DeepFloyd IF
DeepFloyd IF
Overview
DeepFloyd IF is a novel state-of-the-art open-source text-to-image model with a high degree of photorealism and language understanding. The model is a modular composed of a frozen text encoder and three cascaded pixel diffusion modules:
Stage 1: a base model that generates 64x64 px image based on text prompt,
Stage 2: a 64x64 px => 256x256 px super-resolution model, and a
Stage 3: a 256x256 px => 1024x1024 px super-resolution model Stage 1 and Stage 2 utilize a frozen text encoder based on the T5 transformer to extract text embeddings, which are then fed into a UNet architecture enhanced with cross-attention and attention pooling. Stage 3 is Stabilityโs x4 Upscaling model. The result is a highly efficient model that outperforms current state-of-the-art models, achieving a zero-shot FID score of 6.66 on the COCO dataset. Our work underscores the potential of larger UNet architectures in the first stage of cascaded diffusion models and depicts a promising future for text-to-image synthesis.
Usage
Before you can use IF, you need to accept its usage conditions. To do so:
Make sure to have a BOINC AI account and be logged in
Accept the license on the model card of DeepFloyd/IF-I-XL-v1.0. Accepting the license on the stage I model card will auto accept for the other IF models.
Make sure to login locally. Install boincai
_hub
Copied
pip install boincai_hub --upgraderun the login function in a Python shell
Copied
from boincai_hub import login
login()and enter your BOINC AI Hub access token.
Next we install diffusers and dependencies:
Copied
pip install diffusers accelerate transformers safetensorsThe following sections give more in-detail examples of how to use IF. Specifically:
Available checkpoints
Text-to-Image Generation
By default diffusers makes use of model cpu offloading to run the whole IF pipeline with as little as 14 GB of VRAM.
Copied
from diffusers import DiffusionPipeline
from diffusers.utils import pt_to_pil
import torch
# stage 1
stage_1 = DiffusionPipeline.from_pretrained("DeepFloyd/IF-I-XL-v1.0", variant="fp16", torch_dtype=torch.float16)
stage_1.enable_model_cpu_offload()
# stage 2
stage_2 = DiffusionPipeline.from_pretrained(
"DeepFloyd/IF-II-L-v1.0", text_encoder=None, variant="fp16", torch_dtype=torch.float16
)
stage_2.enable_model_cpu_offload()
# stage 3
safety_modules = {
"feature_extractor": stage_1.feature_extractor,
"safety_checker": stage_1.safety_checker,
"watermarker": stage_1.watermarker,
}
stage_3 = DiffusionPipeline.from_pretrained(
"stabilityai/stable-diffusion-x4-upscaler", **safety_modules, torch_dtype=torch.float16
)
stage_3.enable_model_cpu_offload()
prompt = 'a photo of a kangaroo wearing an orange hoodie and blue sunglasses standing in front of the eiffel tower holding a sign that says "very deep learning"'
generator = torch.manual_seed(1)
# text embeds
prompt_embeds, negative_embeds = stage_1.encode_prompt(prompt)
# stage 1
image = stage_1(
prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_embeds, generator=generator, output_type="pt"
).images
pt_to_pil(image)[0].save("./if_stage_I.png")
# stage 2
image = stage_2(
image=image,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_embeds,
generator=generator,
output_type="pt",
).images
pt_to_pil(image)[0].save("./if_stage_II.png")
# stage 3
image = stage_3(prompt=prompt, image=image, noise_level=100, generator=generator).images
image[0].save("./if_stage_III.png")Text Guided Image-to-Image Generation
The same IF model weights can be used for text-guided image-to-image translation or image variation. In this case just make sure to load the weights using the IFInpaintingPipeline and IFInpaintingSuperResolutionPipeline pipelines.
Note: You can also directly move the weights of the text-to-image pipelines to the image-to-image pipelines without loading them twice by making use of the ~DiffusionPipeline.components() function as explained here.
