Kandinsky
Last updated
Last updated
Kandinsky inherits best practices from and , while introducing some new ideas.
It uses for encoding images and text, and a diffusion image prior (mapping) between latent spaces of CLIP modalities. This approach enhances the visual performance of the model and unveils new horizons in blending images and text-guided image manipulation.
The Kandinsky model is created by , , , , and . The original codebase can be found
In the following, we will walk you through some examples of how to use the Kandinsky pipelines to create some visually aesthetic artwork.
For text-to-image generation, we need to use both and . The first step is to encode text prompts with CLIP and then diffuse the CLIP text embeddings to CLIP image embeddings, as first proposed in . Let’s throw a fun prompt at Kandinsky to see what it comes up with.
Copied
First, let’s instantiate the prior pipeline and the text-to-image pipeline. Both pipelines are diffusion models.
Copied
Copied
Now we pass the prompt through the prior to generate image embeddings. The prior returns both the image embeddings corresponding to the prompt and negative/unconditional image embeddings corresponding to an empty string.
Copied
The text-to-image pipeline expects both image_embeds
, negative_image_embeds
and the original prompt
as the text-to-image pipeline uses another text encoder to better guide the second diffusion process of t2i_pipe
.
By default, the prior returns unconditioned negative image embeddings corresponding to the negative prompt of ""
. For better results, you can also pass a negative_prompt
to the prior. This will increase the effective batch size of the prior by a factor of 2.
Copied
Next, we can pass the embeddings as well as the prompt to the text-to-image pipeline. Remember that in case you are using a customized negative prompt, that you should pass this one also to the text-to-image pipelines with negative_prompt=negative_prompt
:
Copied
One cheeseburger monster coming up! Enjoy!
Copied
Copied
The Kandinsky model works extremely well with creative prompts. Here is some of the amazing art that can be created using the exact same process but with different prompts.
Copied
Copied
Copied
Copied
Let’s download an image.
Copied
Copied
Copied
Copied
Copied
🚨🚨🚨 Breaking change for Kandinsky Mask Inpainting 🚨🚨🚨
Copied
Note that you can interpolate between texts and images - in the below example, we passed a text prompt “a cat” and two images to the interplate
function, along with a weights
variable containing the corresponding weights for each condition we interplate.
Copied
The bulk of the computation time will always be the second image decoding pipeline, so when looking into optimizing the model, one should look into the second image decoding pipeline.
Copied
To have explicit control , you can also manually set the pipeline to use PyTorch’s 2.0 efficient attention:
Copied
The slowest and most memory intense attention processor is the default AttnAddedKVProcessor
processor. We do not recommend using it except for testing purposes or cases where very high determistic behaviour is desired. You can set it with:
Copied
With PyTorch >= 2.0, you can also use Kandinsky with torch.compile
which depending on your hardware can signficantly speed-up your inference time once the model is compiled. To use Kandinsksy with torch.compile
, you can do:
Copied
Text-to-Image Generation
End-to-end Text-to-Image, image-to-image, Inpainting Generation
Image-Guided Image Generation
Image-Guided Image Generation
( prior: PriorTransformerimage_encoder: CLIPVisionModelWithProjectiontext_encoder: CLIPTextModelWithProjectiontokenizer: CLIPTokenizerscheduler: UnCLIPSchedulerimage_processor: CLIPImageProcessor )
Parameters
image_encoder (CLIPVisionModelWithProjection
) — Frozen image-encoder.
text_encoder (CLIPTextModelWithProjection
) — Frozen text-encoder.
scheduler (UnCLIPScheduler
) — A scheduler to be used in combination with prior
to generate image embedding.
Pipeline for generating image prior for Kandinsky
__call__
( prompt: typing.Union[str, typing.List[str]]negative_prompt: typing.Union[str, typing.List[str], NoneType] = Nonenum_images_per_prompt: int = 1num_inference_steps: int = 25generator: typing.Union[torch._C.Generator, typing.List[torch._C.Generator], NoneType] = Nonelatents: typing.Optional[torch.FloatTensor] = Noneguidance_scale: float = 4.0output_type: typing.Optional[str] = 'pt'return_dict: bool = True ) → KandinskyPriorPipelineOutput
or tuple
Parameters
prompt (str
or List[str]
) — The prompt or prompts to guide the image generation.
negative_prompt (str
or List[str]
, optional) — The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored if guidance_scale
is less than 1
).
num_images_per_prompt (int
, optional, defaults to 1) — The number of images to generate per prompt.
num_inference_steps (int
, optional, defaults to 25) — The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference.
latents (torch.FloatTensor
, optional) — Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor will ge generated by sampling using the supplied random generator
.
output_type (str
, optional, defaults to "pt"
) — The output format of the generate image. Choose between: "np"
(np.array
) or "pt"
(torch.Tensor
).
