Diffusers BOINC AI docs
  • 🌍GET STARTED
    • Diffusers
    • Quicktour
    • Effective and efficient diffusion
    • Installation
  • 🌍TUTORIALS
    • Overview
    • Understanding models and schedulers
    • AutoPipeline
    • Train a diffusion model
  • 🌍USING DIFFUSERS
    • 🌍LOADING & HUB
      • Overview
      • Load pipelines, models, and schedulers
      • Load and compare different schedulers
      • Load community pipelines
      • Load safetensors
      • Load different Stable Diffusion formats
      • Push files to the Hub
    • 🌍TASKS
      • Unconditional image generation
      • Text-to-image
      • Image-to-image
      • Inpainting
      • Depth-to-image
    • 🌍TECHNIQUES
      • Textual inversion
      • Distributed inference with multiple GPUs
      • Improve image quality with deterministic generation
      • Control image brightness
      • Prompt weighting
    • 🌍PIPELINES FOR INFERENCE
      • Overview
      • Stable Diffusion XL
      • ControlNet
      • Shap-E
      • DiffEdit
      • Distilled Stable Diffusion inference
      • Create reproducible pipelines
      • Community pipelines
      • How to contribute a community pipeline
    • 🌍TRAINING
      • Overview
      • Create a dataset for training
      • Adapt a model to a new task
      • Unconditional image generation
      • Textual Inversion
      • DreamBooth
      • Text-to-image
      • Low-Rank Adaptation of Large Language Models (LoRA)
      • ControlNet
      • InstructPix2Pix Training
      • Custom Diffusion
      • T2I-Adapters
    • 🌍TAKING DIFFUSERS BEYOND IMAGES
      • Other Modalities
  • 🌍OPTIMIZATION/SPECIAL HARDWARE
    • Overview
    • Memory and Speed
    • Torch2.0 support
    • Stable Diffusion in JAX/Flax
    • xFormers
    • ONNX
    • OpenVINO
    • Core ML
    • MPS
    • Habana Gaudi
    • Token Merging
  • 🌍CONCEPTUAL GUIDES
    • Philosophy
    • Controlled generation
    • How to contribute?
    • Diffusers' Ethical Guidelines
    • Evaluating Diffusion Models
  • 🌍API
    • 🌍MAIN CLASSES
      • Attention Processor
      • Diffusion Pipeline
      • Logging
      • Configuration
      • Outputs
      • Loaders
      • Utilities
      • VAE Image Processor
    • 🌍MODELS
      • Overview
      • UNet1DModel
      • UNet2DModel
      • UNet2DConditionModel
      • UNet3DConditionModel
      • VQModel
      • AutoencoderKL
      • AsymmetricAutoencoderKL
      • Tiny AutoEncoder
      • Transformer2D
      • Transformer Temporal
      • Prior Transformer
      • ControlNet
    • 🌍PIPELINES
      • Overview
      • AltDiffusion
      • Attend-and-Excite
      • Audio Diffusion
      • AudioLDM
      • AudioLDM 2
      • AutoPipeline
      • Consistency Models
      • ControlNet
      • ControlNet with Stable Diffusion XL
      • Cycle Diffusion
      • Dance Diffusion
      • DDIM
      • DDPM
      • DeepFloyd IF
      • DiffEdit
      • DiT
      • IF
      • PaInstructPix2Pix
      • Kandinsky
      • Kandinsky 2.2
      • Latent Diffusionge
      • MultiDiffusion
      • MusicLDM
      • PaintByExample
      • Parallel Sampling of Diffusion Models
      • Pix2Pix Zero
      • PNDM
      • RePaint
      • Score SDE VE
      • Self-Attention Guidance
      • Semantic Guidance
      • Shap-E
      • Spectrogram Diffusion
      • 🌍STABLE DIFFUSION
        • Overview
        • Text-to-image
        • Image-to-image
        • Inpainting
        • Depth-to-image
        • Image variation
        • Safe Stable Diffusion
        • Stable Diffusion 2
        • Stable Diffusion XL
        • Latent upscaler
        • Super-resolution
        • LDM3D Text-to-(RGB, Depth)
        • Stable Diffusion T2I-adapter
        • GLIGEN (Grounded Language-to-Image Generation)
      • Stable unCLIP
      • Stochastic Karras VE
      • Text-to-image model editing
      • Text-to-video
      • Text2Video-Zero
      • UnCLIP
      • Unconditional Latent Diffusion
      • UniDiffuser
      • Value-guided sampling
      • Versatile Diffusion
      • VQ Diffusion
      • Wuerstchen
    • 🌍SCHEDULERS
      • Overview
      • CMStochasticIterativeScheduler
      • DDIMInverseScheduler
      • DDIMScheduler
      • DDPMScheduler
      • DEISMultistepScheduler
      • DPMSolverMultistepInverse
      • DPMSolverMultistepScheduler
      • DPMSolverSDEScheduler
      • DPMSolverSinglestepScheduler
      • EulerAncestralDiscreteScheduler
      • EulerDiscreteScheduler
      • HeunDiscreteScheduler
      • IPNDMScheduler
      • KarrasVeScheduler
      • KDPM2AncestralDiscreteScheduler
      • KDPM2DiscreteScheduler
      • LMSDiscreteScheduler
      • PNDMScheduler
      • RePaintScheduler
      • ScoreSdeVeScheduler
      • ScoreSdeVpScheduler
      • UniPCMultistepScheduler
      • VQDiffusionScheduler
Powered by GitBook
On this page
  • DDIM
  • DDIMPipeline
  • ImagePipelineOutput
  1. API
  2. PIPELINES

