidance (SAG) uses the intermediate self-attention maps of diffusion models to enhance their stability and efficacy. Specifically, SAG adversarially blurs only the regions that diffusion models attend to at each iteration and guides them accordingly. Our experimental results show that our SAG improves the performance of various diffusion models, including ADM, IDDPM, Stable Diffusion, and DiT. Moreover, combining SAG with conventional guidance methods leads to further improvement.

You can find additional information about Self-Attention Guidance on the , , and try it out in a or .

Make sure to check out the Schedulers to learn how to explore the tradeoff between scheduler speed and quality, and see the section to learn how to efficiently load the same components into multiple pipelines.

StableDiffusionSAGPipeline

class diffusers.StableDiffusionSAGPipeline

( vae: AutoencoderKLtext_encoder: CLIPTextModeltokenizer: CLIPTokenizerunet: UNet2DConditionModelscheduler: KarrasDiffusionSchedulerssafety_checker: StableDiffusionSafetyCheckerfeature_extractor: CLIPImageProcessorrequires_safety_checker: bool = True )

Parameters

  • vae () β€” Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations.

  • text_encoder (CLIPTextModel) β€” Frozen text-encoder ().

  • tokenizer (CLIPTokenizer) β€” A CLIPTokenizer to tokenize text.

  • unet () β€” A UNet2DConditionModel to denoise the encoded image latents.

  • scheduler () β€” A scheduler to be used in combination with unet to denoise the encoded image latents. Can be one of , , or .

  • safety_checker (StableDiffusionSafetyChecker) β€” Classification module that estimates whether generated images could be considered offensive or harmful. Please refer to the for more details about a model’s potential harms.

  • feature_extractor (CLIPImageProcessor) β€” A CLIPImageProcessor to extract features from generated images; used as inputs to the safety_checker.

Pipeline for text-to-image generation using Stable Diffusion.

__call__

Parameters

  • prompt (str or List[str], optional) β€” The prompt or prompts to guide image generation. If not defined, you need to pass prompt_embeds.

  • height (int, optional, defaults to self.unet.config.sample_size * self.vae_scale_factor) β€” The height in pixels of the generated image.

  • width (int, optional, defaults to self.unet.config.sample_size * self.vae_scale_factor) β€” The width in pixels of the generated image.

  • num_inference_steps (int, optional, defaults to 50) β€” The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference.

  • guidance_scale (float, optional, defaults to 7.5) β€” A higher guidance scale value encourages the model to generate images closely linked to the text prompt at the expense of lower image quality. Guidance scale is enabled when guidance_scale > 1.

  • sag_scale (float, optional, defaults to 0.75) β€” Chosen between [0, 1.0] for better quality.

  • negative_prompt (str or List[str], optional) β€” The prompt or prompts to guide what to not include in image generation. If not defined, you need to pass negative_prompt_embeds instead. Ignored when not using guidance (guidance_scale < 1).

  • num_images_per_prompt (int, optional, defaults to 1) β€” The number of images to generate per prompt.

  • latents (torch.FloatTensor, optional) β€” Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor is generated by sampling using the supplied random generator.

  • prompt_embeds (torch.FloatTensor, optional) β€” Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not provided, text embeddings are generated from the prompt input argument.

  • negative_prompt_embeds (torch.FloatTensor, optional) β€” Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not provided, negative_prompt_embeds are generated from the negative_prompt input argument.

  • output_type (str, optional, defaults to "pil") β€” The output format of the generated image. Choose between PIL.Image or np.array.

  • callback (Callable, optional) β€” A function that calls every callback_steps steps during inference. The function is called with the following arguments: callback(step: int, timestep: int, latents: torch.FloatTensor).

  • callback_steps (int, optional, defaults to 1) β€” The frequency at which the callback function is called. If not specified, the callback is called at every step.

Returns

The call function to the pipeline for generation.