Copied
from diffusers import IFImg2ImgPipeline, IFImg2ImgSuperResolutionPipeline, DiffusionPipeline
from diffusers.utils import pt_to_pil
import torch
from PIL import Image
import requests
from io import BytesIO
# download image
url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg"
response = requests.get(url)
original_image = Image.open(BytesIO(response.content)).convert("RGB")
original_image = original_image.resize((768, 512))
# stage 1
stage_1 = IFImg2ImgPipeline.from_pretrained("DeepFloyd/IF-I-XL-v1.0", variant="fp16", torch_dtype=torch.float16)
stage_1.enable_model_cpu_offload()
# stage 2
stage_2 = IFImg2ImgSuperResolutionPipeline.from_pretrained(
"DeepFloyd/IF-II-L-v1.0", text_encoder=None, variant="fp16", torch_dtype=torch.float16
)
stage_2.enable_model_cpu_offload()
# stage 3
safety_modules = {
"feature_extractor": stage_1.feature_extractor,
"safety_checker": stage_1.safety_checker,
"watermarker": stage_1.watermarker,
}
stage_3 = DiffusionPipeline.from_pretrained(
"stabilityai/stable-diffusion-x4-upscaler", **safety_modules, torch_dtype=torch.float16
)
stage_3.enable_model_cpu_offload()
prompt = "A fantasy landscape in style minecraft"
generator = torch.manual_seed(1)
# text embeds
prompt_embeds, negative_embeds = stage_1.encode_prompt(prompt)
# stage 1
image = stage_1(
image=original_image,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_embeds,
generator=generator,
output_type="pt",
).images
pt_to_pil(image)[0].save("./if_stage_I.png")
# stage 2
image = stage_2(
image=image,
original_image=original_image,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_embeds,
generator=generator,
output_type="pt",
).images
pt_to_pil(image)[0].save("./if_stage_II.png")
# stage 3
image = stage_3(prompt=prompt, image=image, generator=generator, noise_level=100).images
image[0].save("./if_stage_III.png")Text Guided Inpainting Generation
The same IF model weights can be used for text-guided image-to-image translation or image variation. In this case just make sure to load the weights using the IFInpaintingPipeline and IFInpaintingSuperResolutionPipeline pipelines.
Note: You can also directly move the weights of the text-to-image pipelines to the image-to-image pipelines without loading them twice by making use of the ~DiffusionPipeline.components() function as explained here.
Copied
from diffusers import IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, DiffusionPipeline
from diffusers.utils import pt_to_pil
import torch
from PIL import Image
import requests
from io import BytesIO
# download image
url = "https://boincai.com/datasets/diffusers/docs-images/resolve/main/if/person.png"
response = requests.get(url)
original_image = Image.open(BytesIO(response.content)).convert("RGB")
original_image = original_image
# download mask
url = "https://boincai.com/datasets/diffusers/docs-images/resolve/main/if/glasses_mask.png"
response = requests.get(url)
mask_image = Image.open(BytesIO(response.content))
mask_image = mask_image
# stage 1
stage_1 = IFInpaintingPipeline.from_pretrained("DeepFloyd/IF-I-XL-v1.0", variant="fp16", torch_dtype=torch.float16)
stage_1.enable_model_cpu_offload()
# stage 2
stage_2 = IFInpaintingSuperResolutionPipeline.from_pretrained(
"DeepFloyd/IF-II-L-v1.0", text_encoder=None, variant="fp16", torch_dtype=torch.float16
)
stage_2.enable_model_cpu_offload()
# stage 3
safety_modules = {
"feature_extractor": stage_1.feature_extractor,
"safety_checker": stage_1.safety_checker,
"watermarker": stage_1.watermarker,
}
stage_3 = DiffusionPipeline.from_pretrained(
"stabilityai/stable-diffusion-x4-upscaler", **safety_modules, torch_dtype=torch.float16
)
stage_3.enable_model_cpu_offload()
prompt = "blue sunglasses"
generator = torch.manual_seed(1)
# text embeds
prompt_embeds, negative_embeds = stage_1.encode_prompt(prompt)
# stage 1
image = stage_1(
image=original_image,
mask_image=mask_image,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_embeds,
generator=generator,
output_type="pt",
).images
pt_to_pil(image)[0].save("./if_stage_I.png")
# stage 2
image = stage_2(
image=image,
original_image=original_image,
mask_image=mask_image,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_embeds,
generator=generator,
output_type="pt",
).images
pt_to_pil(image)[0].save("./if_stage_II.png")
# stage 3
image = stage_3(prompt=prompt, image=image, generator=generator, noise_level=100).images
image[0].save("./if_stage_III.png")Converting between different pipelines
In addition to being loaded with from_pretrained, Pipelines can also be loaded directly from each other.
