Diffusers BOINC AI docs
  • 🌍GET STARTED
    • Diffusers
    • Quicktour
    • Effective and efficient diffusion
    • Installation
  • 🌍TUTORIALS
    • Overview
    • Understanding models and schedulers
    • AutoPipeline
    • Train a diffusion model
  • 🌍USING DIFFUSERS
    • 🌍LOADING & HUB
      • Overview
      • Load pipelines, models, and schedulers
      • Load and compare different schedulers
      • Load community pipelines
      • Load safetensors
      • Load different Stable Diffusion formats
      • Push files to the Hub
    • 🌍TASKS
      • Unconditional image generation
      • Text-to-image
      • Image-to-image
      • Inpainting
      • Depth-to-image
    • 🌍TECHNIQUES
      • Textual inversion
      • Distributed inference with multiple GPUs
      • Improve image quality with deterministic generation
      • Control image brightness
      • Prompt weighting
    • 🌍PIPELINES FOR INFERENCE
      • Overview
      • Stable Diffusion XL
      • ControlNet
      • Shap-E
      • DiffEdit
      • Distilled Stable Diffusion inference
      • Create reproducible pipelines
      • Community pipelines
      • How to contribute a community pipeline
    • 🌍TRAINING
      • Overview
      • Create a dataset for training
      • Adapt a model to a new task
      • Unconditional image generation
      • Textual Inversion
      • DreamBooth
      • Text-to-image
      • Low-Rank Adaptation of Large Language Models (LoRA)
      • ControlNet
      • InstructPix2Pix Training
      • Custom Diffusion
      • T2I-Adapters
    • 🌍TAKING DIFFUSERS BEYOND IMAGES
      • Other Modalities
  • 🌍OPTIMIZATION/SPECIAL HARDWARE
    • Overview
    • Memory and Speed
    • Torch2.0 support
    • Stable Diffusion in JAX/Flax
    • xFormers
    • ONNX
    • OpenVINO
    • Core ML
    • MPS
    • Habana Gaudi
    • Token Merging
  • 🌍CONCEPTUAL GUIDES
    • Philosophy
    • Controlled generation
    • How to contribute?
    • Diffusers' Ethical Guidelines
    • Evaluating Diffusion Models
  • 🌍API
    • 🌍MAIN CLASSES
      • Attention Processor
      • Diffusion Pipeline
      • Logging
      • Configuration
      • Outputs
      • Loaders
      • Utilities
      • VAE Image Processor
    • 🌍MODELS
      • Overview
      • UNet1DModel
      • UNet2DModel
      • UNet2DConditionModel
      • UNet3DConditionModel
      • VQModel
      • AutoencoderKL
      • AsymmetricAutoencoderKL
      • Tiny AutoEncoder
      • Transformer2D
      • Transformer Temporal
      • Prior Transformer
      • ControlNet
    • 🌍PIPELINES
      • Overview
      • AltDiffusion
      • Attend-and-Excite
      • Audio Diffusion
      • AudioLDM
      • AudioLDM 2
      • AutoPipeline
      • Consistency Models
      • ControlNet
      • ControlNet with Stable Diffusion XL
      • Cycle Diffusion
      • Dance Diffusion
      • DDIM
      • DDPM
      • DeepFloyd IF
      • DiffEdit
      • DiT
      • IF
      • PaInstructPix2Pix
      • Kandinsky
      • Kandinsky 2.2
      • Latent Diffusionge
      • MultiDiffusion
      • MusicLDM
      • PaintByExample
      • Parallel Sampling of Diffusion Models
      • Pix2Pix Zero
      • PNDM
      • RePaint
      • Score SDE VE
      • Self-Attention Guidance
      • Semantic Guidance
      • Shap-E
      • Spectrogram Diffusion
      • 🌍STABLE DIFFUSION
        • Overview
        • Text-to-image
        • Image-to-image
        • Inpainting
        • Depth-to-image
        • Image variation
        • Safe Stable Diffusion
        • Stable Diffusion 2
        • Stable Diffusion XL
        • Latent upscaler
        • Super-resolution
        • LDM3D Text-to-(RGB, Depth)
        • Stable Diffusion T2I-adapter
        • GLIGEN (Grounded Language-to-Image Generation)
      • Stable unCLIP
      • Stochastic Karras VE
      • Text-to-image model editing
      • Text-to-video
      • Text2Video-Zero
      • UnCLIP
      • Unconditional Latent Diffusion
      • UniDiffuser
      • Value-guided sampling
      • Versatile Diffusion
      • VQ Diffusion
      • Wuerstchen
    • 🌍SCHEDULERS
      • Overview
      • CMStochasticIterativeScheduler
      • DDIMInverseScheduler
      • DDIMScheduler
      • DDPMScheduler
      • DEISMultistepScheduler
      • DPMSolverMultistepInverse
      • DPMSolverMultistepScheduler
      • DPMSolverSDEScheduler
      • DPMSolverSinglestepScheduler
      • EulerAncestralDiscreteScheduler
      • EulerDiscreteScheduler
      • HeunDiscreteScheduler
      • IPNDMScheduler
      • KarrasVeScheduler
      • KDPM2AncestralDiscreteScheduler
      • KDPM2DiscreteScheduler
      • LMSDiscreteScheduler
      • PNDMScheduler
      • RePaintScheduler
      • ScoreSdeVeScheduler
      • ScoreSdeVpScheduler
      • UniPCMultistepScheduler
      • VQDiffusionScheduler
Powered by GitBook
On this page
  • UNet1DModel
  • UNet1DModel
  • UNet1DOutput
  1. API
  2. MODELS

UNet1DModel

PreviousOverviewNextUNet2DModel

Last updated 1 year ago

UNet1DModel

The model was originally introduced by Ronneberger et al for biomedical image segmentation, but it is also commonly used in 🌍 Diffusers because it outputs images that are the same size as the input. It is one of the most important components of a diffusion system because it facilitates the actual diffusion process. There are several variants of the UNet model in 🌍 Diffusers, depending on it’s number of dimensions and whether it is a conditional model or not. This is a 1D UNet model.