Examples:

Copied

>>> import torch
>>> from diffusers import StableDiffusionSAGPipeline

>>> pipe = StableDiffusionSAGPipeline.from_pretrained(
...     "runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16
... )
>>> pipe = pipe.to("cuda")

>>> prompt = "a photo of an astronaut riding a horse on mars"
>>> image = pipe(prompt, sag_scale=0.75).images[0]

disable_vae_slicing

( )

Disable sliced VAE decoding. If enable_vae_slicing was previously enabled, this method will go back to computing decoding in one step.

enable_vae_slicing

( )

Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.

encode_prompt

( promptdevicenum_images_per_promptdo_classifier_free_guidancenegative_prompt = Noneprompt_embeds: typing.Optional[torch.FloatTensor] = Nonenegative_prompt_embeds: typing.Optional[torch.FloatTensor] = Nonelora_scale: typing.Optional[float] = None )

Parameters

  • prompt (str or List[str], optional) β€” prompt to be encoded device β€” (torch.device): torch device

  • num_images_per_prompt (int) β€” number of images that should be generated per prompt

  • do_classifier_free_guidance (bool) β€” whether to use classifier free guidance or not

  • negative_prompt (str or List[str], optional) β€” The prompt or prompts not to guide the image generation. If not defined, one has to pass negative_prompt_embeds instead. Ignored when not using guidance (i.e., ignored if guidance_scale is less than 1).

  • prompt_embeds (torch.FloatTensor, optional) β€” Pre-generated text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, text embeddings will be generated from prompt input argument.

  • negative_prompt_embeds (torch.FloatTensor, optional) β€” Pre-generated negative text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, negative_prompt_embeds will be generated from negative_prompt input argument.

  • lora_scale (float, optional) β€” A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.

Encodes the prompt into text encoder hidden states.

StableDiffusionOutput

class diffusers.pipelines.stable_diffusion.StableDiffusionPipelineOutput

( images: typing.Union[typing.List[PIL.Image.Image], numpy.ndarray]nsfw_content_detected: typing.Optional[typing.List[bool]] )

Parameters

  • images (List[PIL.Image.Image] or np.ndarray) β€” List of denoised PIL images of length batch_size or NumPy array of shape (batch_size, height, width, num_channels).

  • nsfw_content_detected (List[bool]) β€” List indicating whether the corresponding generated image contains β€œnot-safe-for-work” (nsfw) content or None if safety checking could not be performed.

Output class for Stable Diffusion pipelines.

This model inherits from . Check the superclass documentation for the generic methods implemented for all pipelines (downloading, saving, running on a particular device, etc.).

( prompt: typing.Union[str, typing.List[str]] = Noneheight: typing.Optional[int] = Nonewidth: typing.Optional[int] = Nonenum_inference_steps: int = 50guidance_scale: float = 7.5sag_scale: float = 0.75negative_prompt: typing.Union[str, typing.List[str], NoneType] = Nonenum_images_per_prompt: typing.Optional[int] = 1eta: float = 0.0generator: typing.Union[torch._C.Generator, typing.List[torch._C.Generator], NoneType] = Nonelatents: typing.Optional[torch.FloatTensor] = Noneprompt_embeds: typing.Optional[torch.FloatTensor] = Nonenegative_prompt_embeds: typing.Optional[torch.FloatTensor] = Noneoutput_type: typing.Optional[str] = 'pil'return_dict: bool = Truecallback: typing.Union[typing.Callable[[int, int, torch.FloatTensor], NoneType], NoneType] = Nonecallback_steps: typing.Optional[int] = 1cross_attention_kwargs: typing.Union[typing.Dict[str, typing.Any], NoneType] = None ) β†’ or tuple

eta (float, optional, defaults to 0.0) β€” Corresponds to parameter eta (Ξ·) from the paper. Only applies to the , and is ignored in other schedulers.

generator (torch.Generator or List[torch.Generator], optional) β€” A to make generation deterministic.

return_dict (bool, optional, defaults to True) β€” Whether or not to return a instead of a plain tuple.

cross_attention_kwargs (dict, optional) β€” A kwargs dictionary that if specified is passed along to the AttentionProcessor as defined in .

or tuple

If return_dict is True, is returned, otherwise a tuple is returned where the first element is a list with the generated images and the second element is a list of bools indicating whether the corresponding generated image contains β€œnot-safe-for-work” (nsfw) content.

🌍
🌍
Improving Sample Quality of Diffusion Models Using Self-Attention Guidance
project page
original codebase
demo
notebook
guide
reuse components across pipelines
<source>
AutoencoderKL
clip-vit-large-patch14
UNet2DConditionModel
SchedulerMixin
DDIMScheduler
LMSDiscreteScheduler
PNDMScheduler
model card
DiffusionPipeline
<source>
StableDiffusionPipelineOutput
DDIM
DDIMScheduler
torch.Generator
StableDiffusionPipelineOutput
self.processor
StableDiffusionPipelineOutput
StableDiffusionPipelineOutput
<source>
<source>
<source>
<source>