Copied
from diffusers import IFPipeline, IFSuperResolutionPipeline
pipe_1 = IFPipeline.from_pretrained("DeepFloyd/IF-I-XL-v1.0")
pipe_2 = IFSuperResolutionPipeline.from_pretrained("DeepFloyd/IF-II-L-v1.0")
from diffusers import IFImg2ImgPipeline, IFImg2ImgSuperResolutionPipeline
pipe_1 = IFImg2ImgPipeline(**pipe_1.components)
pipe_2 = IFImg2ImgSuperResolutionPipeline(**pipe_2.components)
from diffusers import IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline
pipe_1 = IFInpaintingPipeline(**pipe_1.components)
pipe_2 = IFInpaintingSuperResolutionPipeline(**pipe_2.components)Optimizing for speed
The simplest optimization to run IF faster is to move all model components to the GPU.
Copied
pipe = DiffusionPipeline.from_pretrained("DeepFloyd/IF-I-XL-v1.0", variant="fp16", torch_dtype=torch.float16)
pipe.to("cuda")You can also run the diffusion process for a shorter number of timesteps.
This can either be done with the num_inference_steps argument
Copied
pipe("<prompt>", num_inference_steps=30)Or with the timesteps argument
Copied
from diffusers.pipelines.deepfloyd_if import fast27_timesteps
pipe("<prompt>", timesteps=fast27_timesteps)When doing image variation or inpainting, you can also decrease the number of timesteps with the strength argument. The strength argument is the amount of noise to add to the input image which also determines how many steps to run in the denoising process. A smaller number will vary the image less but run faster.
Copied
pipe = IFImg2ImgPipeline.from_pretrained("DeepFloyd/IF-I-XL-v1.0", variant="fp16", torch_dtype=torch.float16)
pipe.to("cuda")
image = pipe(image=image, prompt="<prompt>", strength=0.3).imagesYou can also use torch.compile. Note that we have not exhaustively tested torch.compile with IF and it might not give expected results.
Copied
import torch
pipe = DiffusionPipeline.from_pretrained("DeepFloyd/IF-I-XL-v1.0", variant="fp16", torch_dtype=torch.float16)
pipe.to("cuda")
pipe.text_encoder = torch.compile(pipe.text_encoder)
pipe.unet = torch.compile(pipe.unet)Optimizing for memory
When optimizing for GPU memory, we can use the standard diffusers cpu offloading APIs.
Either the model based CPU offloading,
Copied
pipe = DiffusionPipeline.from_pretrained("DeepFloyd/IF-I-XL-v1.0", variant="fp16", torch_dtype=torch.float16)
pipe.enable_model_cpu_offload()or the more aggressive layer based CPU offloading.
Copied
pipe = DiffusionPipeline.from_pretrained("DeepFloyd/IF-I-XL-v1.0", variant="fp16", torch_dtype=torch.float16)
pipe.enable_sequential_cpu_offload()Additionally, T5 can be loaded in 8bit precision
Copied
from transformers import T5EncoderModel
text_encoder = T5EncoderModel.from_pretrained(
"DeepFloyd/IF-I-XL-v1.0", subfolder="text_encoder", device_map="auto", load_in_8bit=True, variant="8bit"
)
from diffusers import DiffusionPipeline
pipe = DiffusionPipeline.from_pretrained(
"DeepFloyd/IF-I-XL-v1.0",
text_encoder=text_encoder, # pass the previously instantiated 8bit text encoder
unet=None,
device_map="auto",
)
prompt_embeds, negative_embeds = pipe.encode_prompt("<prompt>")For CPU RAM constrained machines like google colab free tier where we canโt load all model components to the CPU at once, we can manually only load the pipeline with the text encoder or unet when the respective model components are needed.