Returns
KandinskyPriorPipelineOutput
or tuple
Function invoked when calling the pipeline for generation.
Examples:
Copied
interpolate
( images_and_prompts: typing.List[typing.Union[str, PIL.Image.Image, torch.FloatTensor]]weights: typing.List[float]num_images_per_prompt: int = 1num_inference_steps: int = 25generator: typing.Union[torch._C.Generator, typing.List[torch._C.Generator], NoneType] = Nonelatents: typing.Optional[torch.FloatTensor] = Nonenegative_prior_prompt: typing.Optional[str] = Nonenegative_prompt: str = ''guidance_scale: float = 4.0device = None ) → KandinskyPriorPipelineOutput
or tuple
Parameters
images_and_prompts (List[Union[str, PIL.Image.Image, torch.FloatTensor]]
) — list of prompts and images to guide the image generation. weights — (List[float]
): list of weights for each condition in images_and_prompts
num_images_per_prompt (int
, optional, defaults to 1) — The number of images to generate per prompt.
num_inference_steps (int
, optional, defaults to 25) — The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference.
latents (torch.FloatTensor
, optional) — Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor will ge generated by sampling using the supplied random generator
.
negative_prior_prompt (str
, optional) — The prompt not to guide the prior diffusion process. Ignored when not using guidance (i.e., ignored if guidance_scale
is less than 1
).
negative_prompt (str
or List[str]
, optional) — The prompt not to guide the image generation. Ignored when not using guidance (i.e., ignored if guidance_scale
is less than 1
).
Returns
KandinskyPriorPipelineOutput
or tuple
Function invoked when using the prior pipeline for interpolation.
Examples:
Copied
( text_encoder: MultilingualCLIPtokenizer: XLMRobertaTokenizerunet: UNet2DConditionModelscheduler: typing.Union[diffusers.schedulers.scheduling_ddim.DDIMScheduler, diffusers.schedulers.scheduling_ddpm.DDPMScheduler]movq: VQModel )
Parameters
text_encoder (MultilingualCLIP
) — Frozen text-encoder.
tokenizer (XLMRobertaTokenizer
) — Tokenizer of class
scheduler (Union[DDIMScheduler
,DDPMScheduler
]) — A scheduler to be used in combination with unet
to generate image latents.
Pipeline for text-to-image generation using Kandinsky
__call__
Parameters
prompt (str
or List[str]
) — The prompt or prompts to guide the image generation.
image_embeds (torch.FloatTensor
or List[torch.FloatTensor]
) — The clip image embeddings for text prompt, that will be used to condition the image generation.
negative_image_embeds (torch.FloatTensor
or List[torch.FloatTensor]
) — The clip image embeddings for negative text prompt, will be used to condition the image generation.
negative_prompt (str
or List[str]
, optional) — The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored if guidance_scale
is less than 1
).
height (int
, optional, defaults to 512) — The height in pixels of the generated image.
width (int
, optional, defaults to 512) — The width in pixels of the generated image.
num_inference_steps (int
, optional, defaults to 100) — The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference.
num_images_per_prompt (int
, optional, defaults to 1) — The number of images to generate per prompt.
latents (torch.FloatTensor
, optional) — Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor will ge generated by sampling using the supplied random generator
.
output_type (str
, optional, defaults to "pil"
) — The output format of the generate image. Choose between: "pil"
(PIL.Image.Image
), "np"
(np.array
) or "pt"
(torch.Tensor
).
callback (Callable
, optional) — A function that calls every callback_steps
steps during inference. The function is called with the following arguments: callback(step: int, timestep: int, latents: torch.FloatTensor)
.
callback_steps (int
, optional, defaults to 1) — The frequency at which the callback
function is called. If not specified, the callback is called at every step.
Returns
Function invoked when calling the pipeline for generation.
Examples:
Copied
( text_encoder: MultilingualCLIPmovq: VQModeltokenizer: XLMRobertaTokenizerunet: UNet2DConditionModelscheduler: DDIMScheduler )
Parameters
text_encoder (MultilingualCLIP
) — Frozen text-encoder.
tokenizer (XLMRobertaTokenizer
) — Tokenizer of class
Pipeline for image-to-image generation using Kandinsky
__call__
Parameters
prompt (str
or List[str]
) — The prompt or prompts to guide the image generation.
image (torch.FloatTensor
, PIL.Image.Image
) — Image
, or tensor representing an image batch, that will be used as the starting point for the process.
image_embeds (torch.FloatTensor
or List[torch.FloatTensor]
) — The clip image embeddings for text prompt, that will be used to condition the image generation.
negative_image_embeds (torch.FloatTensor
or List[torch.FloatTensor]
) — The clip image embeddings for negative text prompt, will be used to condition the image generation.
