Diffusers BOINC AI docs
  • 🌍GET STARTED
    • Diffusers
    • Quicktour
    • Effective and efficient diffusion
    • Installation
  • 🌍TUTORIALS
    • Overview
    • Understanding models and schedulers
    • AutoPipeline
    • Train a diffusion model
  • 🌍USING DIFFUSERS
    • 🌍LOADING & HUB
      • Overview
      • Load pipelines, models, and schedulers
      • Load and compare different schedulers
      • Load community pipelines
      • Load safetensors
      • Load different Stable Diffusion formats
      • Push files to the Hub
    • 🌍TASKS
      • Unconditional image generation
      • Text-to-image
      • Image-to-image
      • Inpainting
      • Depth-to-image
    • 🌍TECHNIQUES
      • Textual inversion
      • Distributed inference with multiple GPUs
      • Improve image quality with deterministic generation
      • Control image brightness
      • Prompt weighting
    • 🌍PIPELINES FOR INFERENCE
      • Overview
      • Stable Diffusion XL
      • ControlNet
      • Shap-E
      • DiffEdit
      • Distilled Stable Diffusion inference
      • Create reproducible pipelines
      • Community pipelines
      • How to contribute a community pipeline
    • 🌍TRAINING
      • Overview
      • Create a dataset for training
      • Adapt a model to a new task
      • Unconditional image generation
      • Textual Inversion
      • DreamBooth
      • Text-to-image
      • Low-Rank Adaptation of Large Language Models (LoRA)
      • ControlNet
      • InstructPix2Pix Training
      • Custom Diffusion
      • T2I-Adapters
    • 🌍TAKING DIFFUSERS BEYOND IMAGES
      • Other Modalities
  • 🌍OPTIMIZATION/SPECIAL HARDWARE
    • Overview
    • Memory and Speed
    • Torch2.0 support
    • Stable Diffusion in JAX/Flax
    • xFormers
    • ONNX
    • OpenVINO
    • Core ML
    • MPS
    • Habana Gaudi
    • Token Merging
  • 🌍CONCEPTUAL GUIDES
    • Philosophy
    • Controlled generation
    • How to contribute?
    • Diffusers' Ethical Guidelines
    • Evaluating Diffusion Models
  • 🌍API
    • 🌍MAIN CLASSES
      • Attention Processor
      • Diffusion Pipeline
      • Logging
      • Configuration
      • Outputs
      • Loaders
      • Utilities
      • VAE Image Processor
    • 🌍MODELS
      • Overview
      • UNet1DModel
      • UNet2DModel
      • UNet2DConditionModel
      • UNet3DConditionModel
      • VQModel
      • AutoencoderKL
      • AsymmetricAutoencoderKL
      • Tiny AutoEncoder
      • Transformer2D
      • Transformer Temporal
      • Prior Transformer
      • ControlNet
    • 🌍PIPELINES
      • Overview
      • AltDiffusion
      • Attend-and-Excite
      • Audio Diffusion
      • AudioLDM
      • AudioLDM 2
      • AutoPipeline
      • Consistency Models
      • ControlNet
      • ControlNet with Stable Diffusion XL
      • Cycle Diffusion
      • Dance Diffusion
      • DDIM
      • DDPM
      • DeepFloyd IF
      • DiffEdit
      • DiT
      • IF
      • PaInstructPix2Pix
      • Kandinsky
      • Kandinsky 2.2
      • Latent Diffusionge
      • MultiDiffusion
      • MusicLDM
      • PaintByExample
      • Parallel Sampling of Diffusion Models
      • Pix2Pix Zero
      • PNDM
      • RePaint
      • Score SDE VE
      • Self-Attention Guidance
      • Semantic Guidance
      • Shap-E
      • Spectrogram Diffusion
      • 🌍STABLE DIFFUSION
        • Overview
        • Text-to-image
        • Image-to-image
        • Inpainting
        • Depth-to-image
        • Image variation
        • Safe Stable Diffusion
        • Stable Diffusion 2
        • Stable Diffusion XL
        • Latent upscaler
        • Super-resolution
        • LDM3D Text-to-(RGB, Depth)
        • Stable Diffusion T2I-adapter
        • GLIGEN (Grounded Language-to-Image Generation)
      • Stable unCLIP
      • Stochastic Karras VE
      • Text-to-image model editing
      • Text-to-video
      • Text2Video-Zero
      • UnCLIP
      • Unconditional Latent Diffusion
      • UniDiffuser
      • Value-guided sampling
      • Versatile Diffusion
      • VQ Diffusion
      • Wuerstchen
    • 🌍SCHEDULERS
      • Overview
      • CMStochasticIterativeScheduler
      • DDIMInverseScheduler
      • DDIMScheduler
      • DDPMScheduler
      • DEISMultistepScheduler
      • DPMSolverMultistepInverse
      • DPMSolverMultistepScheduler
      • DPMSolverSDEScheduler
      • DPMSolverSinglestepScheduler
      • EulerAncestralDiscreteScheduler
      • EulerDiscreteScheduler
      • HeunDiscreteScheduler
      • IPNDMScheduler
      • KarrasVeScheduler
      • KDPM2AncestralDiscreteScheduler
      • KDPM2DiscreteScheduler
      • LMSDiscreteScheduler
      • PNDMScheduler
      • RePaintScheduler
      • ScoreSdeVeScheduler
      • ScoreSdeVpScheduler
      • UniPCMultistepScheduler
      • VQDiffusionScheduler
Powered by GitBook
On this page
  • Kandinsky
  • Overview
  • Usage example
  • Optimization
  • Available Pipelines:
  1. API
  2. PIPELINES

Kandinsky

PreviousPaInstructPix2PixNextKandinsky 2.2

Last updated 1 year ago

Kandinsky

Overview

Kandinsky inherits best practices from and , while introducing some new ideas.

It uses for encoding images and text, and a diffusion image prior (mapping) between latent spaces of CLIP modalities. This approach enhances the visual performance of the model and unveils new horizons in blending images and text-guided image manipulation.

The Kandinsky model is created by , , , , and . The original codebase can be found

Usage example

In the following, we will walk you through some examples of how to use the Kandinsky pipelines to create some visually aesthetic artwork.

Text-to-Image Generation

For text-to-image generation, we need to use both and . The first step is to encode text prompts with CLIP and then diffuse the CLIP text embeddings to CLIP image embeddings, as first proposed in . Let’s throw a fun prompt at Kandinsky to see what it comes up with.

Copied

prompt = "A alien cheeseburger creature eating itself, claymation, cinematic, moody lighting"

First, let’s instantiate the prior pipeline and the text-to-image pipeline. Both pipelines are diffusion models.

Copied

from diffusers import DiffusionPipeline
import torch

pipe_prior = DiffusionPipeline.from_pretrained("kandinsky-community/kandinsky-2-1-prior", torch_dtype=torch.float16)
pipe_prior.to("cuda")

t2i_pipe = DiffusionPipeline.from_pretrained("kandinsky-community/kandinsky-2-1", torch_dtype=torch.float16)
t2i_pipe.to("cuda")

Copied

scheduler = DDPMScheduler.from_pretrained("kandinsky-community/kandinsky-2-1", subfolder="ddpm_scheduler")
t2i_pipe = DiffusionPipeline.from_pretrained(
    "kandinsky-community/kandinsky-2-1", scheduler=scheduler, torch_dtype=torch.float16
)
t2i_pipe.to("cuda")

Now we pass the prompt through the prior to generate image embeddings. The prior returns both the image embeddings corresponding to the prompt and negative/unconditional image embeddings corresponding to an empty string.

Copied

image_embeds, negative_image_embeds = pipe_prior(prompt, guidance_scale=1.0).to_tuple()

The text-to-image pipeline expects both image_embeds, negative_image_embeds and the original prompt as the text-to-image pipeline uses another text encoder to better guide the second diffusion process of t2i_pipe.