DDIM

PreviousDance DiffusionNextDDPM

Last updated 1 year ago

DDIM

(DDIM) by Jiaming Song, Chenlin Meng and Stefano Ermon.

The abstract from the paper is:

Denoising diffusion probabilistic models (DDPMs) have achieved high quality image generation without adversarial training, yet they require simulating a Markov chain for many steps to produce a sample. To accelerate sampling, we present denoising diffusion implicit models (DDIMs), a more efficient class of iterative implicit probabilistic models with the same training procedure as DDPMs. In DDPMs, the generative process is defined as the reverse of a Markovian diffusion process. We construct a class of non-Markovian diffusion processes that lead to the same training objective, but whose reverse process can be much faster to sample from. We empirically demonstrate that DDIMs can produce high quality samples 10Γ— to 50Γ— faster in terms of wall-clock time compared to DDPMs, allow us to trade off computation for sample quality, and can perform semantically meaningful image interpolation directly in the latent space.

The original codebase can be found at .

DDIMPipeline

class diffusers.DDIMPipeline

( unetscheduler )

Parameters

  • unet () β€” A UNet2DModel to denoise the encoded image latents.

  • scheduler () β€” A scheduler to be used in combination with unet to denoise the encoded image. Can be one of , or .

Pipeline for image generation.

This model inherits from . Check the superclass documentation for the generic methods implemented for all pipelines (downloading, saving, running on a particular device, etc.).

__call__

Parameters

  • batch_size (int, optional, defaults to 1) β€” The number of images to generate.

  • num_inference_steps (int, optional, defaults to 50) β€” The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference.

  • output_type (str, optional, defaults to "pil") β€” The output format of the generated image. Choose between PIL.Image or np.array.

Returns

The call function to the pipeline for generation.

Example:

Copied

>>> from diffusers import DDIMPipeline
>>> import PIL.Image
>>> import numpy as np

>>> # load model and scheduler
>>> pipe = DDIMPipeline.from_pretrained("fusing/ddim-lsun-bedroom")

>>> # run pipeline in inference (sample random noise and denoise)
>>> image = pipe(eta=0.0, num_inference_steps=50)

>>> # process image to PIL
>>> image_processed = image.cpu().permute(0, 2, 3, 1)
>>> image_processed = (image_processed + 1.0) * 127.5
>>> image_processed = image_processed.numpy().astype(np.uint8)
>>> image_pil = PIL.Image.fromarray(image_processed[0])

>>> # save image
>>> image_pil.save("test.png")

ImagePipelineOutput

class diffusers.ImagePipelineOutput

( images: typing.Union[typing.List[PIL.Image.Image], numpy.ndarray] )

Parameters

  • images (List[PIL.Image.Image] or np.ndarray) β€” List of denoised PIL images of length batch_size or NumPy array of shape (batch_size, height, width, num_channels).

Output class for image pipelines.

( batch_size: int = 1generator: typing.Union[torch._C.Generator, typing.List[torch._C.Generator], NoneType] = Noneeta: float = 0.0num_inference_steps: int = 50use_clipped_model_output: typing.Optional[bool] = Noneoutput_type: typing.Optional[str] = 'pil'return_dict: bool = True ) β†’ or tuple

generator (torch.Generator, optional) β€” A to make generation deterministic.

eta (float, optional, defaults to 0.0) β€” Corresponds to parameter eta (Ξ·) from the paper. Only applies to the , and is ignored in other schedulers. A value of 0 corresponds to DDIM and 1 corresponds to DDPM.

use_clipped_model_output (bool, optional, defaults to None) β€” If True or False, see documentation for . If None, nothing is passed downstream to the scheduler (use None for schedulers which don’t support this argument).

return_dict (bool, optional, defaults to True) β€” Whether or not to return a instead of a plain tuple.

or tuple

If return_dict is True, is returned, otherwise a tuple is returned where the first element is a list with the generated images

🌍
🌍
Denoising Diffusion Implicit Models
ermongroup/ddim
<source>
UNet2DModel
SchedulerMixin
DDPMScheduler
DDIMScheduler
DiffusionPipeline
<source>
ImagePipelineOutput
torch.Generator
DDIM
DDIMScheduler
DDIMScheduler.step()
ImagePipelineOutput
ImagePipelineOutput
ImagePipelineOutput
<source>