Diffusers BOINC AI docs
  • 🌍GET STARTED
    • Diffusers
    • Quicktour
    • Effective and efficient diffusion
    • Installation
  • 🌍TUTORIALS
    • Overview
    • Understanding models and schedulers
    • AutoPipeline
    • Train a diffusion model
  • 🌍USING DIFFUSERS
    • 🌍LOADING & HUB
      • Overview
      • Load pipelines, models, and schedulers
      • Load and compare different schedulers
      • Load community pipelines
      • Load safetensors
      • Load different Stable Diffusion formats
      • Push files to the Hub
    • 🌍TASKS
      • Unconditional image generation
      • Text-to-image
      • Image-to-image
      • Inpainting
      • Depth-to-image
    • 🌍TECHNIQUES
      • Textual inversion
      • Distributed inference with multiple GPUs
      • Improve image quality with deterministic generation
      • Control image brightness
      • Prompt weighting
    • 🌍PIPELINES FOR INFERENCE
      • Overview
      • Stable Diffusion XL
      • ControlNet
      • Shap-E
      • DiffEdit
      • Distilled Stable Diffusion inference
      • Create reproducible pipelines
      • Community pipelines
      • How to contribute a community pipeline
    • 🌍TRAINING
      • Overview
      • Create a dataset for training
      • Adapt a model to a new task
      • Unconditional image generation
      • Textual Inversion
      • DreamBooth
      • Text-to-image
      • Low-Rank Adaptation of Large Language Models (LoRA)
      • ControlNet
      • InstructPix2Pix Training
      • Custom Diffusion
      • T2I-Adapters
    • 🌍TAKING DIFFUSERS BEYOND IMAGES
      • Other Modalities
  • 🌍OPTIMIZATION/SPECIAL HARDWARE
    • Overview
    • Memory and Speed
    • Torch2.0 support
    • Stable Diffusion in JAX/Flax
    • xFormers
    • ONNX
    • OpenVINO
    • Core ML
    • MPS
    • Habana Gaudi
    • Token Merging
  • 🌍CONCEPTUAL GUIDES
    • Philosophy
    • Controlled generation
    • How to contribute?
    • Diffusers' Ethical Guidelines
    • Evaluating Diffusion Models
  • 🌍API
    • 🌍MAIN CLASSES
      • Attention Processor
      • Diffusion Pipeline
      • Logging
      • Configuration
      • Outputs
      • Loaders
      • Utilities
      • VAE Image Processor
    • 🌍MODELS
      • Overview
      • UNet1DModel
      • UNet2DModel
      • UNet2DConditionModel
      • UNet3DConditionModel
      • VQModel
      • AutoencoderKL
      • AsymmetricAutoencoderKL
      • Tiny AutoEncoder
      • Transformer2D
      • Transformer Temporal
      • Prior Transformer
      • ControlNet
    • 🌍PIPELINES
      • Overview
      • AltDiffusion
      • Attend-and-Excite
      • Audio Diffusion
      • AudioLDM
      • AudioLDM 2
      • AutoPipeline
      • Consistency Models
      • ControlNet
      • ControlNet with Stable Diffusion XL
      • Cycle Diffusion
      • Dance Diffusion
      • DDIM
      • DDPM
      • DeepFloyd IF
      • DiffEdit
      • DiT
      • IF
      • PaInstructPix2Pix
      • Kandinsky
      • Kandinsky 2.2
      • Latent Diffusionge
      • MultiDiffusion
      • MusicLDM
      • PaintByExample
      • Parallel Sampling of Diffusion Models
      • Pix2Pix Zero
      • PNDM
      • RePaint
      • Score SDE VE
      • Self-Attention Guidance
      • Semantic Guidance
      • Shap-E
      • Spectrogram Diffusion
      • 🌍STABLE DIFFUSION
        • Overview
        • Text-to-image
        • Image-to-image
        • Inpainting
        • Depth-to-image
        • Image variation
        • Safe Stable Diffusion
        • Stable Diffusion 2
        • Stable Diffusion XL
        • Latent upscaler
        • Super-resolution
        • LDM3D Text-to-(RGB, Depth)
        • Stable Diffusion T2I-adapter
        • GLIGEN (Grounded Language-to-Image Generation)
      • Stable unCLIP
      • Stochastic Karras VE
      • Text-to-image model editing
      • Text-to-video
      • Text2Video-Zero
      • UnCLIP
      • Unconditional Latent Diffusion
      • UniDiffuser
      • Value-guided sampling
      • Versatile Diffusion
      • VQ Diffusion
      • Wuerstchen
    • 🌍SCHEDULERS
      • Overview
      • CMStochasticIterativeScheduler
      • DDIMInverseScheduler
      • DDIMScheduler
      • DDPMScheduler
      • DEISMultistepScheduler
      • DPMSolverMultistepInverse
      • DPMSolverMultistepScheduler
      • DPMSolverSDEScheduler
      • DPMSolverSinglestepScheduler
      • EulerAncestralDiscreteScheduler
      • EulerDiscreteScheduler
      • HeunDiscreteScheduler
      • IPNDMScheduler
      • KarrasVeScheduler
      • KDPM2AncestralDiscreteScheduler
      • KDPM2DiscreteScheduler
      • LMSDiscreteScheduler
      • PNDMScheduler
      • RePaintScheduler
      • ScoreSdeVeScheduler
      • ScoreSdeVpScheduler
      • UniPCMultistepScheduler
      • VQDiffusionScheduler
Powered by GitBook
On this page
  • Text2Video-Zero
  • Usage example
  • TextToVideoZeroPipeline
  • TextToVideoPipelineOutput
  1. API
  2. PIPELINES