By default, the prior returns unconditioned negative image embeddings corresponding to the negative prompt of "". For better results, you can also pass a negative_prompt to the prior. This will increase the effective batch size of the prior by a factor of 2.

Copied

prompt = "A alien cheeseburger creature eating itself, claymation, cinematic, moody lighting"
negative_prompt = "low quality, bad quality"

image_embeds, negative_image_embeds = pipe_prior(prompt, negative_prompt, guidance_scale=1.0).to_tuple()

Next, we can pass the embeddings as well as the prompt to the text-to-image pipeline. Remember that in case you are using a customized negative prompt, that you should pass this one also to the text-to-image pipelines with negative_prompt=negative_prompt:

Copied

image = t2i_pipe(
    prompt, image_embeds=image_embeds, negative_image_embeds=negative_image_embeds, height=768, width=768
).images[0]
image.save("cheeseburger_monster.png")

One cheeseburger monster coming up! Enjoy!

Copied

from diffusers import AutoPipelineForText2Image
import torch

pipe = AutoPipelineForText2Image.from_pretrained(
    "kandinsky-community/kandinsky-2-1", torch_dtype=torch.float16
)
pipe.enable_model_cpu_offload()

Copied

prompt = "A alien cheeseburger creature eating itself, claymation, cinematic, moody lighting"
negative_prompt = "low quality, bad quality"

image = pipe(prompt=prompt, negative_prompt=negative_prompt, prior_guidance_scale =1.0, guidance_scacle = 4.0, height=768, width=768).images[0]

The Kandinsky model works extremely well with creative prompts. Here is some of the amazing art that can be created using the exact same process but with different prompts.

Copied

prompt = "bird eye view shot of a full body woman with cyan light orange magenta makeup, digital art, long braided hair her face separated by makeup in the style of yin Yang surrealism, symmetrical face, real image, contrasting tone, pastel gradient background"

Copied

prompt = "A car exploding into colorful dust"

Copied

prompt = "editorial photography of an organic, almost liquid smoke style armchair"

Copied

prompt = "birds eye view of a quilted paper style alien planet landscape, vibrant colours, Cinematic lighting"

Text Guided Image-to-Image Generation

Let’s download an image.

Copied

from PIL import Image
import requests
from io import BytesIO

# download image
url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg"
response = requests.get(url)
original_image = Image.open(BytesIO(response.content)).convert("RGB")
original_image = original_image.resize((768, 512))

Copied

import torch
from diffusers import KandinskyImg2ImgPipeline, KandinskyPriorPipeline

# create prior
pipe_prior = KandinskyPriorPipeline.from_pretrained(
    "kandinsky-community/kandinsky-2-1-prior", torch_dtype=torch.float16
)
pipe_prior.to("cuda")

# create img2img pipeline
pipe = KandinskyImg2ImgPipeline.from_pretrained("kandinsky-community/kandinsky-2-1", torch_dtype=torch.float16)
pipe.to("cuda")

prompt = "A fantasy landscape, Cinematic lighting"
negative_prompt = "low quality, bad quality"

image_embeds, negative_image_embeds = pipe_prior(prompt, negative_prompt).to_tuple()

out = pipe(
    prompt,
    image=original_image,
    image_embeds=image_embeds,
    negative_image_embeds=negative_image_embeds,
    height=768,
    width=768,
    strength=0.3,
)

out.images[0].save("fantasy_land.png")

Copied

from diffusers import AutoPipelineForImage2Image
import torch
import requests
from io import BytesIO
from PIL import Image
import os

pipe = AutoPipelineForImage2Image.from_pretrained("kandinsky-community/kandinsky-2-1", torch_dtype=torch.float16)
pipe.enable_model_cpu_offload()

prompt = "A fantasy landscape, Cinematic lighting"
negative_prompt = "low quality, bad quality"

url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg"
 
response = requests.get(url)
original_image = Image.open(BytesIO(response.content)).convert("RGB")
original_image.thumbnail((768, 768))

image = pipe(prompt=prompt, image=original_image, strength=0.3).images[0]

Text Guided Inpainting Generation

Copied

from diffusers import KandinskyInpaintPipeline, KandinskyPriorPipeline
from diffusers.utils import load_image
import torch
import numpy as np

pipe_prior = KandinskyPriorPipeline.from_pretrained(
    "kandinsky-community/kandinsky-2-1-prior", torch_dtype=torch.float16
)
pipe_prior.to("cuda")

prompt = "a hat"
prior_output = pipe_prior(prompt)

pipe = KandinskyInpaintPipeline.from_pretrained("kandinsky-community/kandinsky-2-1-inpaint", torch_dtype=torch.float16)
pipe.to("cuda")

init_image = load_image(
    "https://boincai.com/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png"
)

mask = np.zeros((768, 768), dtype=np.float32)
# Let's mask out an area above the cat's head
mask[:250, 250:-250] = 1

out = pipe(
    prompt,
    image=init_image,
    mask_image=mask,
    **prior_output,
    height=768,
    width=768,
    num_inference_steps=150,
)

image = out.images[0]
image.save("cat_with_hat.png")

Copied

from diffusers import AutoPipelineForInpainting

pipe = AutoPipelineForInpainting.from_pretrained("kandinsky-community/kandinsky-2-1-inpaint", torch_dtype=torch.float16)
pipe.enable_model_cpu_offload()
image = pipe(prompt=prompt, image=original_image, mask_image=mask).images[0]

🚨🚨🚨 Breaking change for Kandinsky Mask Inpainting 🚨🚨🚨

Copied

# For PIL input
import PIL.ImageOps
mask = PIL.ImageOps.invert(mask)

# For PyTorch and Numpy input
mask = 1 - mask

Interpolate

Note that you can interpolate between texts and images - in the below example, we passed a text prompt “a cat” and two images to the interplate function, along with a weights variable containing the corresponding weights for each condition we interplate.

Copied

from diffusers import KandinskyPriorPipeline, KandinskyPipeline
from diffusers.utils import load_image
import PIL

import torch

pipe_prior = KandinskyPriorPipeline.from_pretrained(
    "kandinsky-community/kandinsky-2-1-prior", torch_dtype=torch.float16
)
pipe_prior.to("cuda")

img1 = load_image(
    "https://boincai.com/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png"
)

img2 = load_image(
    "https://boincai.com/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/starry_night.jpeg"
)

# add all the conditions we want to interpolate, can be either text or image
images_texts = ["a cat", img1, img2]

# specify the weights for each condition in images_texts
weights = [0.3, 0.3, 0.4]

# We can leave the prompt empty
prompt = ""
prior_out = pipe_prior.interpolate(images_texts, weights)

pipe = KandinskyPipeline.from_pretrained("kandinsky-community/kandinsky-2-1", torch_dtype=torch.float16)
pipe.to("cuda")

image = pipe(prompt, **prior_out, height=768, width=768).images[0]

image.save("starry_cat.png")

Optimization

The bulk of the computation time will always be the second image decoding pipeline, so when looking into optimizing the model, one should look into the second image decoding pipeline.

