PaInstructPix2Pix

InstructPix2Pix

InstructPix2Pix: Learning to Follow Image Editing Instructionsarrow-up-right is by Tim Brooks, Aleksander Holynski and Alexei A. Efros.

The abstract from the paper is:

We propose a method for editing images from human instructions: given an input image and a written instruction that tells the model what to do, our model follows these instructions to edit the image. To obtain training data for this problem, we combine the knowledge of two large pretrained models β€” a language model (GPT-3) and a text-to-image model (Stable Diffusion) β€” to generate a large dataset of image editing examples. Our conditional diffusion model, InstructPix2Pix, is trained on our generated data, and generalizes to real images and user-written instructions at inference time. Since it performs edits in the forward pass and does not require per example fine-tuning or inversion, our model edits images quickly, in a matter of seconds. We show compelling editing results for a diverse collection of input images and written instructions.

You can find additional information about InstructPix2Pix on the project pagearrow-up-right, original codebasearrow-up-right, and try it out in a demoarrow-up-right.

Make sure to check out the Schedulers guidearrow-up-right to learn how to explore the tradeoff between scheduler speed and quality, and see the reuse components across pipelinesarrow-up-right section to learn how to efficiently load the same components into multiple pipelines.

StableDiffusionInstructPix2PixPipeline

class diffusers.StableDiffusionInstructPix2PixPipeline

<source>arrow-up-right

( vae: AutoencoderKLtext_encoder: CLIPTextModeltokenizer: CLIPTokenizerunet: UNet2DConditionModelscheduler: KarrasDiffusionSchedulerssafety_checker: StableDiffusionSafetyCheckerfeature_extractor: CLIPImageProcessorrequires_safety_checker: bool = True )

Parameters

Pipeline for pixel-level image editing by following text instructions (based on Stable Diffusion).

This model inherits from DiffusionPipelinearrow-up-right. Check the superclass documentation for the generic methods implemented for all pipelines (downloading, saving, running on a particular device, etc.).

The pipeline also inherits the following loading methods:

__call__

<source>arrow-up-right

( prompt: typing.Union[str, typing.List[str]] = Noneimage: typing.Union[PIL.Image.Image, numpy.ndarray, torch.FloatTensor, typing.List[PIL.Image.Image], typing.List[numpy.ndarray], typing.List[torch.FloatTensor]] = Nonenum_inference_steps: int = 100guidance_scale: float = 7.5image_guidance_scale: float = 1.5negative_prompt: typing.Union[str, typing.List[str], NoneType] = Nonenum_images_per_prompt: typing.Optional[int] = 1eta: float = 0.0generator: typing.Union[torch._C.Generator, typing.List[torch._C.Generator], NoneType] = Nonelatents: typing.Optional[torch.FloatTensor] = Noneprompt_embeds: typing.Optional[torch.FloatTensor] = Nonenegative_prompt_embeds: typing.Optional[torch.FloatTensor] = Noneoutput_type: typing.Optional[str] = 'pil'return_dict: bool = Truecallback: typing.Union[typing.Callable[[int, int, torch.FloatTensor], NoneType], NoneType] = Nonecallback_steps: int = 1 ) β†’ StableDiffusionPipelineOutputarrow-up-right or tuple

Parameters

  • prompt (str or List[str], optional) β€” The prompt or prompts to guide image generation. If not defined, you need to pass prompt_embeds.

  • image (torch.FloatTensor np.ndarray, PIL.Image.Image, List[torch.FloatTensor], List[PIL.Image.Image], or List[np.ndarray]) β€” Image or tensor representing an image batch to be repainted according to prompt. Can also accept image latents as image, but if passing latents directly it is not encoded again.

  • num_inference_steps (int, optional, defaults to 100) β€” The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference.

  • guidance_scale (float, optional, defaults to 7.5) β€” A higher guidance scale value encourages the model to generate images closely linked to the text prompt at the expense of lower image quality. Guidance scale is enabled when guidance_scale > 1.

  • image_guidance_scale (float, optional, defaults to 1.5) β€” Push the generated image towards the inital image. Image guidance scale is enabled by setting image_guidance_scale > 1. Higher image guidance scale encourages generated images that are closely linked to the source image, usually at the expense of lower image quality. This pipeline requires a value of at least 1.