Text2Video-Zero

PreviousText-to-videoNextUnCLIP

Last updated 1 year ago

Text2Video-Zero

is by Levon Khachatryan, Andranik Movsisyan, Vahram Tadevosyan, Roberto Henschel, , Shant Navasardyan, .

Text2Video-Zero enables zero-shot video generation using either:

  1. A textual prompt

  2. A prompt combined with guidance from poses or edges

  3. Video Instruct-Pix2Pix (instruction-guided video editing)

Results are temporally consistent and closely follow the guidance and textual prompts.

teaser-img

The abstract from the paper is:

Recent text-to-video generation approaches rely on computationally heavy training and require large-scale video datasets. In this paper, we introduce a new task of zero-shot text-to-video generation and propose a low-cost approach (without any training or optimization) by leveraging the power of existing text-to-image synthesis methods (e.g., Stable Diffusion), making them suitable for the video domain. Our key modifications include (i) enriching the latent codes of the generated frames with motion dynamics to keep the global scene and the background time consistent; and (ii) reprogramming frame-level self-attention using a new cross-frame attention of each frame on the first frame, to preserve the context, appearance, and identity of the foreground object. Experiments show that this leads to low overhead, yet high-quality and remarkably consistent video generation. Moreover, our approach is not limited to text-to-video synthesis but is also applicable to other tasks such as conditional and content-specialized video generation, and Video Instruct-Pix2Pix, i.e., instruction-guided video editing. As experiments show, our method performs comparably or sometimes better than recent approaches, despite not being trained on additional video data.

Usage example

Text-To-Video

To generate a video from prompt, run the following python command

Copied

import torch
import imageio
from diffusers import TextToVideoZeroPipeline

model_id = "runwayml/stable-diffusion-v1-5"
pipe = TextToVideoZeroPipeline.from_pretrained(model_id, torch_dtype=torch.float16).to("cuda")

prompt = "A panda is playing guitar on times square"
result = pipe(prompt=prompt).images
result = [(r * 255).astype("uint8") for r in result]
imageio.mimsave("video.mp4", result, fps=4)

You can change these parameters in the pipeline call:

    • motion_field_strength_x and motion_field_strength_y. Default: motion_field_strength_x=12, motion_field_strength_y=12

    • t0 and t1 in the range {0, ..., num_inference_steps}. Default: t0=45, t1=48

  • Video length:

    • video_length, the number of frames video_length to be generated. Default: video_length=8

We an also generate longer videos by doing the processing in a chunk-by-chunk manner:

Copied

import torch
import imageio
from diffusers import TextToVideoZeroPipeline
import numpy as np

model_id = "runwayml/stable-diffusion-v1-5"
pipe = TextToVideoZeroPipeline.from_pretrained(model_id, torch_dtype=torch.float16).to("cuda")
seed = 0
video_length = 8
chunk_size = 4
prompt = "A panda is playing guitar on times square"

# Generate the video chunk-by-chunk
result = []
chunk_ids = np.arange(0, video_length, chunk_size - 1)
generator = torch.Generator(device="cuda")
for i in range(len(chunk_ids)):
    print(f"Processing chunk {i + 1} / {len(chunk_ids)}")
    ch_start = chunk_ids[i]
    ch_end = video_length if i == len(chunk_ids) - 1 else chunk_ids[i + 1]
    # Attach the first frame for Cross Frame Attention
    frame_ids = [0] + list(range(ch_start, ch_end))
    # Fix the seed for the temporal consistency
    generator.manual_seed(seed)
    output = pipe(prompt=prompt, video_length=len(frame_ids), generator=generator, frame_ids=frame_ids)
    result.append(output.images[1:])

