Prior Transformer
Transformer Temporal
A Transformer model for video-like data.
TransformerTemporalModel
class diffusers.models.TransformerTemporalModel
( num_attention_heads: int = 16attention_head_dim: int = 88in_channels: typing.Optional[int] = Noneout_channels: typing.Optional[int] = Nonenum_layers: int = 1dropout: float = 0.0norm_num_groups: int = 32cross_attention_dim: typing.Optional[int] = Noneattention_bias: bool = Falsesample_size: typing.Optional[int] = Noneactivation_fn: str = 'geglu'norm_elementwise_affine: bool = Truedouble_self_attention: bool = True )
Parameters
num_attention_heads (
int
, optional, defaults to 16) — The number of heads to use for multi-head attention.attention_head_dim (
int
, optional, defaults to 88) — The number of channels in each head.in_channels (
int
, optional) — The number of channels in the input and output (specify if the input is continuous).num_layers (
int
, optional, defaults to 1) — The number of layers of Transformer blocks to use.dropout (
float
, optional, defaults to 0.0) — The dropout probability to use.cross_attention_dim (
int
, optional) — The number ofencoder_hidden_states
dimensions to use.sample_size (
int
, optional) — The width of the latent images (specify if the input is discrete). This is fixed during training since it is used to learn a number of position embeddings.activation_fn (
str
, optional, defaults to"geglu"
) — Activation function to use in feed-forward.attention_bias (
bool
, optional) — Configure if theTransformerBlock
attention should contain a bias parameter.double_self_attention (
bool
, optional) — Configure if eachTransformerBlock
should contain two self-attention layers.
A Transformer model for video-like data.
forward
( hidden_statesencoder_hidden_states = Nonetimestep = Noneclass_labels = Nonenum_frames = 1cross_attention_kwargs = Nonereturn_dict: bool = True ) → TransformerTemporalModelOutput or tuple
Parameters
hidden_states (
torch.LongTensor
of shape(batch size, num latent pixels)
if discrete,torch.FloatTensor
of shape(batch size, channel, height, width)
if continuous) — Input hidden_states.encoder_hidden_states (
torch.LongTensor
of shape(batch size, encoder_hidden_states dim)
, optional) — Conditional embeddings for cross attention layer. If not given, cross-attention defaults to self-attention.timestep (
torch.long
, optional) — Used to indicate denoising step. Optional timestep to be applied as an embedding inAdaLayerNorm
.class_labels (
torch.LongTensor
of shape(batch size, num classes)
, optional) — Used to indicate class labels conditioning. Optional class labels to be applied as an embedding inAdaLayerZeroNorm
.return_dict (
bool
, optional, defaults toTrue
) — Whether or not to return a UNet2DConditionOutput instead of a plain tuple.
Returns
TransformerTemporalModelOutput or tuple
If return_dict
is True, an TransformerTemporalModelOutput is returned, otherwise a tuple
where the first element is the sample tensor.
The TransformerTemporal
forward method.
TransformerTemporalModelOutput
class diffusers.models.transformer_temporal.TransformerTemporalModelOutput
( sample: FloatTensor )
Parameters
sample (
torch.FloatTensor
of shape(batch_size x num_frames, num_channels, height, width)
) — The hidden states output conditioned onencoder_hidden_states
input.
The output of TransformerTemporalModel
.
Last updated