negative_prompt (str
or List[str]
, optional) — The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored if guidance_scale
is less than 1
).
height (int
, optional, defaults to 512) — The height in pixels of the generated image.
width (int
, optional, defaults to 512) — The width in pixels of the generated image.
num_inference_steps (int
, optional, defaults to 100) — The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference.
strength (float
, optional, defaults to 0.3) — Conceptually, indicates how much to transform the reference image
. Must be between 0 and 1. image
will be used as a starting point, adding more noise to it the larger the strength
. The number of denoising steps depends on the amount of noise initially added. When strength
is 1, added noise will be maximum and the denoising process will run for the full number of iterations specified in num_inference_steps
. A value of 1, therefore, essentially ignores image
.
num_images_per_prompt (int
, optional, defaults to 1) — The number of images to generate per prompt.
output_type (str
, optional, defaults to "pil"
) — The output format of the generate image. Choose between: "pil"
(PIL.Image.Image
), "np"
(np.array
) or "pt"
(torch.Tensor
).
callback (Callable
, optional) — A function that calls every callback_steps
steps during inference. The function is called with the following arguments: callback(step: int, timestep: int, latents: torch.FloatTensor)
.
callback_steps (int
, optional, defaults to 1) — The frequency at which the callback
function is called. If not specified, the callback is called at every step.
Returns
Function invoked when calling the pipeline for generation.
Examples:
Copied
( text_encoder: MultilingualCLIPmovq: VQModeltokenizer: XLMRobertaTokenizerunet: UNet2DConditionModelscheduler: DDIMScheduler )
Parameters
text_encoder (MultilingualCLIP
) — Frozen text-encoder.
tokenizer (XLMRobertaTokenizer
) — Tokenizer of class
Pipeline for text-guided image inpainting using Kandinsky2.1
__call__
Parameters
prompt (str
or List[str]
) — The prompt or prompts to guide the image generation.
image (torch.FloatTensor
, PIL.Image.Image
or np.ndarray
) — Image
, or tensor representing an image batch, that will be used as the starting point for the process.
mask_image (PIL.Image.Image
,torch.FloatTensor
or np.ndarray
) — Image
, or a tensor representing an image batch, to mask image
. White pixels in the mask will be repainted, while black pixels will be preserved. You can pass a pytorch tensor as mask only if the image you passed is a pytorch tensor, and it should contain one color channel (L) instead of 3, so the expected shape would be either (B, 1, H, W,)
, (B, H, W)
, (1, H, W)
or (H, W)
If image is an PIL image or numpy array, mask should also be a either PIL image or numpy array. If it is a PIL image, it will be converted to a single channel (luminance) before use. If it is a nummpy array, the expected shape is (H, W)
.
image_embeds (torch.FloatTensor
or List[torch.FloatTensor]
) — The clip image embeddings for text prompt, that will be used to condition the image generation.
negative_image_embeds (torch.FloatTensor
or List[torch.FloatTensor]
) — The clip image embeddings for negative text prompt, will be used to condition the image generation.
negative_prompt (str
or List[str]
, optional) — The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored if guidance_scale
is less than 1
).
height (int
, optional, defaults to 512) — The height in pixels of the generated image.
width (int
, optional, defaults to 512) — The width in pixels of the generated image.
num_inference_steps (int
, optional, defaults to 100) — The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference.
num_images_per_prompt (int
, optional, defaults to 1) — The number of images to generate per prompt.
latents (torch.FloatTensor
, optional) — Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor will ge generated by sampling using the supplied random generator
.
output_type (str
, optional, defaults to "pil"
) — The output format of the generate image. Choose between: "pil"
(PIL.Image.Image
), "np"
(np.array
) or "pt"
(torch.Tensor
).
callback (Callable
, optional) — A function that calls every callback_steps
steps during inference. The function is called with the following arguments: callback(step: int, timestep: int, latents: torch.FloatTensor)
.
callback_steps (int
, optional, defaults to 1) — The frequency at which the callback
function is called. If not specified, the callback is called at every step.
Returns
Function invoked when calling the pipeline for generation.
Examples:
Copied
( text_encoder: MultilingualCLIPtokenizer: XLMRobertaTokenizerunet: UNet2DConditionModelscheduler: typing.Union[diffusers.schedulers.scheduling_ddim.DDIMScheduler, diffusers.schedulers.scheduling_ddpm.DDPMScheduler]movq: VQModelprior_prior: PriorTransformerprior_image_encoder: CLIPVisionModelWithProjectionprior_text_encoder: CLIPTextModelWithProjectionprior_tokenizer: CLIPTokenizerprior_scheduler: UnCLIPSchedulerprior_image_processor: CLIPImageProcessor )
Parameters
text_encoder (MultilingualCLIP
) — Frozen text-encoder.
tokenizer (XLMRobertaTokenizer
) — Tokenizer of class
scheduler (Union[DDIMScheduler
,DDPMScheduler
]) — A scheduler to be used in combination with unet
to generate image latents.
prior_image_encoder (CLIPVisionModelWithProjection
) — Frozen image-encoder.
prior_text_encoder (CLIPTextModelWithProjection
) — Frozen text-encoder.
prior_scheduler (UnCLIPScheduler
) — A scheduler to be used in combination with prior
to generate image embedding.