Copied
from diffusers import IFPipeline, IFSuperResolutionPipeline
import torch
import gc
from transformers import T5EncoderModel
from diffusers.utils import pt_to_pil
text_encoder = T5EncoderModel.from_pretrained(
"DeepFloyd/IF-I-XL-v1.0", subfolder="text_encoder", device_map="auto", load_in_8bit=True, variant="8bit"
)
# text to image
pipe = DiffusionPipeline.from_pretrained(
"DeepFloyd/IF-I-XL-v1.0",
text_encoder=text_encoder, # pass the previously instantiated 8bit text encoder
unet=None,
device_map="auto",
)
prompt = 'a photo of a kangaroo wearing an orange hoodie and blue sunglasses standing in front of the eiffel tower holding a sign that says "very deep learning"'
prompt_embeds, negative_embeds = pipe.encode_prompt(prompt)
# Remove the pipeline so we can re-load the pipeline with the unet
del text_encoder
del pipe
gc.collect()
torch.cuda.empty_cache()
pipe = IFPipeline.from_pretrained(
"DeepFloyd/IF-I-XL-v1.0", text_encoder=None, variant="fp16", torch_dtype=torch.float16, device_map="auto"
)
generator = torch.Generator().manual_seed(0)
image = pipe(
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_embeds,
output_type="pt",
generator=generator,
).images
pt_to_pil(image)[0].save("./if_stage_I.png")
# Remove the pipeline so we can load the super-resolution pipeline
del pipe
gc.collect()
torch.cuda.empty_cache()
# First super resolution
pipe = IFSuperResolutionPipeline.from_pretrained(
"DeepFloyd/IF-II-L-v1.0", text_encoder=None, variant="fp16", torch_dtype=torch.float16, device_map="auto"
)
generator = torch.Generator().manual_seed(0)
image = pipe(
image=image,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_embeds,
output_type="pt",
generator=generator,
).images
pt_to_pil(image)[0].save("./if_stage_II.png")Available Pipelines:
IFPipeline
class diffusers.IFPipeline
( tokenizer: T5Tokenizertext_encoder: T5EncoderModelunet: UNet2DConditionModelscheduler: DDPMSchedulersafety_checker: typing.Optional[diffusers.pipelines.deepfloyd_if.safety_checker.IFSafetyChecker]feature_extractor: typing.Optional[transformers.models.clip.image_processing_clip.CLIPImageProcessor]watermarker: typing.Optional[diffusers.pipelines.deepfloyd_if.watermark.IFWatermarker]requires_safety_checker: bool = True )
__call__
( prompt: typing.Union[str, typing.List[str]] = Nonenum_inference_steps: int = 100timesteps: typing.List[int] = Noneguidance_scale: float = 7.0negative_prompt: typing.Union[str, typing.List[str], NoneType] = Nonenum_images_per_prompt: typing.Optional[int] = 1height: typing.Optional[int] = Nonewidth: typing.Optional[int] = Noneeta: float = 0.0generator: typing.Union[torch._C.Generator, typing.List[torch._C.Generator], NoneType] = Noneprompt_embeds: typing.Optional[torch.FloatTensor] = Nonenegative_prompt_embeds: typing.Optional[torch.FloatTensor] = Noneoutput_type: typing.Optional[str] = 'pil'return_dict: bool = Truecallback: typing.Union[typing.Callable[[int, int, torch.FloatTensor], NoneType], NoneType] = Nonecallback_steps: int = 1clean_caption: bool = Truecross_attention_kwargs: typing.Union[typing.Dict[str, typing.Any], NoneType] = None ) โ ~pipelines.stable_diffusion.IFPipelineOutput or tuple
Parameters
prompt (
strorList[str], optional) โ The prompt or prompts to guide the image generation. If not defined, one has to passprompt_embeds. instead.num_inference_steps (
int, optional, defaults to 50) โ The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference.timesteps (
List[int], optional) โ Custom timesteps to use for the denoising process. If not defined, equal spacednum_inference_stepstimesteps are used. Must be in descending order.guidance_scale (
float, optional, defaults to 7.5) โ Guidance scale as defined in Classifier-Free Diffusion Guidance.guidance_scaleis defined aswof equation 2. of Imagen Paper. Guidance scale is enabled by settingguidance_scale > 1. Higher guidance scale encourages to generate images that are closely linked to the textprompt, usually at the expense of lower image quality.negative_prompt (
strorList[str], optional) โ The prompt or prompts not to guide the image generation. If not defined, one has to passnegative_prompt_embedsinstead. Ignored when not using guidance (i.e., ignored ifguidance_scaleis less than1).num_images_per_prompt (
int, optional, defaults to 1) โ The number of images to generate per prompt.height (
int, optional, defaults to self.unet.config.sample_size) โ The height in pixels of the generated image.width (