The abstract from the paper is:

There is large consent that successful training of deep networks requires many thousand annotated training samples. In this paper, we present a network and training strategy that relies on the strong use of data augmentation to use the available annotated samples more efficiently. The architecture consists of a contracting path to capture context and a symmetric expanding path that enables precise localization. We show that such a network can be trained end-to-end from very few images and outperforms the prior best method (a sliding-window convolutional network) on the ISBI challenge for segmentation of neuronal structures in electron microscopic stacks. Using the same network trained on transmitted light microscopy images (phase contrast and DIC) we won the ISBI cell tracking challenge 2015 in these categories by a large margin. Moreover, the network is fast. Segmentation of a 512x512 image takes less than a second on a recent GPU. The full implementation (based on Caffe) and the trained networks are available at .

UNet1DModel

class diffusers.UNet1DModel

( sample_size: int = 65536sample_rate: typing.Optional[int] = Nonein_channels: int = 2out_channels: int = 2extra_in_channels: int = 0time_embedding_type: str = 'fourier'flip_sin_to_cos: bool = Trueuse_timestep_embedding: bool = Falsefreq_shift: float = 0.0down_block_types: typing.Tuple[str] = ('DownBlock1DNoSkip', 'DownBlock1D', 'AttnDownBlock1D')up_block_types: typing.Tuple[str] = ('AttnUpBlock1D', 'UpBlock1D', 'UpBlock1DNoSkip')mid_block_type: typing.Tuple[str] = 'UNetMidBlock1D'out_block_type: str = Noneblock_out_channels: typing.Tuple[int] = (32, 32, 64)act_fn: str = Nonenorm_num_groups: int = 8layers_per_block: int = 1downsample_each_block: bool = False )

Parameters

  • sample_size (int, optional) β€” Default length of sample. Should be adaptable at runtime.

  • in_channels (int, optional, defaults to 2) β€” Number of channels in the input sample.

  • out_channels (int, optional, defaults to 2) β€” Number of channels in the output.

  • extra_in_channels (int, optional, defaults to 0) β€” Number of additional channels to be added to the input of the first down block. Useful for cases where the input data has more channels than what the model was initially designed for.

  • time_embedding_type (str, optional, defaults to "fourier") β€” Type of time embedding to use.

  • freq_shift (float, optional, defaults to 0.0) β€” Frequency shift for Fourier time embedding.

  • flip_sin_to_cos (bool, optional, defaults to False) β€” Whether to flip sin to cos for Fourier time embedding.

  • down_block_types (Tuple[str], optional, defaults to ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D")) β€” Tuple of downsample block types.

  • up_block_types (Tuple[str], optional, defaults to ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip")) β€” Tuple of upsample block types.

  • block_out_channels (Tuple[int], optional, defaults to (32, 32, 64)) β€” Tuple of block output channels.

  • mid_block_type (str, optional, defaults to "UNetMidBlock1D") β€” Block type for middle of UNet.

  • out_block_type (str, optional, defaults to None) β€” Optional output processing block of UNet.

  • act_fn (str, optional, defaults to None) β€” Optional activation function in UNet blocks.

  • norm_num_groups (int, optional, defaults to 8) β€” The number of groups for normalization.

  • layers_per_block (int, optional, defaults to 1) β€” The number of layers per block.

  • downsample_each_block (int, optional, defaults to False) β€” Experimental feature for using a UNet without upsampling.

A 1D UNet model that takes a noisy sample and a timestep and returns a sample shaped output.

forward

Parameters

  • sample (torch.FloatTensor) β€” The noisy input tensor with the following shape (batch_size, num_channels, sample_size).

  • timestep (torch.FloatTensor or float or int) β€” The number of timesteps to denoise an input.

Returns

UNet1DOutput

class diffusers.models.unet_1d.UNet1DOutput

( sample: FloatTensor )

Parameters

  • sample (torch.FloatTensor of shape (batch_size, num_channels, sample_size)) β€” The hidden states output from the last layer of the model.

This model inherits from . Check the superclass documentation for it’s generic methods implemented for all models (such as downloading or saving).

( sample: FloatTensortimestep: typing.Union[torch.Tensor, float, int]return_dict: bool = True ) β†’ or tuple

return_dict (bool, optional, defaults to True) β€” Whether or not to return a instead of a plain tuple.

or tuple

If return_dict is True, an is returned, otherwise a tuple is returned where the first element is the sample tensor.

The forward method.

The output of .

🌍
🌍
UNet
http://lmb.informatik.uni-freiburg.de/people/ronneber/u-net
<source>
ModelMixin
<source>
UNet1DOutput
UNet1DOutput
UNet1DOutput
UNet1DOutput
UNet1DModel
<source>
UNet1DModel