Combined Pipeline for text-to-image generation using Kandinsky
__call__
Parameters
prompt (str
or List[str]
) — The prompt or prompts to guide the image generation.
negative_prompt (str
or List[str]
, optional) — The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored if guidance_scale
is less than 1
).
num_images_per_prompt (int
, optional, defaults to 1) — The number of images to generate per prompt.
num_inference_steps (int
, optional, defaults to 100) — The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference.
height (int
, optional, defaults to 512) — The height in pixels of the generated image.
width (int
, optional, defaults to 512) — The width in pixels of the generated image.
prior_num_inference_steps (int
, optional, defaults to 100) — The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference.
latents (torch.FloatTensor
, optional) — Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor will ge generated by sampling using the supplied random generator
.
output_type (str
, optional, defaults to "pil"
) — The output format of the generate image. Choose between: "pil"
(PIL.Image.Image
), "np"
(np.array
) or "pt"
(torch.Tensor
).
callback (Callable
, optional) — A function that calls every callback_steps
steps during inference. The function is called with the following arguments: callback(step: int, timestep: int, latents: torch.FloatTensor)
.
callback_steps (int
, optional, defaults to 1) — The frequency at which the callback
function is called. If not specified, the callback is called at every step.
Returns
Function invoked when calling the pipeline for generation.
Examples:
Copied
enable_sequential_cpu_offload
( gpu_id = 0 )
Offloads all models (unet
, text_encoder
, vae
, and safety checker
state dicts) to CPU using 🤗 Accelerate, significantly reducing memory usage. Models are moved to a torch.device('meta')
and loaded on a GPU only when their specific submodule’s forward
method is called. Offloading happens on a submodule basis. Memory savings are higher than using enable_model_cpu_offload
, but performance is lower.
( text_encoder: MultilingualCLIPtokenizer: XLMRobertaTokenizerunet: UNet2DConditionModelscheduler: typing.Union[diffusers.schedulers.scheduling_ddim.DDIMScheduler, diffusers.schedulers.scheduling_ddpm.DDPMScheduler]movq: VQModelprior_prior: PriorTransformerprior_image_encoder: CLIPVisionModelWithProjectionprior_text_encoder: CLIPTextModelWithProjectionprior_tokenizer: CLIPTokenizerprior_scheduler: UnCLIPSchedulerprior_image_processor: CLIPImageProcessor )
Parameters
text_encoder (MultilingualCLIP
) — Frozen text-encoder.
tokenizer (XLMRobertaTokenizer
) — Tokenizer of class
scheduler (Union[DDIMScheduler
,DDPMScheduler
]) — A scheduler to be used in combination with unet
to generate image latents.
prior_image_encoder (CLIPVisionModelWithProjection
) — Frozen image-encoder.
prior_text_encoder (CLIPTextModelWithProjection
) — Frozen text-encoder.
prior_scheduler (UnCLIPScheduler
) — A scheduler to be used in combination with prior
to generate image embedding.
Combined Pipeline for image-to-image generation using Kandinsky
__call__
Parameters
prompt (str
or List[str]
) — The prompt or prompts to guide the image generation.
image (torch.FloatTensor
, PIL.Image.Image
, np.ndarray
, List[torch.FloatTensor]
, List[PIL.Image.Image]
, or List[np.ndarray]
) — Image
, or tensor representing an image batch, that will be used as the starting point for the process. Can also accept image latents as image
, if passing latents directly, it will not be encoded again.
negative_prompt (str
or List[str]
, optional) — The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored if guidance_scale
is less than 1
).
num_images_per_prompt (int
, optional, defaults to 1) — The number of images to generate per prompt.
num_inference_steps (int
, optional, defaults to 100) — The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference.
height (int
, optional, defaults to 512) — The height in pixels of the generated image.
width (int
, optional, defaults to 512) — The width in pixels of the generated image.
strength (float
, optional, defaults to 0.3) — Conceptually, indicates how much to transform the reference image
. Must be between 0 and 1. image
will be used as a starting point, adding more noise to it the larger the strength
. The number of denoising steps depends on the amount of noise initially added. When strength
is 1, added noise will be maximum and the denoising process will run for the full number of iterations specified in num_inference_steps
. A value of 1, therefore, essentially ignores image
.
prior_num_inference_steps (int
, optional, defaults to 100) — The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference.
latents (torch.FloatTensor
, optional) — Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor will ge generated by sampling using the supplied random generator
.
output_type (str
, optional, defaults to "pil"
) — The output format of the generate image. Choose between: "pil"
(PIL.Image.Image
), "np"
(np.array
) or "pt"
(torch.Tensor
).
callback (Callable
, optional) — A function that calls every callback_steps
steps during inference. The function is called with the following arguments: callback(step: int, timestep: int, latents: torch.FloatTensor)
.
callback_steps (int
, optional, defaults to 1) — The frequency at which the callback
function is called. If not specified, the callback is called at every step.