int, optional, defaults to self.unet.config.sample_size) โ The width in pixels of the generated image.eta (
float, optional, defaults to 0.0) โ Corresponds to parameter eta (ฮท) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to schedulers.DDIMScheduler, will be ignored for others.generator (
torch.GeneratororList[torch.Generator], optional) โ One or a list of torch generator(s) to make generation deterministic.prompt_embeds (
torch.FloatTensor, optional) โ Pre-generated text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, text embeddings will be generated frompromptinput argument.negative_prompt_embeds (
torch.FloatTensor, optional) โ Pre-generated negative text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, negative_prompt_embeds will be generated fromnegative_promptinput argument.output_type (
str, optional, defaults to"pil") โ The output format of the generate image. Choose between PIL:PIL.Image.Imageornp.array.return_dict (
bool, optional, defaults toTrue) โ Whether or not to return a~pipelines.stable_diffusion.IFPipelineOutputinstead of a plain tuple.callback (
Callable, optional) โ A function that will be called everycallback_stepssteps during inference. The function will be called with the following arguments:callback(step: int, timestep: int, latents: torch.FloatTensor).callback_steps (
int, optional, defaults to 1) โ The frequency at which thecallbackfunction will be called. If not specified, the callback will be called at every step.clean_caption (
bool, optional, defaults toTrue) โ Whether or not to clean the caption before creating embeddings. Requiresbeautifulsoup4andftfyto be installed. If the dependencies are not installed, the embeddings will be created from the raw prompt.cross_attention_kwargs (
dict, optional) โ A kwargs dictionary that if specified is passed along to theAttentionProcessoras defined underself.processorin diffusers.models.attention_processor.
Returns
~pipelines.stable_diffusion.IFPipelineOutput or tuple
~pipelines.stable_diffusion.IFPipelineOutput if return_dict is True, otherwise a tuple. When returning a tuple, the first element is a list with the generated images, and the second element is a list of bools denoting whether the corresponding generated image likely represents "not-safe-for-work" (nsfw) or watermarked content, according to the safety_checker`.
Function invoked when calling the pipeline for generation.
Examples:
Copied
>>> from diffusers import IFPipeline, IFSuperResolutionPipeline, DiffusionPipeline
>>> from diffusers.utils import pt_to_pil
>>> import torch
>>> pipe = IFPipeline.from_pretrained("DeepFloyd/IF-I-XL-v1.0", variant="fp16", torch_dtype=torch.float16)
>>> pipe.enable_model_cpu_offload()
>>> prompt = 'a photo of a kangaroo wearing an orange hoodie and blue sunglasses standing in front of the eiffel tower holding a sign that says "very deep learning"'
>>> prompt_embeds, negative_embeds = pipe.encode_prompt(prompt)
>>> image = pipe(prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_embeds, output_type="pt").images
>>> # save intermediate image
>>> pil_image = pt_to_pil(image)
>>> pil_image[0].save("./if_stage_I.png")
>>> super_res_1_pipe = IFSuperResolutionPipeline.from_pretrained(
... "DeepFloyd/IF-II-L-v1.0", text_encoder=None, variant="fp16", torch_dtype=torch.float16
... )
>>> super_res_1_pipe.enable_model_cpu_offload()
>>> image = super_res_1_pipe(
... image=image, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_embeds, output_type="pt"
... ).images
>>> # save intermediate image
>>> pil_image = pt_to_pil(image)
>>> pil_image[0].save("./if_stage_I.png")
>>> safety_modules = {
... "feature_extractor": pipe.feature_extractor,
... "safety_checker": pipe.safety_checker,
... "watermarker": pipe.watermarker,
... }
>>> super_res_2_pipe = DiffusionPipeline.from_pretrained(
... "stabilityai/stable-diffusion-x4-upscaler", **safety_modules, torch_dtype=torch.float16
... )
>>> super_res_2_pipe.enable_model_cpu_offload()
>>> image = super_res_2_pipe(
... prompt=prompt,
... image=image,
... ).images
>>> image[0].save("./if_stage_II.png")encode_prompt
( promptdo_classifier_free_guidance = Truenum_images_per_prompt = 1device = Nonenegative_prompt = Noneprompt_embeds: typing.Optional[torch.FloatTensor] = Nonenegative_prompt_embeds: typing.Optional[torch.FloatTensor] = Noneclean_caption: bool = False )
Parameters
prompt (
strorList[str], optional) โ prompt to be encoded
Encodes the prompt into text encoder hidden states.