Copied

from diffusers import DiffusionPipeline
import torch

t2i_pipe = DiffusionPipeline.from_pretrained("kandinsky-community/kandinsky-2-1", torch_dtype=torch.float16)
t2i_pipe.enable_xformers_memory_efficient_attention()

To have explicit control , you can also manually set the pipeline to use PyTorch’s 2.0 efficient attention:

Copied

from diffusers.models.attention_processor import AttnAddedKVProcessor2_0

t2i_pipe.unet.set_attn_processor(AttnAddedKVProcessor2_0())

The slowest and most memory intense attention processor is the default AttnAddedKVProcessor processor. We do not recommend using it except for testing purposes or cases where very high determistic behaviour is desired. You can set it with:

Copied

from diffusers.models.attention_processor import AttnAddedKVProcessor

t2i_pipe.unet.set_attn_processor(AttnAddedKVProcessor())

With PyTorch >= 2.0, you can also use Kandinsky with torch.compile which depending on your hardware can signficantly speed-up your inference time once the model is compiled. To use Kandinsksy with torch.compile, you can do:

Copied

t2i_pipe.unet.to(memory_format=torch.channels_last)
t2i_pipe.unet = torch.compile(t2i_pipe.unet, mode="reduce-overhead", fullgraph=True)

Available Pipelines:

Pipeline
Tasks

Text-to-Image Generation

End-to-end Text-to-Image, image-to-image, Inpainting Generation

Image-Guided Image Generation

Image-Guided Image Generation

KandinskyPriorPipeline

class diffusers.KandinskyPriorPipeline

( prior: PriorTransformerimage_encoder: CLIPVisionModelWithProjectiontext_encoder: CLIPTextModelWithProjectiontokenizer: CLIPTokenizerscheduler: UnCLIPSchedulerimage_processor: CLIPImageProcessor )

Parameters

  • image_encoder (CLIPVisionModelWithProjection) — Frozen image-encoder.

  • text_encoder (CLIPTextModelWithProjection) — Frozen text-encoder.

  • scheduler (UnCLIPScheduler) — A scheduler to be used in combination with prior to generate image embedding.

Pipeline for generating image prior for Kandinsky

__call__

( prompt: typing.Union[str, typing.List[str]]negative_prompt: typing.Union[str, typing.List[str], NoneType] = Nonenum_images_per_prompt: int = 1num_inference_steps: int = 25generator: typing.Union[torch._C.Generator, typing.List[torch._C.Generator], NoneType] = Nonelatents: typing.Optional[torch.FloatTensor] = Noneguidance_scale: float = 4.0output_type: typing.Optional[str] = 'pt'return_dict: bool = True ) → KandinskyPriorPipelineOutput or tuple

Parameters

  • prompt (str or List[str]) — The prompt or prompts to guide the image generation.

  • negative_prompt (str or List[str], optional) — The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored if guidance_scale is less than 1).

  • num_images_per_prompt (int, optional, defaults to 1) — The number of images to generate per prompt.

  • num_inference_steps (int, optional, defaults to 25) — The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference.

  • latents (torch.FloatTensor, optional) — Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor will ge generated by sampling using the supplied random generator.

  • output_type (str, optional, defaults to "pt") — The output format of the generate image. Choose between: "np" (np.array) or "pt" (torch.Tensor).

Returns

KandinskyPriorPipelineOutput or tuple

Function invoked when calling the pipeline for generation.

Examples:

Copied

>>> from diffusers import KandinskyPipeline, KandinskyPriorPipeline
>>> import torch

>>> pipe_prior = KandinskyPriorPipeline.from_pretrained("kandinsky-community/kandinsky-2-1-prior")
>>> pipe_prior.to("cuda")

>>> prompt = "red cat, 4k photo"
>>> out = pipe_prior(prompt)
>>> image_emb = out.image_embeds
>>> negative_image_emb = out.negative_image_embeds

>>> pipe = KandinskyPipeline.from_pretrained("kandinsky-community/kandinsky-2-1")
>>> pipe.to("cuda")

>>> image = pipe(
...     prompt,
...     image_embeds=image_emb,
...     negative_image_embeds=negative_image_emb,
...     height=768,
...     width=768,
...     num_inference_steps=100,
... ).images

>>> image[0].save("cat.png")

interpolate

( images_and_prompts: typing.List[typing.Union[str, PIL.Image.Image, torch.FloatTensor]]weights: typing.List[float]num_images_per_prompt: int = 1num_inference_steps: int = 25generator: typing.Union[torch._C.Generator, typing.List[torch._C.Generator], NoneType] = Nonelatents: typing.Optional[torch.FloatTensor] = Nonenegative_prior_prompt: typing.Optional[str] = Nonenegative_prompt: str = ''guidance_scale: float = 4.0device = None ) → KandinskyPriorPipelineOutput or tuple

Parameters

  • images_and_prompts (List[Union[str, PIL.Image.Image, torch.FloatTensor]]) — list of prompts and images to guide the image generation. weights — (List[float]): list of weights for each condition in images_and_prompts

  • num_images_per_prompt (int, optional, defaults to 1) — The number of images to generate per prompt.

  • num_inference_steps (int, optional, defaults to 25) — The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference.

  • latents (torch.FloatTensor, optional) — Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor will ge generated by sampling using the supplied random generator.

  • negative_prior_prompt (str, optional) — The prompt not to guide the prior diffusion process. Ignored when not using guidance (i.e., ignored if guidance_scale is less than 1).

  • negative_prompt (str or List[str], optional) — The prompt not to guide the image generation. Ignored when not using guidance (i.e., ignored if guidance_scale is less than 1).

Returns

KandinskyPriorPipelineOutput or tuple

Function invoked when using the prior pipeline for interpolation.

Examples:

Copied

>>> from diffusers import KandinskyPriorPipeline, KandinskyPipeline
>>> from diffusers.utils import load_image
>>> import PIL

>>> import torch
>>> from torchvision import transforms

>>> pipe_prior = KandinskyPriorPipeline.from_pretrained(
...     "kandinsky-community/kandinsky-2-1-prior", torch_dtype=torch.float16
... )
>>> pipe_prior.to("cuda")

>>> img1 = load_image(
...     "https://boincai.com/datasets/hf-internal-testing/diffusers-images/resolve/main"
...     "/kandinsky/cat.png"
... )

>>> img2 = load_image(
...     "https://boincai.com/datasets/hf-internal-testing/diffusers-images/resolve/main"
...     "/kandinsky/starry_night.jpeg"
... )

>>> images_texts = ["a cat", img1, img2]
>>> weights = [0.3, 0.3, 0.4]
>>> image_emb, zero_image_emb = pipe_prior.interpolate(images_texts, weights)

>>> pipe = KandinskyPipeline.from_pretrained("kandinsky-community/kandinsky-2-1", torch_dtype=torch.float16)
>>> pipe.to("cuda")

>>> image = pipe(
...     "",
...     image_embeds=image_emb,
...     negative_image_embeds=zero_image_emb,
...     height=768,
...     width=768,
...     num_inference_steps=150,
... ).images[0]

>>> image.save("starry_cat.png")

KandinskyPipeline

class diffusers.KandinskyPipeline

( text_encoder: MultilingualCLIPtokenizer: XLMRobertaTokenizerunet: UNet2DConditionModelscheduler: typing.Union[diffusers.schedulers.scheduling_ddim.DDIMScheduler, diffusers.schedulers.scheduling_ddpm.DDPMScheduler]movq: VQModel )

Parameters

  • text_encoder (MultilingualCLIP) — Frozen text-encoder.

  • tokenizer (XLMRobertaTokenizer) — Tokenizer of class

  • scheduler (Union[DDIMScheduler,DDPMScheduler]) — A scheduler to be used in combination with unet to generate image latents.

Pipeline for text-to-image generation using Kandinsky

__call__

Parameters

  • prompt (str or List[str]) — The prompt or prompts to guide the image generation.

  • image_embeds (torch.FloatTensor or List[torch.FloatTensor]) — The clip image embeddings for text prompt, that will be used to condition the image generation.

  • negative_image_embeds (torch.FloatTensor or List[torch.FloatTensor]) — The clip image embeddings for negative text prompt, will be used to condition the image generation.

  • negative_prompt (str or List[str], optional) — The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored if guidance_scale is less than 1).