Returns
Function invoked when calling the pipeline for generation.
Examples:
Copied
enable_sequential_cpu_offload
( gpu_id = 0 )
Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, unet, text_encoder, vae and safety checker have their state dicts saved to CPU and then are moved to a torch.device('meta') and loaded to GPU only when their specific submodule has its
forwardmethod called. Note that offloading happens on a submodule basis. Memory savings are higher than with
enable_model_cpu_offload`, but performance is lower.
( text_encoder: MultilingualCLIPtokenizer: XLMRobertaTokenizerunet: UNet2DConditionModelscheduler: typing.Union[diffusers.schedulers.scheduling_ddim.DDIMScheduler, diffusers.schedulers.scheduling_ddpm.DDPMScheduler]movq: VQModelprior_prior: PriorTransformerprior_image_encoder: CLIPVisionModelWithProjectionprior_text_encoder: CLIPTextModelWithProjectionprior_tokenizer: CLIPTokenizerprior_scheduler: UnCLIPSchedulerprior_image_processor: CLIPImageProcessor )
Parameters
text_encoder (MultilingualCLIP
) — Frozen text-encoder.
tokenizer (XLMRobertaTokenizer
) — Tokenizer of class
scheduler (Union[DDIMScheduler
,DDPMScheduler
]) — A scheduler to be used in combination with unet
to generate image latents.
prior_image_encoder (CLIPVisionModelWithProjection
) — Frozen image-encoder.
prior_text_encoder (CLIPTextModelWithProjection
) — Frozen text-encoder.
prior_scheduler (UnCLIPScheduler
) — A scheduler to be used in combination with prior
to generate image embedding.
Combined Pipeline for generation using Kandinsky
__call__
Parameters
prompt (str
or List[str]
) — The prompt or prompts to guide the image generation.
image (torch.FloatTensor
, PIL.Image.Image
, np.ndarray
, List[torch.FloatTensor]
, List[PIL.Image.Image]
, or List[np.ndarray]
) — Image
, or tensor representing an image batch, that will be used as the starting point for the process. Can also accept image latents as image
, if passing latents directly, it will not be encoded again.
mask_image (np.array
) — Tensor representing an image batch, to mask image
. White pixels in the mask will be repainted, while black pixels will be preserved. If mask_image
is a PIL image, it will be converted to a single channel (luminance) before use. If it’s a tensor, it should contain one color channel (L) instead of 3, so the expected shape would be (B, H, W, 1)
.
negative_prompt (str
or List[str]
, optional) — The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored if guidance_scale
is less than 1
).
num_images_per_prompt (int
, optional, defaults to 1) — The number of images to generate per prompt.
num_inference_steps (int
, optional, defaults to 100) — The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference.
height (int
, optional, defaults to 512) — The height in pixels of the generated image.
width (int
, optional, defaults to 512) — The width in pixels of the generated image.
prior_num_inference_steps (int
, optional, defaults to 100) — The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference.
latents (torch.FloatTensor
, optional) — Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor will ge generated by sampling using the supplied random generator
.
output_type (str
, optional, defaults to "pil"
) — The output format of the generate image. Choose between: "pil"
(PIL.Image.Image
), "np"
(np.array
) or "pt"
(torch.Tensor
).
callback (Callable
, optional) — A function that calls every callback_steps
steps during inference. The function is called with the following arguments: callback(step: int, timestep: int, latents: torch.FloatTensor)
.
callback_steps (int
, optional, defaults to 1) — The frequency at which the callback
function is called. If not specified, the callback is called at every step.
Returns
Function invoked when calling the pipeline for generation.
Examples:
Copied
enable_sequential_cpu_offload
( gpu_id = 0 )
Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, unet, text_encoder, vae and safety checker have their state dicts saved to CPU and then are moved to a torch.device('meta') and loaded to GPU only when their specific submodule has its
forwardmethod called. Note that offloading happens on a submodule basis. Memory savings are higher than with
enable_model_cpu_offload`, but performance is lower.
