PaInstructPix2Pix
Last updated
Last updated
is by Tim Brooks, Aleksander Holynski and Alexei A. Efros.
The abstract from the paper is:
We propose a method for editing images from human instructions: given an input image and a written instruction that tells the model what to do, our model follows these instructions to edit the image. To obtain training data for this problem, we combine the knowledge of two large pretrained models — a language model (GPT-3) and a text-to-image model (Stable Diffusion) — to generate a large dataset of image editing examples. Our conditional diffusion model, InstructPix2Pix, is trained on our generated data, and generalizes to real images and user-written instructions at inference time. Since it performs edits in the forward pass and does not require per example fine-tuning or inversion, our model edits images quickly, in a matter of seconds. We show compelling editing results for a diverse collection of input images and written instructions.
You can find additional information about InstructPix2Pix on the , , and try it out in a .
Make sure to check out the Schedulers to learn how to explore the tradeoff between scheduler speed and quality, and see the section to learn how to efficiently load the same components into multiple pipelines.
( vae: AutoencoderKLtext_encoder: CLIPTextModeltokenizer: CLIPTokenizerunet: UNet2DConditionModelscheduler: KarrasDiffusionSchedulerssafety_checker: StableDiffusionSafetyCheckerfeature_extractor: CLIPImageProcessorrequires_safety_checker: bool = True )
Parameters
vae () — Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations.
text_encoder (CLIPTextModel
) — Frozen text-encoder ().
tokenizer (CLIPTokenizer
) — A CLIPTokenizer
to tokenize text.
unet () — A UNet2DConditionModel
to denoise the encoded image latents.
scheduler () — A scheduler to be used in combination with unet
to denoise the encoded image latents. Can be one of , , or .
safety_checker (StableDiffusionSafetyChecker
) — Classification module that estimates whether generated images could be considered offensive or harmful. Please refer to the for more details about a model’s potential harms.
feature_extractor (CLIPImageProcessor
) — A CLIPImageProcessor
to extract features from generated images; used as inputs to the safety_checker
.
Pipeline for pixel-level image editing by following text instructions (based on Stable Diffusion).
The pipeline also inherits the following loading methods:
__call__
Parameters
prompt (str
or List[str]
, optional) — The prompt or prompts to guide image generation. If not defined, you need to pass prompt_embeds
.
image (torch.FloatTensor
np.ndarray
, PIL.Image.Image
, List[torch.FloatTensor]
, List[PIL.Image.Image]
, or List[np.ndarray]
) — Image
or tensor representing an image batch to be repainted according to prompt
. Can also accept image latents as image
, but if passing latents directly it is not encoded again.
num_inference_steps (int
, optional, defaults to 100) — The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference.
guidance_scale (float
, optional, defaults to 7.5) — A higher guidance scale value encourages the model to generate images closely linked to the text prompt
at the expense of lower image quality. Guidance scale is enabled when guidance_scale > 1
.
image_guidance_scale (float
, optional, defaults to 1.5) — Push the generated image towards the inital image
. Image guidance scale is enabled by setting image_guidance_scale > 1
. Higher image guidance scale encourages generated images that are closely linked to the source image
, usually at the expense of lower image quality. This pipeline requires a value of at least 1
.
negative_prompt (str
or List[str]
, optional) — The prompt or prompts to guide what to not include in image generation. If not defined, you need to pass negative_prompt_embeds
instead. Ignored when not using guidance (guidance_scale < 1
).
num_images_per_prompt (int
, optional, defaults to 1) — The number of images to generate per prompt.
latents (torch.FloatTensor
, optional) — Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor is generated by sampling using the supplied random generator
.
prompt_embeds (torch.FloatTensor
, optional) — Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not provided, text embeddings are generated from the prompt
input argument.
negative_prompt_embeds (torch.FloatTensor
, optional) — Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not provided, negative_prompt_embeds
are generated from the negative_prompt
input argument.
output_type (str
, optional, defaults to "pil"
) — The output format of the generated image. Choose between PIL.Image
or np.array
.
callback (Callable
, optional) — A function that calls every callback_steps
steps during inference. The function is called with the following arguments: callback(step: int, timestep: int, latents: torch.FloatTensor)
.
callback_steps (int
, optional, defaults to 1) — The frequency at which the callback
function is called. If not specified, the callback is called at every step.