# Concatenate chunks and save
result = np.concatenate(result)
result = [(r * 255).astype("uint8") for r in result]
imageio.mimsave("video.mp4", result, fps=4)

Text-To-Video with Pose Control

To generate a video from prompt with additional pose control

  1. Download a demo video

    Copied

    from huggingface_hub import hf_hub_download
    
    filename = "__assets__/poses_skeleton_gifs/dance1_corr.mp4"
    repo_id = "PAIR/Text2Video-Zero"
    video_path = hf_hub_download(repo_type="space", repo_id=repo_id, filename=filename)
  2. Read video containing extracted pose images

    Copied

    from PIL import Image
    import imageio
    
    reader = imageio.get_reader(video_path, "ffmpeg")
    frame_count = 8
    pose_images = [Image.fromarray(reader.get_data(i)) for i in range(frame_count)]
  3. Run StableDiffusionControlNetPipeline with our custom attention processor

    Copied

    import torch
    from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
    from diffusers.pipelines.text_to_video_synthesis.pipeline_text_to_video_zero import CrossFrameAttnProcessor
    
    model_id = "runwayml/stable-diffusion-v1-5"
    controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-openpose", torch_dtype=torch.float16)
    pipe = StableDiffusionControlNetPipeline.from_pretrained(
        model_id, controlnet=controlnet, torch_dtype=torch.float16
    ).to("cuda")
    
    # Set the attention processor
    pipe.unet.set_attn_processor(CrossFrameAttnProcessor(batch_size=2))
    pipe.controlnet.set_attn_processor(CrossFrameAttnProcessor(batch_size=2))
    
    # fix latents for all frames
    latents = torch.randn((1, 4, 64, 64), device="cuda", dtype=torch.float16).repeat(len(pose_images), 1, 1, 1)
    
    prompt = "Darth Vader dancing in a desert"
    result = pipe(prompt=[prompt] * len(pose_images), image=pose_images, latents=latents).images
    imageio.mimsave("video.mp4", result, fps=4)

Text-To-Video with Edge Control

Video Instruct-Pix2Pix

  1. Download a demo video

    Copied

    from huggingface_hub import hf_hub_download
    
    filename = "__assets__/pix2pix video/camel.mp4"
    repo_id = "PAIR/Text2Video-Zero"
    video_path = hf_hub_download(repo_type="space", repo_id=repo_id, filename=filename)
  2. Read video from path

    Copied

    from PIL import Image
    import imageio
    
    reader = imageio.get_reader(video_path, "ffmpeg")
    frame_count = 8
    video = [Image.fromarray(reader.get_data(i)) for i in range(frame_count)]
  3. Run StableDiffusionInstructPix2PixPipeline with our custom attention processor

    Copied

    import torch
    from diffusers import StableDiffusionInstructPix2PixPipeline
    from diffusers.pipelines.text_to_video_synthesis.pipeline_text_to_video_zero import CrossFrameAttnProcessor
    
    model_id = "timbrooks/instruct-pix2pix"
    pipe = StableDiffusionInstructPix2PixPipeline.from_pretrained(model_id, torch_dtype=torch.float16).to("cuda")
    pipe.unet.set_attn_processor(CrossFrameAttnProcessor(batch_size=3))
    
    prompt = "make it Van Gogh Starry Night style"
    result = pipe(prompt=[prompt] * len(video), image=video).images
    imageio.mimsave("edited_video.mp4", result, fps=4)

DreamBooth specialization

  1. Download a demo video

    Copied

    from huggingface_hub import hf_hub_download
    
    filename = "__assets__/canny_videos_mp4/girl_turning.mp4"
    repo_id = "PAIR/Text2Video-Zero"
    video_path = hf_hub_download(repo_type="space", repo_id=repo_id, filename=filename)
  2. Read video from path

    Copied

    from PIL import Image
    import imageio
    
    reader = imageio.get_reader(video_path, "ffmpeg")
    frame_count = 8
    canny_edges = [Image.fromarray(reader.get_data(i)) for i in range(frame_count)]
  3. Run StableDiffusionControlNetPipeline with custom trained DreamBooth model

    Copied

    import torch
    from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
    from diffusers.pipelines.text_to_video_synthesis.pipeline_text_to_video_zero import CrossFrameAttnProcessor
    
    # set model id to custom model
    model_id = "PAIR/text2video-zero-controlnet-canny-avatar"
    controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny", torch_dtype=torch.float16)
    pipe = StableDiffusionControlNetPipeline.from_pretrained(
        model_id, controlnet=controlnet, torch_dtype=torch.float16
    ).to("cuda")
    