  • negative_prompt (str or List[str], optional) β€” The prompt or prompts to guide what to not include in image generation. If not defined, you need to pass negative_prompt_embeds instead. Ignored when not using guidance (guidance_scale < 1).

  • num_images_per_prompt (int, optional, defaults to 1) β€” The number of images to generate per prompt.

  • eta (float, optional, defaults to 0.0) β€” Corresponds to parameter eta (Ξ·) from the DDIMarrow-up-right paper. Only applies to the DDIMSchedulerarrow-up-right, and is ignored in other schedulers.

  • generator (torch.Generator, optional) β€” A torch.Generatorarrow-up-right to make generation deterministic.

  • latents (torch.FloatTensor, optional) β€” Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor is generated by sampling using the supplied random generator.

  • prompt_embeds (torch.FloatTensor, optional) β€” Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not provided, text embeddings are generated from the prompt input argument.

  • negative_prompt_embeds (torch.FloatTensor, optional) β€” Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not provided, negative_prompt_embeds are generated from the negative_prompt input argument.

  • output_type (str, optional, defaults to "pil") β€” The output format of the generated image. Choose between PIL.Image or np.array.

  • return_dict (bool, optional, defaults to True) β€” Whether or not to return a StableDiffusionPipelineOutputarrow-up-right instead of a plain tuple.

  • callback (Callable, optional) β€” A function that calls every callback_steps steps during inference. The function is called with the following arguments: callback(step: int, timestep: int, latents: torch.FloatTensor).

  • callback_steps (int, optional, defaults to 1) β€” The frequency at which the callback function is called. If not specified, the callback is called at every step.

Returns

StableDiffusionPipelineOutputarrow-up-right or tuple

If return_dict is True, StableDiffusionPipelineOutputarrow-up-right is returned, otherwise a tuple is returned where the first element is a list with the generated images and the second element is a list of bools indicating whether the corresponding generated image contains β€œnot-safe-for-work” (nsfw) content.

The call function to the pipeline for generation.

Examples:

Copied

load_textual_inversion

<source>arrow-up-right

( pretrained_model_name_or_path: typing.Union[str, typing.List[str], typing.Dict[str, torch.Tensor], typing.List[typing.Dict[str, torch.Tensor]]]token: typing.Union[str, typing.List[str], NoneType] = Nonetokenizer: typing.Optional[transformers.tokenization_utils.PreTrainedTokenizer] = Nonetext_encoder: typing.Optional[transformers.modeling_utils.PreTrainedModel] = None**kwargs )

Parameters

  • pretrained_model_name_or_path (str or os.PathLike or List[str or os.PathLike] or Dict or List[Dict]) β€” Can be either one of the following or a list of them:

    • A string, the model id (for example sd-concepts-library/low-poly-hd-logos-icons) of a pretrained model hosted on the Hub.

    • A path to a directory (for example ./my_text_inversion_directory/) containing the textual inversion weights.

    • A path to a file (for example ./my_text_inversions.pt) containing textual inversion weights.

  • token (str or List[str], optional) β€” Override the token to use for the textual inversion weights. If pretrained_model_name_or_path is a list, then token must also be a list of equal length.

  • text_encoder (CLIPTextModel, optional) β€” Frozen text-encoder (clip-vit-large-patch14arrow-up-right). If not specified, function will take self.tokenizer.

  • tokenizer (CLIPTokenizer, optional) β€” A CLIPTokenizer to tokenize text. If not specified, function will take self.tokenizer.

  • weight_name (str, optional) β€” Name of a custom weight file. This should be used when:

    • The saved textual inversion file is in πŸ€— Diffusers format, but was saved under a specific weight name such as text_inv.bin.

    • The saved textual inversion file is in the Automatic1111 format.

  • cache_dir (Union[str, os.PathLike], optional) β€” Path to a directory where a downloaded pretrained model configuration is cached if the standard cache is not used.

  • force_download (bool, optional, defaults to False) β€” Whether or not to force the (re-)download of the model weights and configuration files, overriding the cached versions if they exist.

  • resume_download (bool, optional, defaults to False) β€” Whether or not to resume downloading the model weights and configuration files. If set to False, any incompletely downloaded files are deleted.