Returns
The call function to the pipeline for generation.
Examples:
Copied
load_textual_inversion
( pretrained_model_name_or_path: typing.Union[str, typing.List[str], typing.Dict[str, torch.Tensor], typing.List[typing.Dict[str, torch.Tensor]]]token: typing.Union[str, typing.List[str], NoneType] = Nonetokenizer: typing.Optional[transformers.tokenization_utils.PreTrainedTokenizer] = Nonetext_encoder: typing.Optional[transformers.modeling_utils.PreTrainedModel] = None**kwargs )
Parameters
pretrained_model_name_or_path (str
or os.PathLike
or List[str or os.PathLike]
or Dict
or List[Dict]
) — Can be either one of the following or a list of them:
A string, the model id (for example sd-concepts-library/low-poly-hd-logos-icons
) of a pretrained model hosted on the Hub.
A path to a directory (for example ./my_text_inversion_directory/
) containing the textual inversion weights.
A path to a file (for example ./my_text_inversions.pt
) containing textual inversion weights.
token (str
or List[str]
, optional) — Override the token to use for the textual inversion weights. If pretrained_model_name_or_path
is a list, then token
must also be a list of equal length.
tokenizer (CLIPTokenizer
, optional) — A CLIPTokenizer
to tokenize text. If not specified, function will take self.tokenizer.
weight_name (str
, optional) — Name of a custom weight file. This should be used when:
The saved textual inversion file is in 🤗 Diffusers format, but was saved under a specific weight name such as text_inv.bin
.
The saved textual inversion file is in the Automatic1111 format.
cache_dir (Union[str, os.PathLike]
, optional) — Path to a directory where a downloaded pretrained model configuration is cached if the standard cache is not used.
force_download (bool
, optional, defaults to False
) — Whether or not to force the (re-)download of the model weights and configuration files, overriding the cached versions if they exist.
resume_download (bool
, optional, defaults to False
) — Whether or not to resume downloading the model weights and configuration files. If set to False
, any incompletely downloaded files are deleted.
proxies (Dict[str, str]
, optional) — A dictionary of proxy servers to use by protocol or endpoint, for example, {'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}
. The proxies are used on each request.
local_files_only (bool
, optional, defaults to False
) — Whether to only load local model weights and configuration files or not. If set to True
, the model won’t be downloaded from the Hub.
use_auth_token (str
or bool, optional) — The token to use as HTTP bearer authorization for remote files. If True
, the token generated from diffusers-cli login
(stored in ~/.boincai
) is used.
revision (str
, optional, defaults to "main"
) — The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier allowed by Git.
subfolder (str
, optional, defaults to ""
) — The subfolder location of a model file within a larger model repository on the Hub or locally.
mirror (str
, optional) — Mirror source to resolve accessibility issues if you’re downloading a model in China. We do not guarantee the timeliness or safety of the source, and you should refer to the mirror site for more information.
Example:
To load a textual inversion embedding vector in 🤗 Diffusers format:
Copied
locally:
Copied
load_lora_weights
( pretrained_model_name_or_path_or_dict: typing.Union[str, typing.Dict[str, torch.Tensor]]**kwargs )
Parameters
Load LoRA weights specified in pretrained_model_name_or_path_or_dict
into self.unet
and self.text_encoder
.
All kwargs are forwarded to self.lora_state_dict
.
save_lora_weights
( save_directory: typing.Union[str, os.PathLike]unet_lora_layers: typing.Dict[str, typing.Union[torch.nn.modules.module.Module, torch.Tensor]] = Nonetext_encoder_lora_layers: typing.Dict[str, torch.nn.modules.module.Module] = Noneis_main_process: bool = Trueweight_name: str = Nonesave_function: typing.Callable = Nonesafe_serialization: bool = True )
Parameters
save_directory (str
or os.PathLike
) — Directory to save LoRA parameters to. Will be created if it doesn’t exist.