  • height (int, optional, defaults to 512) — The height in pixels of the generated image.

  • width (int, optional, defaults to 512) — The width in pixels of the generated image.

  • num_inference_steps (int, optional, defaults to 100) — The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference.

  • num_images_per_prompt (int, optional, defaults to 1) — The number of images to generate per prompt.

  • latents (torch.FloatTensor, optional) — Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor will ge generated by sampling using the supplied random generator.

  • output_type (str, optional, defaults to "pil") — The output format of the generate image. Choose between: "pil" (PIL.Image.Image), "np" (np.array) or "pt" (torch.Tensor).

  • callback (Callable, optional) — A function that calls every callback_steps steps during inference. The function is called with the following arguments: callback(step: int, timestep: int, latents: torch.FloatTensor).

  • callback_steps (int, optional, defaults to 1) — The frequency at which the callback function is called. If not specified, the callback is called at every step.

Returns

Function invoked when calling the pipeline for generation.

Examples:

Copied

>>> from diffusers import KandinskyPipeline, KandinskyPriorPipeline
>>> import torch

>>> pipe_prior = KandinskyPriorPipeline.from_pretrained("kandinsky-community/Kandinsky-2-1-prior")
>>> pipe_prior.to("cuda")

>>> prompt = "red cat, 4k photo"
>>> out = pipe_prior(prompt)
>>> image_emb = out.image_embeds
>>> negative_image_emb = out.negative_image_embeds

>>> pipe = KandinskyPipeline.from_pretrained("kandinsky-community/kandinsky-2-1")
>>> pipe.to("cuda")

>>> image = pipe(
...     prompt,
...     image_embeds=image_emb,
...     negative_image_embeds=negative_image_emb,
...     height=768,
...     width=768,
...     num_inference_steps=100,
... ).images

>>> image[0].save("cat.png")

KandinskyImg2ImgPipeline

class diffusers.KandinskyImg2ImgPipeline

( text_encoder: MultilingualCLIPmovq: VQModeltokenizer: XLMRobertaTokenizerunet: UNet2DConditionModelscheduler: DDIMScheduler )

Parameters

  • text_encoder (MultilingualCLIP) — Frozen text-encoder.

  • tokenizer (XLMRobertaTokenizer) — Tokenizer of class

Pipeline for image-to-image generation using Kandinsky

__call__

Parameters

  • prompt (str or List[str]) — The prompt or prompts to guide the image generation.

  • image (torch.FloatTensor, PIL.Image.Image) — Image, or tensor representing an image batch, that will be used as the starting point for the process.

  • image_embeds (torch.FloatTensor or List[torch.FloatTensor]) — The clip image embeddings for text prompt, that will be used to condition the image generation.

  • negative_image_embeds (torch.FloatTensor or List[torch.FloatTensor]) — The clip image embeddings for negative text prompt, will be used to condition the image generation.

  • negative_prompt (str or List[str], optional) — The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored if guidance_scale is less than 1).

  • height (int, optional, defaults to 512) — The height in pixels of the generated image.

  • width (int, optional, defaults to 512) — The width in pixels of the generated image.

  • num_inference_steps (int, optional, defaults to 100) — The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference.

  • strength (float, optional, defaults to 0.3) — Conceptually, indicates how much to transform the reference image. Must be between 0 and 1. image will be used as a starting point, adding more noise to it the larger the strength. The number of denoising steps depends on the amount of noise initially added. When strength is 1, added noise will be maximum and the denoising process will run for the full number of iterations specified in num_inference_steps. A value of 1, therefore, essentially ignores image.

  • num_images_per_prompt (int, optional, defaults to 1) — The number of images to generate per prompt.

  • output_type (str, optional, defaults to "pil") — The output format of the generate image. Choose between: "pil" (PIL.Image.Image), "np" (np.array) or "pt" (torch.Tensor).

  • callback (Callable, optional) — A function that calls every callback_steps steps during inference. The function is called with the following arguments: callback(step: int, timestep: int, latents: torch.FloatTensor).

  • callback_steps (int, optional, defaults to 1) — The frequency at which the callback function is called. If not specified, the callback is called at every step.

Returns

Function invoked when calling the pipeline for generation.

Examples:

Copied

>>> from diffusers import KandinskyImg2ImgPipeline, KandinskyPriorPipeline
>>> from diffusers.utils import load_image
>>> import torch

>>> pipe_prior = KandinskyPriorPipeline.from_pretrained(
...     "kandinsky-community/kandinsky-2-1-prior", torch_dtype=torch.float16
... )
>>> pipe_prior.to("cuda")

>>> prompt = "A red cartoon frog, 4k"
>>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False)

>>> pipe = KandinskyImg2ImgPipeline.from_pretrained(
...     "kandinsky-community/kandinsky-2-1", torch_dtype=torch.float16
... )
>>> pipe.to("cuda")

>>> init_image = load_image(
...     "https://boincai.com/datasets/hf-internal-testing/diffusers-images/resolve/main"
...     "/kandinsky/frog.png"
... )

>>> image = pipe(
...     prompt,
...     image=init_image,
...     image_embeds=image_emb,
...     negative_image_embeds=zero_image_emb,
...     height=768,
...     width=768,
...     num_inference_steps=100,
...     strength=0.2,
... ).images

>>> image[0].save("red_frog.png")

KandinskyInpaintPipeline

class diffusers.KandinskyInpaintPipeline

( text_encoder: MultilingualCLIPmovq: VQModeltokenizer: XLMRobertaTokenizerunet: UNet2DConditionModelscheduler: DDIMScheduler )

Parameters

  • text_encoder (MultilingualCLIP) — Frozen text-encoder.

  • tokenizer (XLMRobertaTokenizer) — Tokenizer of class

Pipeline for text-guided image inpainting using Kandinsky2.1

__call__

Parameters

  • prompt (str or List[str]) — The prompt or prompts to guide the image generation.

  • image (torch.FloatTensor, PIL.Image.Image or np.ndarray) — Image, or tensor representing an image batch, that will be used as the starting point for the process.

  • mask_image (PIL.Image.Image,torch.FloatTensor or np.ndarray) — Image, or a tensor representing an image batch, to mask image. White pixels in the mask will be repainted, while black pixels will be preserved. You can pass a pytorch tensor as mask only if the image you passed is a pytorch tensor, and it should contain one color channel (L) instead of 3, so the expected shape would be either (B, 1, H, W,), (B, H, W), (1, H, W) or (H, W) If image is an PIL image or numpy array, mask should also be a either PIL image or numpy array. If it is a PIL image, it will be converted to a single channel (luminance) before use. If it is a nummpy array, the expected shape is (H, W).

  • image_embeds (torch.FloatTensor or List[torch.FloatTensor]) — The clip image embeddings for text prompt, that will be used to condition the image generation.

  • negative_image_embeds (torch.FloatTensor or List[torch.FloatTensor]) — The clip image embeddings for negative text prompt, will be used to condition the image generation.

  • negative_prompt (str or List[str], optional) — The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored if guidance_scale is less than 1).

  • height (int, optional, defaults to 512) — The height in pixels of the generated image.

  • width (int, optional, defaults to 512) — The width in pixels of the generated image.

  • num_inference_steps (int, optional, defaults to 100) — The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference.

  • num_images_per_prompt (int, optional, defaults to 1) — The number of images to generate per prompt.

  • latents (torch.FloatTensor, optional) — Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor will ge generated by sampling using the supplied random generator.

  • output_type (str, optional, defaults to "pil") — The output format of the generate image. Choose between: "pil" (PIL.Image.Image), "np" (np.array) or "pt" (torch.Tensor).

  • callback (Callable, optional) — A function that calls every callback_steps steps during inference. The function is called with the following arguments: callback(step: int, timestep: int, latents: torch.FloatTensor).