By default, the text-to-image pipeline use , you can change the scheduler to
We also provide an end-to-end Kandinsky pipeline , which combines both the prior pipeline and text-to-image pipeline, and lets you perform inference in a single step. You can create the combined pipeline with the method
Under the hood, it will automatically load both and . To generate images, you no longer need to call both pipelines and pass the outputs from one to another. You only need to call the combined pipeline once. You can set different guidance_scale
and num_inference_steps
for the prior pipeline with the prior_guidance_scale
and prior_num_inference_steps
arguments.
The same Kandinsky model weights can be used for text-guided image-to-image translation. In this case, just make sure to load the weights using the pipeline.
Note: You can also directly move the weights of the text-to-image pipelines to the image-to-image pipelines without loading them twice by making use of the function as explained .
You can also use the for end-to-end image-to-image generation with Kandinsky 2.1
You can use to edit images. In this example, we will add a hat to the portrait of a cat.
To use the to perform end-to-end image inpainting generation, you can run below code instead
We introduced a breaking change for Kandinsky inpainting pipeline in the following pull request: . Previously we accepted a mask format where black pixels represent the masked-out area. This is inconsistent with all other pipelines in diffusers. We have changed the mask format in Knaindsky and now using white pixels instead. Please upgrade your inpainting code to follow the above. If you are using Kandinsky Inpaint in production. You now need to change the mask to:
The also comes with a cool utility function that will allow you to interpolate the latent space of different images and texts super easily. Here is an example of how you can create an Impressionist-style portrait for your pet based on “The Starry Night”.
Running Kandinsky in inference requires running both a first prior pipeline: and a second image decoding pipeline which is one of , , or .
When running with PyTorch < 2.0, we strongly recommend making use of to speed-up the optimization. This can be done by simply running:
When running on PyTorch >= 2.0, PyTorch’s SDPA attention will automatically be used. For more information on PyTorch’s SDPA, feel free to have a look at .
After compilation you should see a very fast inference time. For more information, feel free to have a look at .
To generate images directly from a single pipeline, you can use , , . These combined pipelines wrap the and , , respectively into a single pipeline for a simpler user experience
prior () — The canonincal unCLIP prior to approximate the image embedding from the text embedding.
tokenizer (CLIPTokenizer
) — Tokenizer of class .
This model inherits from . Check the superclass documentation for the generic methods the library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
generator (torch.Generator
or List[torch.Generator]
, optional) — One or a list of to make generation deterministic.
guidance_scale (float
, optional, defaults to 4.0) — Guidance scale as defined in . guidance_scale
is defined as w
of equation 2. of . Guidance scale is enabled by setting guidance_scale > 1
. Higher guidance scale encourages to generate images that are closely linked to the text prompt
, usually at the expense of lower image quality.
return_dict (bool
, optional, defaults to True
) — Whether or not to return a instead of a plain tuple.
generator (torch.Generator
or List[torch.Generator]
, optional) — One or a list of to make generation deterministic.
guidance_scale (float
, optional, defaults to 4.0) — Guidance scale as defined in . guidance_scale
is defined as w
of equation 2. of . Guidance scale is enabled by setting guidance_scale > 1
. Higher guidance scale encourages to generate images that are closely linked to the text prompt
, usually at the expense of lower image quality.
unet () — Conditional U-Net architecture to denoise the image embedding.
movq () — MoVQ Decoder to generate the image from the latents.
This model inherits from . Check the superclass documentation for the generic methods the library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
( prompt: typing.Union[str, typing.List[str]]image_embeds: typing.Union[torch.FloatTensor, typing.List[torch.FloatTensor]]negative_image_embeds: typing.Union[torch.FloatTensor, typing.List[torch.FloatTensor]]negative_prompt: typing.Union[str, typing.List[str], NoneType] = Noneheight: int = 512width: int = 512num_inference_steps: int = 100guidance_scale: float = 4.0num_images_per_prompt: int = 1generator: typing.Union[torch._C.Generator, typing.List[torch._C.Generator], NoneType] = Nonelatents: typing.Optional[torch.FloatTensor] = Noneoutput_type: typing.Optional[str] = 'pil'callback: typing.Union[typing.Callable[[int, int, torch.FloatTensor], NoneType], NoneType] = Nonecallback_steps: int = 1return_dict: bool = True ) → or tuple
guidance_scale (float
, optional, defaults to 4.0) — Guidance scale as defined in . guidance_scale
is defined as w
of equation 2. of . Guidance scale is enabled by setting guidance_scale > 1
. Higher guidance scale encourages to generate images that are closely linked to the text prompt
, usually at the expense of lower image quality.
generator (torch.Generator
or List[torch.Generator]
, optional) — One or a list of to make generation deterministic.
return_dict (bool
, optional, defaults to True
) — Whether or not to return a instead of a plain tuple.