  • proxies (Dict[str, str], optional) β€” A dictionary of proxy servers to use by protocol or endpoint, for example, {'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}. The proxies are used on each request.

  • local_files_only (bool, optional, defaults to False) β€” Whether to only load local model weights and configuration files or not. If set to True, the model won’t be downloaded from the Hub.

  • use_auth_token (str or bool, optional) β€” The token to use as HTTP bearer authorization for remote files. If True, the token generated from diffusers-cli login (stored in ~/.boincai) is used.

  • revision (str, optional, defaults to "main") β€” The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier allowed by Git.

  • subfolder (str, optional, defaults to "") β€” The subfolder location of a model file within a larger model repository on the Hub or locally.

  • mirror (str, optional) β€” Mirror source to resolve accessibility issues if you’re downloading a model in China. We do not guarantee the timeliness or safety of the source, and you should refer to the mirror site for more information.

Load textual inversion embeddings into the text encoder of StableDiffusionPipelinearrow-up-right (both πŸ€— Diffusers and Automatic1111 formats are supported).

Example:

To load a textual inversion embedding vector in πŸ€— Diffusers format:

Copied

To load a textual inversion embedding vector in Automatic1111 format, make sure to download the vector first (for example from civitAIarrow-up-right) and then load the vector

locally:

Copied

load_lora_weights

<source>arrow-up-right

( pretrained_model_name_or_path_or_dict: typing.Union[str, typing.Dict[str, torch.Tensor]]**kwargs )

Parameters

Load LoRA weights specified in pretrained_model_name_or_path_or_dict into self.unet and self.text_encoder.

All kwargs are forwarded to self.lora_state_dict.

See lora_state_dict()arrow-up-right for more details on how the state dict is loaded.

See load_lora_into_unet()arrow-up-right for more details on how the state dict is loaded into self.unet.

See load_lora_into_text_encoder()arrow-up-right for more details on how the state dict is loaded into self.text_encoder.

save_lora_weights

<source>arrow-up-right

( save_directory: typing.Union[str, os.PathLike]unet_lora_layers: typing.Dict[str, typing.Union[torch.nn.modules.module.Module, torch.Tensor]] = Nonetext_encoder_lora_layers: typing.Dict[str, torch.nn.modules.module.Module] = Noneis_main_process: bool = Trueweight_name: str = Nonesave_function: typing.Callable = Nonesafe_serialization: bool = True )

Parameters

  • save_directory (str or os.PathLike) β€” Directory to save LoRA parameters to. Will be created if it doesn’t exist.

  • unet_lora_layers (Dict[str, torch.nn.Module] or Dict[str, torch.Tensor]) β€” State dict of the LoRA layers corresponding to the unet.

  • text_encoder_lora_layers (Dict[str, torch.nn.Module] or Dict[str, torch.Tensor]) β€” State dict of the LoRA layers corresponding to the text_encoder. Must explicitly pass the text encoder LoRA state dict because it comes from πŸ€— Transformers.

  • is_main_process (bool, optional, defaults to True) β€” Whether the process calling this is the main process or not. Useful during distributed training and you need to call this function on all processes. In this case, set is_main_process=True only on the main process to avoid race conditions.

  • save_function (Callable) β€” The function to use to save the state dictionary. Useful during distributed training when you need to replace torch.save with another method. Can be configured with the environment variable DIFFUSERS_SAVE_MODE.

  • safe_serialization (bool, optional, defaults to True) β€” Whether to save the model using safetensors or the traditional PyTorch way with pickle.

Save the LoRA parameters corresponding to the UNet and text encoder.

StableDiffusionPipelineOutput

class diffusers.pipelines.stable_diffusion.StableDiffusionPipelineOutput

<source>arrow-up-right

( images: typing.Union[typing.List[PIL.Image.Image], numpy.ndarray]nsfw_content_detected: typing.Optional[typing.List[bool]] )

Parameters

  • images (List[PIL.Image.Image] or np.ndarray) β€” List of denoised PIL images of length batch_size or NumPy array of shape (batch_size, height, width, num_channels).

  • nsfw_content_detected (List[bool]) β€” List indicating whether the corresponding generated image contains β€œnot-safe-for-work” (nsfw) content or None if safety checking could not be performed.

Output class for Stable Diffusion pipelines.