unet_lora_layers (Dict[str, torch.nn.Module]
or Dict[str, torch.Tensor]
) — State dict of the LoRA layers corresponding to the unet
.
text_encoder_lora_layers (Dict[str, torch.nn.Module]
or Dict[str, torch.Tensor]
) — State dict of the LoRA layers corresponding to the text_encoder
. Must explicitly pass the text encoder LoRA state dict because it comes from 🤗 Transformers.
is_main_process (bool
, optional, defaults to True
) — Whether the process calling this is the main process or not. Useful during distributed training and you need to call this function on all processes. In this case, set is_main_process=True
only on the main process to avoid race conditions.
save_function (Callable
) — The function to use to save the state dictionary. Useful during distributed training when you need to replace torch.save
with another method. Can be configured with the environment variable DIFFUSERS_SAVE_MODE
.
safe_serialization (bool
, optional, defaults to True
) — Whether to save the model using safetensors
or the traditional PyTorch way with pickle
.
Save the LoRA parameters corresponding to the UNet and text encoder.
( images: typing.Union[typing.List[PIL.Image.Image], numpy.ndarray]nsfw_content_detected: typing.Optional[typing.List[bool]] )
Parameters
images (List[PIL.Image.Image]
or np.ndarray
) — List of denoised PIL images of length batch_size
or NumPy array of shape (batch_size, height, width, num_channels)
.
nsfw_content_detected (List[bool]
) — List indicating whether the corresponding generated image contains “not-safe-for-work” (nsfw) content or None
if safety checking could not be performed.
Output class for Stable Diffusion pipelines.
( vae: AutoencoderKLtext_encoder: CLIPTextModeltext_encoder_2: CLIPTextModelWithProjectiontokenizer: CLIPTokenizertokenizer_2: CLIPTokenizerunet: UNet2DConditionModelscheduler: KarrasDiffusionSchedulersforce_zeros_for_empty_prompt: bool = Trueadd_watermarker: typing.Optional[bool] = None )
Parameters
requires_aesthetics_score (bool
, optional, defaults to "False"
) — Whether the unet
requires a aesthetic_score condition to be passed during inference. Also see the config of stabilityai/stable-diffusion-xl-refiner-1-0
.
force_zeros_for_empty_prompt (bool
, optional, defaults to "True"
) — Whether the negative prompt embeddings shall be forced to always be set to 0. Also see the config of stabilityai/stable-diffusion-xl-base-1-0
.
Pipeline for pixel-level image editing by following text instructions. Based on Stable Diffusion XL.
In addition the pipeline inherits the following loading methods:
as well as the following saving methods:
__call__
Parameters
prompt (str
or List[str]
, optional) — The prompt or prompts to guide the image generation. If not defined, one has to pass prompt_embeds
. instead.
prompt_2 (str
or List[str]
, optional) — The prompt or prompts to be sent to the tokenizer_2
and text_encoder_2
. If not defined, prompt
is used in both text-encoders
image (torch.FloatTensor
or PIL.Image.Image
or np.ndarray
or List[torch.FloatTensor]
or List[PIL.Image.Image]
or List[np.ndarray]
) — The image(s) to modify with the pipeline.
height (int
, optional, defaults to self.unet.config.sample_size * self.vae_scale_factor) — The height in pixels of the generated image.
width (int
, optional, defaults to self.unet.config.sample_size * self.vae_scale_factor) — The width in pixels of the generated image.
num_inference_steps (int
, optional, defaults to 50) — The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference.
image_guidance_scale (float
, optional, defaults to 1.5) — Image guidance scale is to push the generated image towards the inital image image
. Image guidance scale is enabled by setting image_guidance_scale > 1
. Higher image guidance scale encourages to generate images that are closely linked to the source image image
, usually at the expense of lower image quality. This pipeline requires a value of at least 1
.
negative_prompt (str
or List[str]
, optional) — The prompt or prompts not to guide the image generation. If not defined, one has to pass negative_prompt_embeds
instead. Ignored when not using guidance (i.e., ignored if guidance_scale
is less than 1
).
negative_prompt_2 (str
or List[str]
, optional) — The prompt or prompts not to guide the image generation to be sent to tokenizer_2
and text_encoder_2
. If not defined, negative_prompt
is used in both text-encoders.