or tuple
scheduler () — A scheduler to be used in combination with unet
to generate image latents.
unet () — Conditional U-Net architecture to denoise the image embedding.
movq () — MoVQ image encoder and decoder
This model inherits from . Check the superclass documentation for the generic methods the library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
( prompt: typing.Union[str, typing.List[str]]image: typing.Union[torch.FloatTensor, PIL.Image.Image, typing.List[torch.FloatTensor], typing.List[PIL.Image.Image]]image_embeds: FloatTensornegative_image_embeds: FloatTensornegative_prompt: typing.Union[str, typing.List[str], NoneType] = Noneheight: int = 512width: int = 512num_inference_steps: int = 100strength: float = 0.3guidance_scale: float = 7.0num_images_per_prompt: int = 1generator: typing.Union[torch._C.Generator, typing.List[torch._C.Generator], NoneType] = Noneoutput_type: typing.Optional[str] = 'pil'callback: typing.Union[typing.Callable[[int, int, torch.FloatTensor], NoneType], NoneType] = Nonecallback_steps: int = 1return_dict: bool = True ) → or tuple
guidance_scale (float
, optional, defaults to 4.0) — Guidance scale as defined in . guidance_scale
is defined as w
of equation 2. of . Guidance scale is enabled by setting guidance_scale > 1
. Higher guidance scale encourages to generate images that are closely linked to the text prompt
, usually at the expense of lower image quality.
generator (torch.Generator
or List[torch.Generator]
, optional) — One or a list of to make generation deterministic.
return_dict (bool
, optional, defaults to True
) — Whether or not to return a instead of a plain tuple.
or tuple
scheduler () — A scheduler to be used in combination with unet
to generate image latents.
unet () — Conditional U-Net architecture to denoise the image embedding.
movq () — MoVQ image encoder and decoder
This model inherits from . Check the superclass documentation for the generic methods the library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
( prompt: typing.Union[str, typing.List[str]]image: typing.Union[torch.FloatTensor, PIL.Image.Image]mask_image: typing.Union[torch.FloatTensor, PIL.Image.Image, numpy.ndarray]image_embeds: FloatTensornegative_image_embeds: FloatTensornegative_prompt: typing.Union[str, typing.List[str], NoneType] = Noneheight: int = 512width: int = 512num_inference_steps: int = 100guidance_scale: float = 4.0num_images_per_prompt: int = 1generator: typing.Union[torch._C.Generator, typing.List[torch._C.Generator], NoneType] = Nonelatents: typing.Optional[torch.FloatTensor] = Noneoutput_type: typing.Optional[str] = 'pil'callback: typing.Union[typing.Callable[[int, int, torch.FloatTensor], NoneType], NoneType] = Nonecallback_steps: int = 1return_dict: bool = True ) → or tuple
guidance_scale (float
, optional, defaults to 4.0) — Guidance scale as defined in . guidance_scale
is defined as w
of equation 2. of . Guidance scale is enabled by setting guidance_scale > 1
. Higher guidance scale encourages to generate images that are closely linked to the text prompt
, usually at the expense of lower image quality.
generator (torch.Generator
or List[torch.Generator]
, optional) — One or a list of to make generation deterministic.
return_dict (bool
, optional, defaults to True
) — Whether or not to return a instead of a plain tuple.
or tuple
unet () — Conditional U-Net architecture to denoise the image embedding.
movq () — MoVQ Decoder to generate the image from the latents.
prior_prior () — The canonincal unCLIP prior to approximate the image embedding from the text embedding.
prior_tokenizer (CLIPTokenizer
) — Tokenizer of class .
This model inherits from . Check the superclass documentation for the generic methods the library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
( prompt: typing.Union[str, typing.List[str]]negative_prompt: typing.Union[str, typing.List[str], NoneType] = Nonenum_inference_steps: int = 100guidance_scale: float = 4.0num_images_per_prompt: int = 1height: int = 512width: int = 512prior_guidance_scale: float = 4.0prior_num_inference_steps: int = 25generator: typing.Union[torch._C.Generator, typing.List[torch._C.Generator], NoneType] = Nonelatents: typing.Optional[torch.FloatTensor] = Noneoutput_type: typing.Optional[str] = 'pil'callback: typing.Union[typing.Callable[[int, int, torch.FloatTensor], NoneType], NoneType] = Nonecallback_steps: int = 1return_dict: bool = True ) → or tuple
prior_guidance_scale (float
, optional, defaults to 4.0) — Guidance scale as defined in . guidance_scale
is defined as w
of equation 2. of . Guidance scale is enabled by setting guidance_scale > 1
. Higher guidance scale encourages to generate images that are closely linked to the text prompt
, usually at the expense of lower image quality.