StableDiffusionXLInstructPix2PixPipeline

class diffusers.StableDiffusionXLInstructPix2PixPipeline

<source>arrow-up-right

( vae: AutoencoderKLtext_encoder: CLIPTextModeltext_encoder_2: CLIPTextModelWithProjectiontokenizer: CLIPTokenizertokenizer_2: CLIPTokenizerunet: UNet2DConditionModelscheduler: KarrasDiffusionSchedulersforce_zeros_for_empty_prompt: bool = Trueadd_watermarker: typing.Optional[bool] = None )

Parameters

Pipeline for pixel-level image editing by following text instructions. Based on Stable Diffusion XL.

This model inherits from DiffusionPipelinearrow-up-right. Check the superclass documentation for the generic methods the library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)

In addition the pipeline inherits the following loading methods:

as well as the following saving methods:

__call__

<source>arrow-up-right

( prompt: typing.Union[str, typing.List[str]] = Noneprompt_2: typing.Union[str, typing.List[str], NoneType] = Noneimage: typing.Union[PIL.Image.Image, numpy.ndarray, torch.FloatTensor, typing.List[PIL.Image.Image], typing.List[numpy.ndarray], typing.List[torch.FloatTensor]] = Noneheight: typing.Optional[int] = Nonewidth: typing.Optional[int] = Nonenum_inference_steps: int = 100denoising_end: typing.Optional[float] = Noneguidance_scale: float = 5.0image_guidance_scale: float = 1.5negative_prompt: typing.Union[str, typing.List[str], NoneType] = Nonenegative_prompt_2: typing.Union[str, typing.List[str], NoneType] = Nonenum_images_per_prompt: typing.Optional[int] = 1eta: float = 0.0generator: typing.Union[torch._C.Generator, typing.List[torch._C.Generator], NoneType] = Nonelatents: typing.Optional[torch.FloatTensor] = Noneprompt_embeds: typing.Optional[torch.FloatTensor] = Nonenegative_prompt_embeds: typing.Optional[torch.FloatTensor] = Nonepooled_prompt_embeds: typing.Optional[torch.FloatTensor] = Nonenegative_pooled_prompt_embeds: typing.Optional[torch.FloatTensor] = Noneoutput_type: typing.Optional[str] = 'pil'return_dict: bool = Truecallback: typing.Union[typing.Callable[[int, int, torch.FloatTensor], NoneType], NoneType] = Nonecallback_steps: int = 1cross_attention_kwargs: typing.Union[typing.Dict[str, typing.Any], NoneType] = Noneguidance_rescale: float = 0.0original_size: typing.Tuple[int, int] = Nonecrops_coords_top_left: typing.Tuple[int, int] = (0, 0)target_size: typing.Tuple[int, int] = None ) β†’ StableDiffusionXLPipelineOutputarrow-up-right or tuple

Parameters

  • prompt (str or List[str], optional) β€” The prompt or prompts to guide the image generation. If not defined, one has to pass prompt_embeds. instead.

  • prompt_2 (str or List[str], optional) β€” The prompt or prompts to be sent to the tokenizer_2 and text_encoder_2. If not defined, prompt is used in both text-encoders

  • image (torch.FloatTensor or PIL.Image.Image or np.ndarray or List[torch.FloatTensor] or List[PIL.Image.Image] or List[np.ndarray]) β€” The image(s) to modify with the pipeline.

  • height (int, optional, defaults to self.unet.config.sample_size * self.vae_scale_factor) β€” The height in pixels of the generated image.

  • width (int, optional, defaults to self.unet.config.sample_size * self.vae_scale_factor) β€” The width in pixels of the generated image.

  • num_inference_steps (int, optional, defaults to 50) β€” The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference.

  • denoising_end (float, optional) β€” When specified, determines the fraction (between 0.0 and 1.0) of the total denoising process to be completed before it is intentionally prematurely terminated. As a result, the returned sample will still retain a substantial amount of noise as determined by the discrete timesteps selected by the scheduler. The denoising_end parameter should ideally be utilized when this pipeline forms a part of a β€œMixture of Denoisers” multi-pipeline setup, as elaborated in Refining the Image Outputarrow-up-right

  • guidance_scale (float, optional, defaults to 5.0) β€” Guidance scale as defined in Classifier-Free Diffusion Guidancearrow-up-right. guidance_scale is defined as w of equation 2. of Imagen Paperarrow-up-right. Guidance scale is enabled by setting guidance_scale > 1. Higher guidance scale encourages to generate images that are closely linked to the text prompt, usually at the expense of lower image quality.