num_images_per_prompt (int
, optional, defaults to 1) — The number of images to generate per prompt.
latents (torch.FloatTensor
, optional) — Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor will ge generated by sampling using the supplied random generator
.
prompt_embeds (torch.FloatTensor
, optional) — Pre-generated text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, text embeddings will be generated from prompt
input argument.
negative_prompt_embeds (torch.FloatTensor
, optional) — Pre-generated negative text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, negative_prompt_embeds will be generated from negative_prompt
input argument.
pooled_prompt_embeds (torch.FloatTensor
, optional) — Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, pooled text embeddings will be generated from prompt
input argument.
negative_pooled_prompt_embeds (torch.FloatTensor
, optional) — Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, pooled negative_prompt_embeds will be generated from negative_prompt
input argument.
return_dict (bool
, optional, defaults to True
) — Whether or not to return a ~pipelines.stable_diffusion.StableDiffusionXLPipelineOutput
instead of a plain tuple.
callback (Callable
, optional) — A function that will be called every callback_steps
steps during inference. The function will be called with the following arguments: callback(step: int, timestep: int, latents: torch.FloatTensor)
.
callback_steps (int
, optional, defaults to 1) — The frequency at which the callback
function will be called. If not specified, the callback will be called at every step.
Returns
Function invoked when calling the pipeline for generation.
Examples:
Copied
disable_vae_slicing
( )
Disable sliced VAE decoding. If enable_vae_slicing
was previously invoked, this method will go back to computing decoding in one step.
disable_vae_tiling
( )
Disable tiled VAE decoding. If enable_vae_tiling
was previously invoked, this method will go back to computing decoding in one step.
enable_vae_slicing
( )
Enable sliced VAE decoding.
When this option is enabled, the VAE will split the input tensor in slices to compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
enable_vae_tiling
( )
Enable tiled VAE decoding.
When this option is enabled, the VAE will split the input tensor into tiles to compute decoding and encoding in several steps. This is useful to save a large amount of memory and to allow the processing of larger images.
encode_prompt
( prompt: strprompt_2: typing.Optional[str] = Nonedevice: typing.Optional[torch.device] = Nonenum_images_per_prompt: int = 1do_classifier_free_guidance: bool = Truenegative_prompt: typing.Optional[str] = Nonenegative_prompt_2: typing.Optional[str] = Noneprompt_embeds: typing.Optional[torch.FloatTensor] = Nonenegative_prompt_embeds: typing.Optional[torch.FloatTensor] = Nonepooled_prompt_embeds: typing.Optional[torch.FloatTensor] = Nonenegative_pooled_prompt_embeds: typing.Optional[torch.FloatTensor] = Nonelora_scale: typing.Optional[float] = None )
Parameters
prompt (str
or List[str]
, optional) — prompt to be encoded
prompt_2 (str
or List[str]
, optional) — The prompt or prompts to be sent to the tokenizer_2
and text_encoder_2
. If not defined, prompt
is used in both text-encoders device — (torch.device
): torch device
num_images_per_prompt (int
) — number of images that should be generated per prompt
do_classifier_free_guidance (bool
) — whether to use classifier free guidance or not
negative_prompt (str
or List[str]
, optional) — The prompt or prompts not to guide the image generation. If not defined, one has to pass negative_prompt_embeds
instead. Ignored when not using guidance (i.e., ignored if guidance_scale
is less than 1
).
negative_prompt_2 (str
or List[str]
, optional) — The prompt or prompts not to guide the image generation to be sent to tokenizer_2
and text_encoder_2
. If not defined, negative_prompt
is used in both text-encoders
prompt_embeds (torch.FloatTensor
, optional) — Pre-generated text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, text embeddings will be generated from prompt
input argument.
negative_prompt_embeds (torch.FloatTensor
, optional) — Pre-generated negative text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, negative_prompt_embeds will be generated from negative_prompt
input argument.
pooled_prompt_embeds (torch.FloatTensor
, optional) — Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, pooled text embeddings will be generated from prompt
input argument.
negative_pooled_prompt_embeds (torch.FloatTensor
, optional) — Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, pooled negative_prompt_embeds will be generated from negative_prompt
input argument.
lora_scale (float
, optional) — A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
Encodes the prompt into text encoder hidden states.