guidance_scale (float
, optional, defaults to 4.0) — Guidance scale as defined in . guidance_scale
is defined as w
of equation 2. of . Guidance scale is enabled by setting guidance_scale > 1
. Higher guidance scale encourages to generate images that are closely linked to the text prompt
, usually at the expense of lower image quality.
generator (torch.Generator
or List[torch.Generator]
, optional) — One or a list of to make generation deterministic.
return_dict (bool
, optional, defaults to True
) — Whether or not to return a instead of a plain tuple.
or tuple
unet () — Conditional U-Net architecture to denoise the image embedding.
movq () — MoVQ Decoder to generate the image from the latents.
prior_prior () — The canonincal unCLIP prior to approximate the image embedding from the text embedding.
prior_tokenizer (CLIPTokenizer
) — Tokenizer of class .
This model inherits from . Check the superclass documentation for the generic methods the library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
( prompt: typing.Union[str, typing.List[str]]image: typing.Union[torch.FloatTensor, PIL.Image.Image, typing.List[torch.FloatTensor], typing.List[PIL.Image.Image]]negative_prompt: typing.Union[str, typing.List[str], NoneType] = Nonenum_inference_steps: int = 100guidance_scale: float = 4.0num_images_per_prompt: int = 1strength: float = 0.3height: int = 512width: int = 512prior_guidance_scale: float = 4.0prior_num_inference_steps: int = 25generator: typing.Union[torch._C.Generator, typing.List[torch._C.Generator], NoneType] = Nonelatents: typing.Optional[torch.FloatTensor] = Noneoutput_type: typing.Optional[str] = 'pil'callback: typing.Union[typing.Callable[[int, int, torch.FloatTensor], NoneType], NoneType] = Nonecallback_steps: int = 1return_dict: bool = True ) → or tuple
prior_guidance_scale (float
, optional, defaults to 4.0) — Guidance scale as defined in . guidance_scale
is defined as w
of equation 2. of . Guidance scale is enabled by setting guidance_scale > 1
. Higher guidance scale encourages to generate images that are closely linked to the text prompt
, usually at the expense of lower image quality.
guidance_scale (float
, optional, defaults to 4.0) — Guidance scale as defined in . guidance_scale
is defined as w
of equation 2. of . Guidance scale is enabled by setting guidance_scale > 1
. Higher guidance scale encourages to generate images that are closely linked to the text prompt
, usually at the expense of lower image quality.
generator (torch.Generator
or List[torch.Generator]
, optional) — One or a list of to make generation deterministic.
return_dict (bool
, optional, defaults to True
) — Whether or not to return a instead of a plain tuple.
or tuple
unet () — Conditional U-Net architecture to denoise the image embedding.
movq () — MoVQ Decoder to generate the image from the latents.
prior_prior () — The canonincal unCLIP prior to approximate the image embedding from the text embedding.
prior_tokenizer (CLIPTokenizer
) — Tokenizer of class .
This model inherits from . Check the superclass documentation for the generic methods the library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
( prompt: typing.Union[str, typing.List[str]]image: typing.Union[torch.FloatTensor, PIL.Image.Image, typing.List[torch.FloatTensor], typing.List[PIL.Image.Image]]mask_image: typing.Union[torch.FloatTensor, PIL.Image.Image, typing.List[torch.FloatTensor], typing.List[PIL.Image.Image]]negative_prompt: typing.Union[str, typing.List[str], NoneType] = Nonenum_inference_steps: int = 100guidance_scale: float = 4.0num_images_per_prompt: int = 1height: int = 512width: int = 512prior_guidance_scale: float = 4.0prior_num_inference_steps: int = 25generator: typing.Union[torch._C.Generator, typing.List[torch._C.Generator], NoneType] = Nonelatents: typing.Optional[torch.FloatTensor] = Noneoutput_type: typing.Optional[str] = 'pil'callback: typing.Union[typing.Callable[[int, int, torch.FloatTensor], NoneType], NoneType] = Nonecallback_steps: int = 1return_dict: bool = True ) → or tuple
prior_guidance_scale (float
, optional, defaults to 4.0) — Guidance scale as defined in . guidance_scale
is defined as w
of equation 2. of . Guidance scale is enabled by setting guidance_scale > 1
. Higher guidance scale encourages to generate images that are closely linked to the text prompt
, usually at the expense of lower image quality.
guidance_scale (float
, optional, defaults to 4.0) — Guidance scale as defined in . guidance_scale
is defined as w
of equation 2. of . Guidance scale is enabled by setting guidance_scale > 1
. Higher guidance scale encourages to generate images that are closely linked to the text prompt
, usually at the expense of lower image quality.
generator (torch.Generator
or List[torch.Generator]
, optional) — One or a list of to make generation deterministic.
return_dict (bool
, optional, defaults to True
) — Whether or not to return a instead of a plain tuple.
or tuple