device: (torch.device, optional): torch device to place the resulting embeddings on num_images_per_prompt (int, optional, defaults to 1): number of images that should be generated per prompt do_classifier_free_guidance (bool, optional, defaults to True): whether to use classifier free guidance or not negative_prompt (str or List[str], optional): The prompt or prompts not to guide the image generation. If not defined, one has to pass negative_prompt_embeds. instead. If not defined, one has to pass negative_prompt_embeds. instead. Ignored when not using guidance (i.e., ignored if guidance_scale is less than 1). prompt_embeds (torch.FloatTensor, optional): Pre-generated text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, text embeddings will be generated from prompt input argument. negative_prompt_embeds (torch.FloatTensor, optional): Pre-generated negative text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, negative_prompt_embeds will be generated from negative_prompt input argument.
IFSuperResolutionPipeline
class diffusers.IFSuperResolutionPipeline
( tokenizer: T5Tokenizertext_encoder: T5EncoderModelunet: UNet2DConditionModelscheduler: DDPMSchedulerimage_noising_scheduler: DDPMSchedulersafety_checker: typing.Optional[diffusers.pipelines.deepfloyd_if.safety_checker.IFSafetyChecker]feature_extractor: typing.Optional[transformers.models.clip.image_processing_clip.CLIPImageProcessor]watermarker: typing.Optional[diffusers.pipelines.deepfloyd_if.watermark.IFWatermarker]requires_safety_checker: bool = True )
__call__
( prompt: typing.Union[str, typing.List[str]] = Noneheight: int = Nonewidth: int = Noneimage: typing.Union[PIL.Image.Image, numpy.ndarray, torch.FloatTensor] = Nonenum_inference_steps: int = 50timesteps: typing.List[int] = Noneguidance_scale: float = 4.0negative_prompt: typing.Union[str, typing.List[str], NoneType] = Nonenum_images_per_prompt: typing.Optional[int] = 1eta: float = 0.0generator: typing.Union[torch._C.Generator, typing.List[torch._C.Generator], NoneType] = Noneprompt_embeds: typing.Optional[torch.FloatTensor] = Nonenegative_prompt_embeds: typing.Optional[torch.FloatTensor] = Noneoutput_type: typing.Optional[str] = 'pil'return_dict: bool = Truecallback: typing.Union[typing.Callable[[int, int, torch.FloatTensor], NoneType], NoneType] = Nonecallback_steps: int = 1cross_attention_kwargs: typing.Union[typing.Dict[str, typing.Any], NoneType] = Nonenoise_level: int = 250clean_caption: bool = True ) โ ~pipelines.stable_diffusion.IFPipelineOutput or tuple
Parameters
prompt (
strorList[str], optional) โ The prompt or prompts to guide the image generation. If not defined, one has to passprompt_embeds. instead.height (
int, optional, defaults to self.unet.config.sample_size) โ The height in pixels of the generated image.width (
int, optional, defaults to self.unet.config.sample_size) โ The width in pixels of the generated image.image (
PIL.Image.Image,np.ndarray,torch.FloatTensor) โ The image to be upscaled.num_inference_steps (
int, optional, defaults to 50) โ The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference.timesteps (
List[int], optional) โ Custom timesteps to use for the denoising process. If not defined, equal spacednum_inference_stepstimesteps are used. Must be in descending order.guidance_scale (
float, optional, defaults to 7.5) โ Guidance scale as defined in Classifier-Free Diffusion Guidance.guidance_scaleis defined aswof equation 2. of Imagen Paper. Guidance scale is enabled by settingguidance_scale > 1. Higher guidance scale encourages to generate images that are closely linked to the textprompt, usually at the expense of lower image quality.negative_prompt (