    # Set the attention processor
    pipe.unet.set_attn_processor(CrossFrameAttnProcessor(batch_size=2))
    pipe.controlnet.set_attn_processor(CrossFrameAttnProcessor(batch_size=2))
    
    # fix latents for all frames
    latents = torch.randn((1, 4, 64, 64), device="cuda", dtype=torch.float16).repeat(len(canny_edges), 1, 1, 1)
    
    prompt = "oil painting of a beautiful girl avatar style"
    result = pipe(prompt=[prompt] * len(canny_edges), image=canny_edges, latents=latents).images
    imageio.mimsave("video.mp4", result, fps=4)

TextToVideoZeroPipeline

class diffusers.TextToVideoZeroPipeline

( vae: AutoencoderKLtext_encoder: CLIPTextModeltokenizer: CLIPTokenizerunet: UNet2DConditionModelscheduler: KarrasDiffusionSchedulerssafety_checker: StableDiffusionSafetyCheckerfeature_extractor: CLIPImageProcessorrequires_safety_checker: bool = True )

Parameters

  • tokenizer (CLIPTokenizer) β€” A CLIPTokenizer to tokenize text.

  • feature_extractor (CLIPImageProcessor) β€” A CLIPImageProcessor to extract features from generated images; used as inputs to the safety_checker.

Pipeline for zero-shot text-to-video generation using Stable Diffusion.

__call__

Parameters

  • prompt (str or List[str], optional) β€” The prompt or prompts to guide image generation. If not defined, you need to pass prompt_embeds.

  • video_length (int, optional, defaults to 8) β€” The number of generated video frames.

  • height (int, optional, defaults to self.unet.config.sample_size * self.vae_scale_factor) β€” The height in pixels of the generated image.

  • width (int, optional, defaults to self.unet.config.sample_size * self.vae_scale_factor) β€” The width in pixels of the generated image.

  • num_inference_steps (int, optional, defaults to 50) β€” The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference.

  • guidance_scale (float, optional, defaults to 7.5) β€” A higher guidance scale value encourages the model to generate images closely linked to the text prompt at the expense of lower image quality. Guidance scale is enabled when guidance_scale > 1.

  • negative_prompt (str or List[str], optional) β€” The prompt or prompts to guide what to not include in video generation. If not defined, you need to pass negative_prompt_embeds instead. Ignored when not using guidance (guidance_scale < 1).

  • num_videos_per_prompt (int, optional, defaults to 1) β€” The number of videos to generate per prompt.

  • latents (torch.FloatTensor, optional) β€” Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for video generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor is generated by sampling using the supplied random generator.

  • output_type (str, optional, defaults to "numpy") β€” The output format of the generated video. Choose between "latent" and "numpy".

  • callback (Callable, optional) β€” A function that calls every callback_steps steps during inference. The function is called with the following arguments: callback(step: int, timestep: int, latents: torch.FloatTensor).

  • callback_steps (int, optional, defaults to 1) β€” The frequency at which the callback function is called. If not specified, the callback is called at every step.

  • frame_ids (List[int], optional) β€” Indexes of the frames that are being generated. This is used when generating longer videos chunk-by-chunk.

Returns

The output contains a ndarray of the generated video, when output_type != "latent", otherwise a latent code of generated videos and a list of bools indicating whether the corresponding generated video contains β€œnot-safe-for-work” (nsfw) content..

The call function to the pipeline for generation.

backward_loop

( latentstimestepsprompt_embedsguidance_scalecallbackcallback_stepsnum_warmup_stepsextra_step_kwargscross_attention_kwargs = None ) β†’ latents

Parameters

  • callback (Callable, optional) β€” A function that calls every callback_steps steps during inference. The function is called with the following arguments: callback(step: int, timestep: int, latents: torch.FloatTensor).

Returns

latents

Latents of backward process output at time timesteps[-1].

Perform backward process given list of time steps.

forward_loop

( x_t0t0t1generator ) β†’ x_t1

Parameters

Returns

x_t1

Forward process applied to x_t0 from time t0 to t1.

Perform DDPM forward process from time t0 to t1. This is the same as adding noise with corresponding variance.

TextToVideoPipelineOutput

class diffusers.pipelines.text_to_video_synthesis.pipeline_text_to_video_zero.TextToVideoPipelineOutput

( images: typing.Union[typing.List[PIL.Image.Image], numpy.ndarray]nsfw_content_detected: typing.Optional[typing.List[bool]] )

Parameters

  • images ([List[PIL.Image.Image], np.ndarray]) β€” List of denoised PIL images of length batch_size or NumPy array of shape (batch_size, height, width, num_channels).