  • callback_steps (int, optional, defaults to 1) — The frequency at which the callback function is called. If not specified, the callback is called at every step.

Returns

Function invoked when calling the pipeline for generation.

Examples:

Copied

>>> from diffusers import KandinskyInpaintPipeline, KandinskyPriorPipeline
>>> from diffusers.utils import load_image
>>> import torch
>>> import numpy as np

>>> pipe_prior = KandinskyPriorPipeline.from_pretrained(
...     "kandinsky-community/kandinsky-2-1-prior", torch_dtype=torch.float16
... )
>>> pipe_prior.to("cuda")

>>> prompt = "a hat"
>>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False)

>>> pipe = KandinskyInpaintPipeline.from_pretrained(
...     "kandinsky-community/kandinsky-2-1-inpaint", torch_dtype=torch.float16
... )
>>> pipe.to("cuda")

>>> init_image = load_image(
...     "https://boincai.com/datasets/hf-internal-testing/diffusers-images/resolve/main"
...     "/kandinsky/cat.png"
... )

>>> mask = np.zeros((768, 768), dtype=np.float32)
>>> mask[:250, 250:-250] = 1

>>> out = pipe(
...     prompt,
...     image=init_image,
...     mask_image=mask,
...     image_embeds=image_emb,
...     negative_image_embeds=zero_image_emb,
...     height=768,
...     width=768,
...     num_inference_steps=50,
... )

>>> image = out.images[0]
>>> image.save("cat_with_hat.png")

KandinskyCombinedPipeline

class diffusers.KandinskyCombinedPipeline

( text_encoder: MultilingualCLIPtokenizer: XLMRobertaTokenizerunet: UNet2DConditionModelscheduler: typing.Union[diffusers.schedulers.scheduling_ddim.DDIMScheduler, diffusers.schedulers.scheduling_ddpm.DDPMScheduler]movq: VQModelprior_prior: PriorTransformerprior_image_encoder: CLIPVisionModelWithProjectionprior_text_encoder: CLIPTextModelWithProjectionprior_tokenizer: CLIPTokenizerprior_scheduler: UnCLIPSchedulerprior_image_processor: CLIPImageProcessor )

Parameters

  • text_encoder (MultilingualCLIP) — Frozen text-encoder.

  • tokenizer (XLMRobertaTokenizer) — Tokenizer of class

  • scheduler (Union[DDIMScheduler,DDPMScheduler]) — A scheduler to be used in combination with unet to generate image latents.

  • prior_image_encoder (CLIPVisionModelWithProjection) — Frozen image-encoder.

  • prior_text_encoder (CLIPTextModelWithProjection) — Frozen text-encoder.

  • prior_scheduler (UnCLIPScheduler) — A scheduler to be used in combination with prior to generate image embedding.

Combined Pipeline for text-to-image generation using Kandinsky

__call__

Parameters

  • prompt (str or List[str]) — The prompt or prompts to guide the image generation.

  • negative_prompt (str or List[str], optional) — The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored if guidance_scale is less than 1).

  • num_images_per_prompt (int, optional, defaults to 1) — The number of images to generate per prompt.

  • num_inference_steps (int, optional, defaults to 100) — The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference.

  • height (int, optional, defaults to 512) — The height in pixels of the generated image.

  • width (int, optional, defaults to 512) — The width in pixels of the generated image.

  • prior_num_inference_steps (int, optional, defaults to 100) — The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference.

  • latents (torch.FloatTensor, optional) — Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor will ge generated by sampling using the supplied random generator.

  • output_type (str, optional, defaults to "pil") — The output format of the generate image. Choose between: "pil" (PIL.Image.Image), "np" (np.array) or "pt" (torch.Tensor).

  • callback (Callable, optional) — A function that calls every callback_steps steps during inference. The function is called with the following arguments: callback(step: int, timestep: int, latents: torch.FloatTensor).

  • callback_steps (int, optional, defaults to 1) — The frequency at which the callback function is called. If not specified, the callback is called at every step.

Returns

Function invoked when calling the pipeline for generation.

Examples:

Copied

from diffusers import AutoPipelineForText2Image
import torch

pipe = AutoPipelineForText2Image.from_pretrained(
    "kandinsky-community/kandinsky-2-1", torch_dtype=torch.float16
)
pipe.enable_model_cpu_offload()

prompt = "A lion in galaxies, spirals, nebulae, stars, smoke, iridescent, intricate detail, octane render, 8k"

image = pipe(prompt=prompt, num_inference_steps=25).images[0]

enable_sequential_cpu_offload

( gpu_id = 0 )

Offloads all models (unet, text_encoder, vae, and safety checker state dicts) to CPU using 🤗 Accelerate, significantly reducing memory usage. Models are moved to a torch.device('meta') and loaded on a GPU only when their specific submodule’s forward method is called. Offloading happens on a submodule basis. Memory savings are higher than using enable_model_cpu_offload, but performance is lower.

KandinskyImg2ImgCombinedPipeline

class diffusers.KandinskyImg2ImgCombinedPipeline

( text_encoder: MultilingualCLIPtokenizer: XLMRobertaTokenizerunet: UNet2DConditionModelscheduler: typing.Union[diffusers.schedulers.scheduling_ddim.DDIMScheduler, diffusers.schedulers.scheduling_ddpm.DDPMScheduler]movq: VQModelprior_prior: PriorTransformerprior_image_encoder: CLIPVisionModelWithProjectionprior_text_encoder: CLIPTextModelWithProjectionprior_tokenizer: CLIPTokenizerprior_scheduler: UnCLIPSchedulerprior_image_processor: CLIPImageProcessor )

Parameters

  • text_encoder (MultilingualCLIP) — Frozen text-encoder.

  • tokenizer (XLMRobertaTokenizer) — Tokenizer of class

  • scheduler (Union[DDIMScheduler,DDPMScheduler]) — A scheduler to be used in combination with unet to generate image latents.

  • prior_image_encoder (CLIPVisionModelWithProjection) — Frozen image-encoder.

  • prior_text_encoder (CLIPTextModelWithProjection) — Frozen text-encoder.

  • prior_scheduler (UnCLIPScheduler) — A scheduler to be used in combination with prior to generate image embedding.

Combined Pipeline for image-to-image generation using Kandinsky

__call__

Parameters

  • prompt (str or List[str]) — The prompt or prompts to guide the image generation.

  • image (torch.FloatTensor, PIL.Image.Image, np.ndarray, List[torch.FloatTensor], List[PIL.Image.Image], or List[np.ndarray]) — Image, or tensor representing an image batch, that will be used as the starting point for the process. Can also accept image latents as image, if passing latents directly, it will not be encoded again.

  • negative_prompt (str or List[str], optional) — The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored if guidance_scale is less than 1).

  • num_images_per_prompt (int, optional, defaults to 1) — The number of images to generate per prompt.

  • num_inference_steps (int, optional, defaults to 100) — The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference.

  • height (int, optional, defaults to 512) — The height in pixels of the generated image.

  • width (int, optional, defaults to 512) — The width in pixels of the generated image.

  • strength (float, optional, defaults to 0.3) — Conceptually, indicates how much to transform the reference image. Must be between 0 and 1. image will be used as a starting point, adding more noise to it the larger the strength. The number of denoising steps depends on the amount of noise initially added. When strength is 1, added noise will be maximum and the denoising process will run for the full number of iterations specified in num_inference_steps. A value of 1, therefore, essentially ignores image.

  • prior_num_inference_steps (int, optional, defaults to 100) — The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference.

  • latents (torch.FloatTensor, optional) — Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor will ge generated by sampling using the supplied random generator.

  • output_type (str, optional, defaults to "pil") — The output format of the generate image. Choose between: "pil" (PIL.Image.Image), "np" (np.array) or "pt" (torch.Tensor).