  • image_guidance_scale (float, optional, defaults to 1.5) β€” Image guidance scale is to push the generated image towards the inital image image. Image guidance scale is enabled by setting image_guidance_scale > 1. Higher image guidance scale encourages to generate images that are closely linked to the source image image, usually at the expense of lower image quality. This pipeline requires a value of at least 1.

  • negative_prompt (str or List[str], optional) β€” The prompt or prompts not to guide the image generation. If not defined, one has to pass negative_prompt_embeds instead. Ignored when not using guidance (i.e., ignored if guidance_scale is less than 1).

  • negative_prompt_2 (str or List[str], optional) β€” The prompt or prompts not to guide the image generation to be sent to tokenizer_2 and text_encoder_2. If not defined, negative_prompt is used in both text-encoders.

  • num_images_per_prompt (int, optional, defaults to 1) β€” The number of images to generate per prompt.

  • eta (float, optional, defaults to 0.0) β€” Corresponds to parameter eta (Ξ·) in the DDIM paper: https://arxiv.org/abs/2010.02502arrow-up-right. Only applies to schedulers.DDIMSchedulerarrow-up-right, will be ignored for others.

  • generator (torch.Generator or List[torch.Generator], optional) β€” One or a list of torch generator(s)arrow-up-right to make generation deterministic.

  • latents (torch.FloatTensor, optional) β€” Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor will ge generated by sampling using the supplied random generator.

  • prompt_embeds (torch.FloatTensor, optional) β€” Pre-generated text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, text embeddings will be generated from prompt input argument.

  • negative_prompt_embeds (torch.FloatTensor, optional) β€” Pre-generated negative text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, negative_prompt_embeds will be generated from negative_prompt input argument.

  • pooled_prompt_embeds (torch.FloatTensor, optional) β€” Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, pooled text embeddings will be generated from prompt input argument.

  • negative_pooled_prompt_embeds (torch.FloatTensor, optional) β€” Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, pooled negative_prompt_embeds will be generated from negative_prompt input argument.

  • output_type (str, optional, defaults to "pil") β€” The output format of the generate image. Choose between PILarrow-up-right: PIL.Image.Image or np.array.

  • return_dict (bool, optional, defaults to True) β€” Whether or not to return a ~pipelines.stable_diffusion.StableDiffusionXLPipelineOutput instead of a plain tuple.

  • callback (Callable, optional) β€” A function that will be called every callback_steps steps during inference. The function will be called with the following arguments: callback(step: int, timestep: int, latents: torch.FloatTensor).

  • callback_steps (int, optional, defaults to 1) β€” The frequency at which the callback function will be called. If not specified, the callback will be called at every step.

  • cross_attention_kwargs (dict, optional) β€” A kwargs dictionary that if specified is passed along to the AttentionProcessor as defined under self.processor in diffusers.models.attention_processorarrow-up-right.

  • guidance_rescale (float, optional, defaults to 0.7) β€” Guidance rescale factor proposed by Common Diffusion Noise Schedules and Sample Steps are Flawedarrow-up-right guidance_scale is defined as Ο† in equation 16. of Common Diffusion Noise Schedules and Sample Steps are Flawedarrow-up-right. Guidance rescale factor should fix overexposure when using zero terminal SNR.

  • original_size (Tuple[int], optional, defaults to (1024, 1024)) β€” If original_size is not the same as target_size the image will appear to be down- or upsampled. original_size defaults to (width, height) if not specified. Part of SDXL’s micro-conditioning as explained in section 2.2 of https://boincai.com/papers/2307.01952arrow-up-right.

  • crops_coords_top_left (Tuple[int], optional, defaults to (0, 0)) β€” crops_coords_top_left can be used to generate an image that appears to be β€œcropped” from the position crops_coords_top_left downwards. Favorable, well-centered images are usually achieved by setting crops_coords_top_left to (0, 0). Part of SDXL’s micro-conditioning as explained in section 2.2 of https://boincai.com/papers/2307.01952arrow-up-right.