  • nsfw_content_detected ([List[bool]]) β€” List indicating whether the corresponding generated image contains β€œnot-safe-for-work” (nsfw) content or None if safety checking could not be performed.

Output class for zero-shot text-to-video pipeline.

You can find additional information about Text-to-Video Zero on the , , and .

Motion field strength (see the , Sect. 3.3.1):

T and T' (see the , Sect. 3.3.1)

To extract pose from actual video, read .

To generate a video from prompt with additional pose control, follow the steps described above for pose-guided generation using .

To perform text-guided video editing (with ):

Methods Text-To-Video, Text-To-Video with Pose Control and Text-To-Video with Edge Control can run with custom models, as shown below for and model

You can filter out some available DreamBooth-trained models with .

vae () β€” Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.

text_encoder (CLIPTextModel) β€” Frozen text-encoder ().

unet () β€” A to denoise the encoded video latents.

scheduler () β€” A scheduler to be used in combination with unet to denoise the encoded image latents. Can be one of , , or .

safety_checker (StableDiffusionSafetyChecker) β€” Classification module that estimates whether generated images could be considered offensive or harmful. Please refer to the for more details about a model’s potential harms.

This model inherits from . Check the superclass documentation for the generic methods implemented for all pipelines (downloading, saving, running on a particular device, etc.).

( prompt: typing.Union[str, typing.List[str]]video_length: typing.Optional[int] = 8height: typing.Optional[int] = Nonewidth: typing.Optional[int] = Nonenum_inference_steps: int = 50guidance_scale: float = 7.5negative_prompt: typing.Union[str, typing.List[str], NoneType] = Nonenum_videos_per_prompt: typing.Optional[int] = 1eta: float = 0.0generator: typing.Union[torch._C.Generator, typing.List[torch._C.Generator], NoneType] = Nonelatents: typing.Optional[torch.FloatTensor] = Nonemotion_field_strength_x: float = 12motion_field_strength_y: float = 12output_type: typing.Optional[str] = 'tensor'return_dict: bool = Truecallback: typing.Union[typing.Callable[[int, int, torch.FloatTensor], NoneType], NoneType] = Nonecallback_steps: typing.Optional[int] = 1t0: int = 44t1: int = 47frame_ids: typing.Optional[typing.List[int]] = None ) β†’

eta (float, optional, defaults to 0.0) β€” Corresponds to parameter eta (Ξ·) from the paper. Only applies to the , and is ignored in other schedulers.

generator (torch.Generator or List[torch.Generator], optional) β€” A to make generation deterministic.

return_dict (bool, optional, defaults to True) β€” Whether or not to return a instead of a plain tuple.

motion_field_strength_x (float, optional, defaults to 12) β€” Strength of motion in generated video along x-axis. See the , Sect. 3.3.1.

motion_field_strength_y (float, optional, defaults to 12) β€” Strength of motion in generated video along y-axis. See the , Sect. 3.3.1.

t0 (int, optional, defaults to 44) β€” Timestep t0. Should be in the range [0, num_inference_steps - 1]. See the , Sect. 3.3.1.

t1 (int, optional, defaults to 47) β€” Timestep t0. Should be in the range [t0 + 1, num_inference_steps - 1]. See the , Sect. 3.3.1.

callback_steps (int, optional, defaults to 1) β€” The frequency at which the callback function is called. If not specified, the callback is called at every step. extra_step_kwargs β€” Extra_step_kwargs. cross_attention_kwargs β€” A kwargs dictionary that if specified is passed along to the AttentionProcessor as defined in . num_warmup_steps β€” number of warmup steps.

generator (torch.Generator or List[torch.Generator], optional) β€” A to make generation deterministic.

🌍
🌍
project page
paper
original codebase
paper
paper
ControlNet documentation
Canny edge ControlNet model
InstructPix2Pix
DreamBooth
Canny edge ControlNet model
Avatar style DreamBooth
this link
<source>
AutoencoderKL
clip-vit-large-patch14
UNet2DConditionModel
UNet3DConditionModel
SchedulerMixin
DDIMScheduler
LMSDiscreteScheduler
PNDMScheduler
model card
DiffusionPipeline
<source>
TextToVideoPipelineOutput
DDIM
DDIMScheduler
torch.Generator
TextToVideoPipelineOutput
paper
paper
paper
paper
TextToVideoPipelineOutput
<source>
self.processor
<source>
torch.Generator
<source>
Text2Video-Zero: Text-to-Image Diffusion Models are Zero-Shot Video Generators
Zhangyang Wang
Humphrey Shi