  • callback (Callable, optional) — A function that calls every callback_steps steps during inference. The function is called with the following arguments: callback(step: int, timestep: int, latents: torch.FloatTensor).

  • callback_steps (int, optional, defaults to 1) — The frequency at which the callback function is called. If not specified, the callback is called at every step.

Returns

Function invoked when calling the pipeline for generation.

Examples:

Copied

from diffusers import AutoPipelineForImage2Image
import torch
import requests
from io import BytesIO
from PIL import Image
import os

pipe = AutoPipelineForImage2Image.from_pretrained(
    "kandinsky-community/kandinsky-2-1", torch_dtype=torch.float16
)
pipe.enable_model_cpu_offload()

prompt = "A fantasy landscape, Cinematic lighting"
negative_prompt = "low quality, bad quality"

url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg"

response = requests.get(url)
image = Image.open(BytesIO(response.content)).convert("RGB")
image.thumbnail((768, 768))

image = pipe(prompt=prompt, image=original_image, num_inference_steps=25).images[0]

enable_sequential_cpu_offload

( gpu_id = 0 )

Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, unet, text_encoder, vae and safety checker have their state dicts saved to CPU and then are moved to a torch.device('meta') and loaded to GPU only when their specific submodule has its forwardmethod called. Note that offloading happens on a submodule basis. Memory savings are higher than withenable_model_cpu_offload`, but performance is lower.

KandinskyInpaintCombinedPipeline

class diffusers.KandinskyInpaintCombinedPipeline

( text_encoder: MultilingualCLIPtokenizer: XLMRobertaTokenizerunet: UNet2DConditionModelscheduler: typing.Union[diffusers.schedulers.scheduling_ddim.DDIMScheduler, diffusers.schedulers.scheduling_ddpm.DDPMScheduler]movq: VQModelprior_prior: PriorTransformerprior_image_encoder: CLIPVisionModelWithProjectionprior_text_encoder: CLIPTextModelWithProjectionprior_tokenizer: CLIPTokenizerprior_scheduler: UnCLIPSchedulerprior_image_processor: CLIPImageProcessor )

Parameters

  • text_encoder (MultilingualCLIP) — Frozen text-encoder.

  • tokenizer (XLMRobertaTokenizer) — Tokenizer of class

  • scheduler (Union[DDIMScheduler,DDPMScheduler]) — A scheduler to be used in combination with unet to generate image latents.

  • prior_image_encoder (CLIPVisionModelWithProjection) — Frozen image-encoder.

  • prior_text_encoder (CLIPTextModelWithProjection) — Frozen text-encoder.

  • prior_scheduler (UnCLIPScheduler) — A scheduler to be used in combination with prior to generate image embedding.

Combined Pipeline for generation using Kandinsky

__call__

Parameters

  • prompt (str or List[str]) — The prompt or prompts to guide the image generation.

  • image (torch.FloatTensor, PIL.Image.Image, np.ndarray, List[torch.FloatTensor], List[PIL.Image.Image], or List[np.ndarray]) — Image, or tensor representing an image batch, that will be used as the starting point for the process. Can also accept image latents as image, if passing latents directly, it will not be encoded again.

  • mask_image (np.array) — Tensor representing an image batch, to mask image. White pixels in the mask will be repainted, while black pixels will be preserved. If mask_image is a PIL image, it will be converted to a single channel (luminance) before use. If it’s a tensor, it should contain one color channel (L) instead of 3, so the expected shape would be (B, H, W, 1).

  • negative_prompt (str or List[str], optional) — The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored if guidance_scale is less than 1).

  • num_images_per_prompt (int, optional, defaults to 1) — The number of images to generate per prompt.

  • num_inference_steps (int, optional, defaults to 100) — The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference.

  • height (int, optional, defaults to 512) — The height in pixels of the generated image.

  • width (int, optional, defaults to 512) — The width in pixels of the generated image.

  • prior_num_inference_steps (int, optional, defaults to 100) — The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference.

  • latents (torch.FloatTensor, optional) — Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor will ge generated by sampling using the supplied random generator.

  • output_type (str, optional, defaults to "pil") — The output format of the generate image. Choose between: "pil" (PIL.Image.Image), "np" (np.array) or "pt" (torch.Tensor).

  • callback (Callable, optional) — A function that calls every callback_steps steps during inference. The function is called with the following arguments: callback(step: int, timestep: int, latents: torch.FloatTensor).

  • callback_steps (int, optional, defaults to 1) — The frequency at which the callback function is called. If not specified, the callback is called at every step.

Returns

Function invoked when calling the pipeline for generation.

Examples:

Copied

from diffusers import AutoPipelineForInpainting
from diffusers.utils import load_image
import torch
import numpy as np

pipe = AutoPipelineForInpainting.from_pretrained(
    "kandinsky-community/kandinsky-2-1-inpaint", torch_dtype=torch.float16
)
pipe.enable_model_cpu_offload()

prompt = "A fantasy landscape, Cinematic lighting"
negative_prompt = "low quality, bad quality"

original_image = load_image(
    "https://boincai.com/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png"
)

mask = np.zeros((768, 768), dtype=np.float32)
# Let's mask out an area above the cat's head
mask[:250, 250:-250] = 1

image = pipe(prompt=prompt, image=original_image, mask_image=mask, num_inference_steps=25).images[0]

enable_sequential_cpu_offload

( gpu_id = 0 )

Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, unet, text_encoder, vae and safety checker have their state dicts saved to CPU and then are moved to a torch.device('meta') and loaded to GPU only when their specific submodule has its forwardmethod called. Note that offloading happens on a submodule basis. Memory savings are higher than withenable_model_cpu_offload`, but performance is lower.

By default, the text-to-image pipeline use , you can change the scheduler to

img

We also provide an end-to-end Kandinsky pipeline , which combines both the prior pipeline and text-to-image pipeline, and lets you perform inference in a single step. You can create the combined pipeline with the method

Under the hood, it will automatically load both and . To generate images, you no longer need to call both pipelines and pass the outputs from one to another. You only need to call the combined pipeline once. You can set different guidance_scale and num_inference_steps for the prior pipeline with the prior_guidance_scale and prior_num_inference_steps arguments.

img
img
img
img

The same Kandinsky model weights can be used for text-guided image-to-image translation. In this case, just make sure to load the weights using the pipeline.

Note: You can also directly move the weights of the text-to-image pipelines to the image-to-image pipelines without loading them twice by making use of the function as explained .

img
img

You can also use the for end-to-end image-to-image generation with Kandinsky 2.1

You can use to edit images. In this example, we will add a hat to the portrait of a cat.

img

To use the to perform end-to-end image inpainting generation, you can run below code instead

We introduced a breaking change for Kandinsky inpainting pipeline in the following pull request: . Previously we accepted a mask format where black pixels represent the masked-out area. This is inconsistent with all other pipelines in diffusers. We have changed the mask format in Knaindsky and now using white pixels instead. Please upgrade your inpainting code to follow the above. If you are using Kandinsky Inpaint in production. You now need to change the mask to:

The also comes with a cool utility function that will allow you to interpolate the latent space of different images and texts super easily. Here is an example of how you can create an Impressionist-style portrait for your pet based on “The Starry Night”.

img

Running Kandinsky in inference requires running both a first prior pipeline: and a second image decoding pipeline which is one of , , or .

When running with PyTorch < 2.0, we strongly recommend making use of to speed-up the optimization. This can be done by simply running:

When running on PyTorch >= 2.0, PyTorch’s SDPA attention will automatically be used. For more information on PyTorch’s SDPA, feel free to have a look at .

After compilation you should see a very fast inference time. For more information, feel free to have a look at .