( images: typing.Union[typing.List[PIL.Image.Image], numpy.ndarray] )
Parameters
images (List[PIL.Image.Image]
or np.ndarray
) — List of denoised PIL images of length batch_size
or numpy array of shape (batch_size, height, width, num_channels)
. PIL images or numpy array present the denoised images of the diffusion pipeline.
Output class for Stable Diffusion pipelines.
This model inherits from . Check the superclass documentation for the generic methods implemented for all pipelines (downloading, saving, running on a particular device, etc.).
for loading textual inversion embeddings
for loading LoRA weights
for saving LoRA weights
( prompt: typing.Union[str, typing.List[str]] = Noneimage: typing.Union[PIL.Image.Image, numpy.ndarray, torch.FloatTensor, typing.List[PIL.Image.Image], typing.List[numpy.ndarray], typing.List[torch.FloatTensor]] = Nonenum_inference_steps: int = 100guidance_scale: float = 7.5image_guidance_scale: float = 1.5negative_prompt: typing.Union[str, typing.List[str], NoneType] = Nonenum_images_per_prompt: typing.Optional[int] = 1eta: float = 0.0generator: typing.Union[torch._C.Generator, typing.List[torch._C.Generator], NoneType] = Nonelatents: typing.Optional[torch.FloatTensor] = Noneprompt_embeds: typing.Optional[torch.FloatTensor] = Nonenegative_prompt_embeds: typing.Optional[torch.FloatTensor] = Noneoutput_type: typing.Optional[str] = 'pil'return_dict: bool = Truecallback: typing.Union[typing.Callable[[int, int, torch.FloatTensor], NoneType], NoneType] = Nonecallback_steps: int = 1 ) → or tuple
eta (float
, optional, defaults to 0.0) — Corresponds to parameter eta (η) from the paper. Only applies to the , and is ignored in other schedulers.
generator (torch.Generator
, optional) — A to make generation deterministic.
return_dict (bool
, optional, defaults to True
) — Whether or not to return a instead of a plain tuple.
or tuple
If return_dict
is True
, is returned, otherwise a tuple
is returned where the first element is a list with the generated images and the second element is a list of bool
s indicating whether the corresponding generated image contains “not-safe-for-work” (nsfw) content.
A .
text_encoder (CLIPTextModel
, optional) — Frozen text-encoder (). If not specified, function will take self.tokenizer.
Load textual inversion embeddings into the text encoder of (both 🤗 Diffusers and Automatic1111 formats are supported).
To load a textual inversion embedding vector in Automatic1111 format, make sure to download the vector first (for example from ) and then load the vector
pretrained_model_name_or_path_or_dict (str
or os.PathLike
or dict
) — See .
kwargs (dict
, optional) — See .
See for more details on how the state dict is loaded.
See for more details on how the state dict is loaded into self.unet
.
See for more details on how the state dict is loaded into self.text_encoder
.
vae () — Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
text_encoder (CLIPTextModel
) — Frozen text-encoder. Stable Diffusion XL uses the text portion of , specifically the variant.
text_encoder_2 ( CLIPTextModelWithProjection
) — Second frozen text-encoder. Stable Diffusion XL uses the text and pool portion of , specifically the variant.
tokenizer (CLIPTokenizer
) — Tokenizer of class .
tokenizer_2 (CLIPTokenizer
) — Second Tokenizer of class .
unet () — Conditional U-Net architecture to denoise the encoded image latents.
scheduler () — A scheduler to be used in combination with unet
to denoise the encoded image latents. Can be one of , , or .
add_watermarker (bool
, optional) — Whether to use the to watermark output images. If not defined, it will default to True if the package is installed, otherwise no watermarker will be used.