  • target_size (Tuple[int], optional, defaults to (1024, 1024)) β€” For most cases, target_size should be set to the desired height and width of the generated image. If not specified it will default to (width, height). Part of SDXL’s micro-conditioning as explained in section 2.2 of https://boincai.com/papers/2307.01952arrow-up-right.

Returns

StableDiffusionXLPipelineOutputarrow-up-right or tuple

StableDiffusionXLPipelineOutputarrow-up-right if return_dict is True, otherwise a tuple. When returning a tuple, the first element is a list with the generated images.

Function invoked when calling the pipeline for generation.

Examples:

Copied

disable_vae_slicing

<source>arrow-up-right

( )

Disable sliced VAE decoding. If enable_vae_slicing was previously invoked, this method will go back to computing decoding in one step.

disable_vae_tiling

<source>arrow-up-right

( )

Disable tiled VAE decoding. If enable_vae_tiling was previously invoked, this method will go back to computing decoding in one step.

enable_vae_slicing

<source>arrow-up-right

( )

Enable sliced VAE decoding.

When this option is enabled, the VAE will split the input tensor in slices to compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.

enable_vae_tiling

<source>arrow-up-right

( )

Enable tiled VAE decoding.

When this option is enabled, the VAE will split the input tensor into tiles to compute decoding and encoding in several steps. This is useful to save a large amount of memory and to allow the processing of larger images.

encode_prompt

<source>arrow-up-right

( prompt: strprompt_2: typing.Optional[str] = Nonedevice: typing.Optional[torch.device] = Nonenum_images_per_prompt: int = 1do_classifier_free_guidance: bool = Truenegative_prompt: typing.Optional[str] = Nonenegative_prompt_2: typing.Optional[str] = Noneprompt_embeds: typing.Optional[torch.FloatTensor] = Nonenegative_prompt_embeds: typing.Optional[torch.FloatTensor] = Nonepooled_prompt_embeds: typing.Optional[torch.FloatTensor] = Nonenegative_pooled_prompt_embeds: typing.Optional[torch.FloatTensor] = Nonelora_scale: typing.Optional[float] = None )

Parameters

  • prompt (str or List[str], optional) β€” prompt to be encoded

  • prompt_2 (str or List[str], optional) β€” The prompt or prompts to be sent to the tokenizer_2 and text_encoder_2. If not defined, prompt is used in both text-encoders device β€” (torch.device): torch device

  • num_images_per_prompt (int) β€” number of images that should be generated per prompt

  • do_classifier_free_guidance (bool) β€” whether to use classifier free guidance or not

  • negative_prompt (str or List[str], optional) β€” The prompt or prompts not to guide the image generation. If not defined, one has to pass negative_prompt_embeds instead. Ignored when not using guidance (i.e., ignored if guidance_scale is less than 1).

  • negative_prompt_2 (str or List[str], optional) β€” The prompt or prompts not to guide the image generation to be sent to tokenizer_2 and text_encoder_2. If not defined, negative_prompt is used in both text-encoders

  • prompt_embeds (torch.FloatTensor, optional) β€” Pre-generated text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, text embeddings will be generated from prompt input argument.

  • negative_prompt_embeds (torch.FloatTensor, optional) β€” Pre-generated negative text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, negative_prompt_embeds will be generated from negative_prompt input argument.

  • pooled_prompt_embeds (torch.FloatTensor, optional) β€” Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, pooled text embeddings will be generated from prompt input argument.

  • negative_pooled_prompt_embeds (torch.FloatTensor, optional) β€” Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, pooled negative_prompt_embeds will be generated from negative_prompt input argument.

  • lora_scale (float, optional) β€” A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.

Encodes the prompt into text encoder hidden states.

StableDiffusionXLPipelineOutput

class diffusers.pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput

<source>arrow-up-right

( images: typing.Union[typing.List[PIL.Image.Image], numpy.ndarray] )

Parameters

  • images (List[PIL.Image.Image] or np.ndarray) β€” List of denoised PIL images of length batch_size or numpy array of shape (batch_size, height, width, num_channels). PIL images or numpy array present the denoised images of the diffusion pipeline.

Output class for Stable Diffusion pipelines.

Last updated