To generate images directly from a single pipeline, you can use , , . These combined pipelines wrap the and , , respectively into a single pipeline for a simpler user experience

prior () — The canonincal unCLIP prior to approximate the image embedding from the text embedding.

tokenizer (CLIPTokenizer) — Tokenizer of class .

This model inherits from . Check the superclass documentation for the generic methods the library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)

generator (torch.Generator or List[torch.Generator], optional) — One or a list of to make generation deterministic.

guidance_scale (float, optional, defaults to 4.0) — Guidance scale as defined in . guidance_scale is defined as w of equation 2. of . Guidance scale is enabled by setting guidance_scale > 1. Higher guidance scale encourages to generate images that are closely linked to the text prompt, usually at the expense of lower image quality.

return_dict (bool, optional, defaults to True) — Whether or not to return a instead of a plain tuple.

generator (torch.Generator or List[torch.Generator], optional) — One or a list of to make generation deterministic.

guidance_scale (float, optional, defaults to 4.0) — Guidance scale as defined in . guidance_scale is defined as w of equation 2. of . Guidance scale is enabled by setting guidance_scale > 1. Higher guidance scale encourages to generate images that are closely linked to the text prompt, usually at the expense of lower image quality.

unet () — Conditional U-Net architecture to denoise the image embedding.

movq () — MoVQ Decoder to generate the image from the latents.

This model inherits from . Check the superclass documentation for the generic methods the library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)

( prompt: typing.Union[str, typing.List[str]]image_embeds: typing.Union[torch.FloatTensor, typing.List[torch.FloatTensor]]negative_image_embeds: typing.Union[torch.FloatTensor, typing.List[torch.FloatTensor]]negative_prompt: typing.Union[str, typing.List[str], NoneType] = Noneheight: int = 512width: int = 512num_inference_steps: int = 100guidance_scale: float = 4.0num_images_per_prompt: int = 1generator: typing.Union[torch._C.Generator, typing.List[torch._C.Generator], NoneType] = Nonelatents: typing.Optional[torch.FloatTensor] = Noneoutput_type: typing.Optional[str] = 'pil'callback: typing.Union[typing.Callable[[int, int, torch.FloatTensor], NoneType], NoneType] = Nonecallback_steps: int = 1return_dict: bool = True ) → or tuple

guidance_scale (float, optional, defaults to 4.0) — Guidance scale as defined in . guidance_scale is defined as w of equation 2. of . Guidance scale is enabled by setting guidance_scale > 1. Higher guidance scale encourages to generate images that are closely linked to the text prompt, usually at the expense of lower image quality.

generator (torch.Generator or List[torch.Generator], optional) — One or a list of to make generation deterministic.

return_dict (bool, optional, defaults to True) — Whether or not to return a instead of a plain tuple.

or tuple

scheduler () — A scheduler to be used in combination with unet to generate image latents.

unet () — Conditional U-Net architecture to denoise the image embedding.

movq () — MoVQ image encoder and decoder

This model inherits from . Check the superclass documentation for the generic methods the library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)

( prompt: typing.Union[str, typing.List[str]]image: typing.Union[torch.FloatTensor, PIL.Image.Image, typing.List[torch.FloatTensor], typing.List[PIL.Image.Image]]image_embeds: FloatTensornegative_image_embeds: FloatTensornegative_prompt: typing.Union[str, typing.List[str], NoneType] = Noneheight: int = 512width: int = 512num_inference_steps: int = 100strength: float = 0.3guidance_scale: float = 7.0num_images_per_prompt: int = 1generator: typing.Union[torch._C.Generator, typing.List[torch._C.Generator], NoneType] = Noneoutput_type: typing.Optional[str] = 'pil'callback: typing.Union[typing.Callable[[int, int, torch.FloatTensor], NoneType], NoneType] = Nonecallback_steps: int = 1return_dict: bool = True ) → or tuple

guidance_scale (float, optional, defaults to 4.0) — Guidance scale as defined in . guidance_scale is defined as w of equation 2. of . Guidance scale is enabled by setting guidance_scale > 1. Higher guidance scale encourages to generate images that are closely linked to the text prompt, usually at the expense of lower image quality.

generator (torch.Generator or List[torch.Generator], optional) — One or a list of to make generation deterministic.

return_dict (bool, optional, defaults to True) — Whether or not to return a instead of a plain tuple.

or tuple

scheduler () — A scheduler to be used in combination with unet to generate image latents.

unet () — Conditional U-Net architecture to denoise the image embedding.

movq () — MoVQ image encoder and decoder

This model inherits from . Check the superclass documentation for the generic methods the library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)

( prompt: typing.Union[str, typing.List[str]]image: typing.Union[torch.FloatTensor, PIL.Image.Image]mask_image: typing.Union[torch.FloatTensor, PIL.Image.Image, numpy.ndarray]image_embeds: FloatTensornegative_image_embeds: FloatTensornegative_prompt: typing.Union[str, typing.List[str], NoneType] = Noneheight: int = 512width: int = 512num_inference_steps: int = 100guidance_scale: float = 4.0num_images_per_prompt: int = 1generator: typing.Union[torch._C.Generator, typing.List[torch._C.Generator], NoneType] = Nonelatents: typing.Optional[torch.FloatTensor] = Noneoutput_type: typing.Optional[str] = 'pil'callback: typing.Union[typing.Callable[[int, int, torch.FloatTensor], NoneType], NoneType] = Nonecallback_steps: int = 1return_dict: bool = True ) → or tuple

guidance_scale (float, optional, defaults to 4.0) — Guidance scale as defined in . guidance_scale is defined as w of equation 2. of . Guidance scale is enabled by setting guidance_scale > 1. Higher guidance scale encourages to generate images that are closely linked to the text prompt, usually at the expense of lower image quality.

generator (torch.Generator or List[torch.Generator], optional) — One or a list of to make generation deterministic.

return_dict (bool, optional, defaults to True) — Whether or not to return a instead of a plain tuple.

or tuple

unet () — Conditional U-Net architecture to denoise the image embedding.

movq () — MoVQ Decoder to generate the image from the latents.

prior_prior () — The canonincal unCLIP prior to approximate the image embedding from the text embedding.

prior_tokenizer (CLIPTokenizer) — Tokenizer of class .

This model inherits from . Check the superclass documentation for the generic methods the library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)

( prompt: typing.Union[str, typing.List[str]]negative_prompt: typing.Union[str, typing.List[str], NoneType] = Nonenum_inference_steps: int = 100guidance_scale: float = 4.0num_images_per_prompt: int = 1height: int = 512width: int = 512prior_guidance_scale: float = 4.0prior_num_inference_steps: int = 25generator: typing.Union[torch._C.Generator, typing.List[torch._C.Generator], NoneType] = Nonelatents: typing.Optional[torch.FloatTensor] = Noneoutput_type: typing.Optional[str] = 'pil'callback: typing.Union[typing.Callable[[int, int, torch.FloatTensor], NoneType], NoneType] = Nonecallback_steps: int = 1return_dict: bool = True ) → or tuple

prior_guidance_scale (float, optional, defaults to 4.0) — Guidance scale as defined in . guidance_scale is defined as w of equation 2. of . Guidance scale is enabled by setting guidance_scale > 1. Higher guidance scale encourages to generate images that are closely linked to the text prompt, usually at the expense of lower image quality.

guidance_scale (float, optional, defaults to 4.0) — Guidance scale as defined in . guidance_scale is defined as w of equation 2. of . Guidance scale is enabled by setting guidance_scale > 1. Higher guidance scale encourages to generate images that are closely linked to the text prompt, usually at the expense of lower image quality.

generator (torch.Generator or List[torch.Generator], optional) — One or a list of to make generation deterministic.

return_dict (bool, optional, defaults to True) — Whether or not to return a instead of a plain tuple.

or tuple

unet () — Conditional U-Net architecture to denoise the image embedding.

movq () — MoVQ Decoder to generate the image from the latents.

prior_prior () — The canonincal unCLIP prior to approximate the image embedding from the text embedding.

prior_tokenizer (CLIPTokenizer) — Tokenizer of class .