This model inherits from . Check the superclass documentation for the generic methods the library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
LoRA:
LoRA:
( prompt: typing.Union[str, typing.List[str]] = Noneprompt_2: typing.Union[str, typing.List[str], NoneType] = Noneimage: typing.Union[PIL.Image.Image, numpy.ndarray, torch.FloatTensor, typing.List[PIL.Image.Image], typing.List[numpy.ndarray], typing.List[torch.FloatTensor]] = Noneheight: typing.Optional[int] = Nonewidth: typing.Optional[int] = Nonenum_inference_steps: int = 100denoising_end: typing.Optional[float] = Noneguidance_scale: float = 5.0image_guidance_scale: float = 1.5negative_prompt: typing.Union[str, typing.List[str], NoneType] = Nonenegative_prompt_2: typing.Union[str, typing.List[str], NoneType] = Nonenum_images_per_prompt: typing.Optional[int] = 1eta: float = 0.0generator: typing.Union[torch._C.Generator, typing.List[torch._C.Generator], NoneType] = Nonelatents: typing.Optional[torch.FloatTensor] = Noneprompt_embeds: typing.Optional[torch.FloatTensor] = Nonenegative_prompt_embeds: typing.Optional[torch.FloatTensor] = Nonepooled_prompt_embeds: typing.Optional[torch.FloatTensor] = Nonenegative_pooled_prompt_embeds: typing.Optional[torch.FloatTensor] = Noneoutput_type: typing.Optional[str] = 'pil'return_dict: bool = Truecallback: typing.Union[typing.Callable[[int, int, torch.FloatTensor], NoneType], NoneType] = Nonecallback_steps: int = 1cross_attention_kwargs: typing.Union[typing.Dict[str, typing.Any], NoneType] = Noneguidance_rescale: float = 0.0original_size: typing.Tuple[int, int] = Nonecrops_coords_top_left: typing.Tuple[int, int] = (0, 0)target_size: typing.Tuple[int, int] = None ) → or tuple
denoising_end (float
, optional) — When specified, determines the fraction (between 0.0 and 1.0) of the total denoising process to be completed before it is intentionally prematurely terminated. As a result, the returned sample will still retain a substantial amount of noise as determined by the discrete timesteps selected by the scheduler. The denoising_end parameter should ideally be utilized when this pipeline forms a part of a “Mixture of Denoisers” multi-pipeline setup, as elaborated in
guidance_scale (float
, optional, defaults to 5.0) — Guidance scale as defined in . guidance_scale
is defined as w
of equation 2. of . Guidance scale is enabled by setting guidance_scale > 1
. Higher guidance scale encourages to generate images that are closely linked to the text prompt
, usually at the expense of lower image quality.
eta (float
, optional, defaults to 0.0) — Corresponds to parameter eta (η) in the DDIM paper: . Only applies to , will be ignored for others.
generator (torch.Generator
or List[torch.Generator]
, optional) — One or a list of to make generation deterministic.
output_type (str
, optional, defaults to "pil"
) — The output format of the generate image. Choose between : PIL.Image.Image
or np.array
.
cross_attention_kwargs (dict
, optional) — A kwargs dictionary that if specified is passed along to the AttentionProcessor
as defined under self.processor
in .
guidance_rescale (float
, optional, defaults to 0.7) — Guidance rescale factor proposed by guidance_scale
is defined as φ
in equation 16. of . Guidance rescale factor should fix overexposure when using zero terminal SNR.
original_size (Tuple[int]
, optional, defaults to (1024, 1024)) — If original_size
is not the same as target_size
the image will appear to be down- or upsampled. original_size
defaults to (width, height)
if not specified. Part of SDXL’s micro-conditioning as explained in section 2.2 of .
crops_coords_top_left (Tuple[int]
, optional, defaults to (0, 0)) — crops_coords_top_left
can be used to generate an image that appears to be “cropped” from the position crops_coords_top_left
downwards. Favorable, well-centered images are usually achieved by setting crops_coords_top_left
to (0, 0). Part of SDXL’s micro-conditioning as explained in section 2.2 of .
target_size (Tuple[int]
, optional, defaults to (1024, 1024)) — For most cases, target_size
should be set to the desired height and width of the generated image. If not specified it will default to (width, height)
. Part of SDXL’s micro-conditioning as explained in section 2.2 of .
or tuple
if return_dict
is True, otherwise a tuple
. When returning a tuple, the first element is a list with the generated images.