This model inherits from . Check the superclass documentation for the generic methods the library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)

( prompt: typing.Union[str, typing.List[str]]image: typing.Union[torch.FloatTensor, PIL.Image.Image, typing.List[torch.FloatTensor], typing.List[PIL.Image.Image]]negative_prompt: typing.Union[str, typing.List[str], NoneType] = Nonenum_inference_steps: int = 100guidance_scale: float = 4.0num_images_per_prompt: int = 1strength: float = 0.3height: int = 512width: int = 512prior_guidance_scale: float = 4.0prior_num_inference_steps: int = 25generator: typing.Union[torch._C.Generator, typing.List[torch._C.Generator], NoneType] = Nonelatents: typing.Optional[torch.FloatTensor] = Noneoutput_type: typing.Optional[str] = 'pil'callback: typing.Union[typing.Callable[[int, int, torch.FloatTensor], NoneType], NoneType] = Nonecallback_steps: int = 1return_dict: bool = True ) → or tuple

prior_guidance_scale (float, optional, defaults to 4.0) — Guidance scale as defined in . guidance_scale is defined as w of equation 2. of . Guidance scale is enabled by setting guidance_scale > 1. Higher guidance scale encourages to generate images that are closely linked to the text prompt, usually at the expense of lower image quality.

guidance_scale (float, optional, defaults to 4.0) — Guidance scale as defined in . guidance_scale is defined as w of equation 2. of . Guidance scale is enabled by setting guidance_scale > 1. Higher guidance scale encourages to generate images that are closely linked to the text prompt, usually at the expense of lower image quality.

generator (torch.Generator or List[torch.Generator], optional) — One or a list of to make generation deterministic.

return_dict (bool, optional, defaults to True) — Whether or not to return a instead of a plain tuple.

or tuple

unet () — Conditional U-Net architecture to denoise the image embedding.

movq () — MoVQ Decoder to generate the image from the latents.

prior_prior () — The canonincal unCLIP prior to approximate the image embedding from the text embedding.

prior_tokenizer (CLIPTokenizer) — Tokenizer of class .

This model inherits from . Check the superclass documentation for the generic methods the library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)

( prompt: typing.Union[str, typing.List[str]]image: typing.Union[torch.FloatTensor, PIL.Image.Image, typing.List[torch.FloatTensor], typing.List[PIL.Image.Image]]mask_image: typing.Union[torch.FloatTensor, PIL.Image.Image, typing.List[torch.FloatTensor], typing.List[PIL.Image.Image]]negative_prompt: typing.Union[str, typing.List[str], NoneType] = Nonenum_inference_steps: int = 100guidance_scale: float = 4.0num_images_per_prompt: int = 1height: int = 512width: int = 512prior_guidance_scale: float = 4.0prior_num_inference_steps: int = 25generator: typing.Union[torch._C.Generator, typing.List[torch._C.Generator], NoneType] = Nonelatents: typing.Optional[torch.FloatTensor] = Noneoutput_type: typing.Optional[str] = 'pil'callback: typing.Union[typing.Callable[[int, int, torch.FloatTensor], NoneType], NoneType] = Nonecallback_steps: int = 1return_dict: bool = True ) → or tuple

prior_guidance_scale (float, optional, defaults to 4.0) — Guidance scale as defined in . guidance_scale is defined as w of equation 2. of . Guidance scale is enabled by setting guidance_scale > 1. Higher guidance scale encourages to generate images that are closely linked to the text prompt, usually at the expense of lower image quality.

guidance_scale (float, optional, defaults to 4.0) — Guidance scale as defined in . guidance_scale is defined as w of equation 2. of . Guidance scale is enabled by setting guidance_scale > 1. Higher guidance scale encourages to generate images that are closely linked to the text prompt, usually at the expense of lower image quality.

generator (torch.Generator or List[torch.Generator], optional) — One or a list of to make generation deterministic.

return_dict (bool, optional, defaults to True) — Whether or not to return a instead of a plain tuple.

or tuple

🌍
🌍
DALL-E 2
Latent Diffusion
CLIP
Arseniy Shakhmatov
Anton Razzhigaev
Aleksandr Nikolich
Igor Pavlov
Andrey Kuznetsov
Denis Dimitrov
here
KandinskyPriorPipeline
KandinskyPipeline
DALL-E 2
DDIMScheduler
DDPMScheduler
KandinskyCombinedPipeline
from_pretrained()
KandinskyPriorPipeline
KandinskyPipeline
KandinskyImg2ImgPipeline
components
here
KandinskyImg2ImgCombinedPipeline
KandinskyInpaintPipeline
KandinskyInpaintCombinedPipeline
https://github.com/boincai/diffusers/pull/4207
KandinskyPriorPipeline
KandinskyPriorPipeline
KandinskyPipeline
KandinskyImg2ImgPipeline
KandinskyInpaintPipeline
xformers
this blog post
Our PyTorch 2.0 benchmark
KandinskyCombinedPipeline
KandinskyImg2ImgCombinedPipeline
KandinskyInpaintCombinedPipeline
KandinskyPriorPipeline
KandinskyPipeline
KandinskyImg2ImgPipeline
KandinskyInpaintPipeline
<source>
PriorTransformer
CLIPTokenizer
DiffusionPipeline
<source>
torch generator(s)
Classifier-Free Diffusion Guidance
Imagen Paper
ImagePipelineOutput
<source>
torch generator(s)
Classifier-Free Diffusion Guidance
Imagen Paper
<source>
UNet2DConditionModel
VQModel
DiffusionPipeline
<source>
ImagePipelineOutput
Classifier-Free Diffusion Guidance
Imagen Paper
torch generator(s)
ImagePipelineOutput
ImagePipelineOutput
<source>
DDIMScheduler
UNet2DConditionModel
VQModel
DiffusionPipeline
<source>
ImagePipelineOutput
Classifier-Free Diffusion Guidance
Imagen Paper
torch generator(s)
ImagePipelineOutput
ImagePipelineOutput
<source>
DDIMScheduler
UNet2DConditionModel
VQModel
DiffusionPipeline
<source>
ImagePipelineOutput
Classifier-Free Diffusion Guidance
Imagen Paper
torch generator(s)
ImagePipelineOutput
ImagePipelineOutput
<source>
UNet2DConditionModel
VQModel
PriorTransformer
CLIPTokenizer
DiffusionPipeline
<source>
ImagePipelineOutput
Classifier-Free Diffusion Guidance
Imagen Paper
Classifier-Free Diffusion Guidance
Imagen Paper
torch generator(s)
ImagePipelineOutput
ImagePipelineOutput
<source>
<source>
UNet2DConditionModel
VQModel
PriorTransformer
CLIPTokenizer
DiffusionPipeline
<source>
ImagePipelineOutput
Classifier-Free Diffusion Guidance
Imagen Paper
Classifier-Free Diffusion Guidance
Imagen Paper
torch generator(s)
ImagePipelineOutput
ImagePipelineOutput
<source>
<source>
UNet2DConditionModel
VQModel
PriorTransformer
CLIPTokenizer
DiffusionPipeline
<source>
ImagePipelineOutput
Classifier-Free Diffusion Guidance
Imagen Paper
Classifier-Free Diffusion Guidance
Imagen Paper
torch generator(s)
ImagePipelineOutput
ImagePipelineOutput
<source>
pipeline_kandinsky.py
pipeline_kandinsky_combined.py
pipeline_kandinsky_inpaint.py
pipeline_kandinsky_img2img.py