strorList[str], optional) โ The prompt or prompts not to guide the image generation. If not defined, one has to passnegative_prompt_embedsinstead. Ignored when not using guidance (i.e., ignored ifguidance_scaleis less than1).num_images_per_prompt (
int, optional, defaults to 1) โ The number of images to generate per prompt.eta (
float, optional, defaults to 0.0) โ Corresponds to parameter eta (ฮท) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to schedulers.DDIMScheduler, will be ignored for others.generator (
torch.GeneratororList[torch.Generator], optional) โ One or a list of torch generator(s) to make generation deterministic.prompt_embeds (
torch.FloatTensor, optional) โ Pre-generated text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, text embeddings will be generated frompromptinput argument.negative_prompt_embeds (
torch.FloatTensor, optional) โ Pre-generated negative text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, negative_prompt_embeds will be generated fromnegative_promptinput argument.output_type (
str, optional, defaults to"pil") โ The output format of the generate image. Choose between PIL:PIL.Image.Imageornp.array.return_dict (
bool, optional, defaults toTrue) โ Whether or not to return a~pipelines.stable_diffusion.IFPipelineOutputinstead of a plain tuple.callback (
Callable, optional) โ A function that will be called everycallback_stepssteps during inference. The function will be called with the following arguments:callback(step: int, timestep: int, latents: torch.FloatTensor).callback_steps (
int, optional, defaults to 1) โ The frequency at which thecallbackfunction will be called. If not specified, the callback will be called at every step.cross_attention_kwargs (
dict, optional) โ A kwargs dictionary that if specified is passed along to theAttentionProcessoras defined underself.processorin diffusers.models.attention_processor.noise_level (
int, optional, defaults to 250) โ The amount of noise to add to the upscaled image. Must be in the range[0, 1000)clean_caption (
bool, optional, defaults toTrue) โ Whether or not to clean the caption before creating embeddings. Requiresbeautifulsoup4andftfyto be installed. If the dependencies are not installed, the embeddings will be created from the raw prompt.
Returns
~pipelines.stable_diffusion.IFPipelineOutput or tuple
~pipelines.stable_diffusion.IFPipelineOutput if return_dict is True, otherwise a tuple. When returning a tuple, the first element is a list with the generated images, and the second element is a list of bools denoting whether the corresponding generated image likely represents "not-safe-for-work" (nsfw) or watermarked content, according to the safety_checker`.
Function invoked when calling the pipeline for generation.
Examples:
Copied
>>> from diffusers import IFPipeline, IFSuperResolutionPipeline, DiffusionPipeline
>>> from diffusers.utils import pt_to_pil
>>> import torch
>>> pipe = IFPipeline.from_pretrained("DeepFloyd/IF-I-XL-v1.0", variant="fp16", torch_dtype=torch.float16)
>>> pipe.enable_model_cpu_offload()
>>> prompt = 'a photo of a kangaroo wearing an orange hoodie and blue sunglasses standing in front of the eiffel tower holding a sign that says "very deep learning"'
>>> prompt_embeds, negative_embeds = pipe.encode_prompt(prompt)
>>> image = pipe(prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_embeds, output_type="pt").images
>>> # save intermediate image
>>> pil_image = pt_to_pil(image)
>>> pil_image[0].save("./if_stage_I.png")
>>> super_res_1_pipe = IFSuperResolutionPipeline.from_pretrained(
... "DeepFloyd/IF-II-L-v1.0", text_encoder=None, variant="fp16", torch_dtype=torch.float16
... )
>>> super_res_1_pipe.enable_model_cpu_offload()
>>> image = super_res_1_pipe(
... image=image, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_embeds
... ).images
>>> image[0].save("./if_stage_II.png")encode_prompt
( promptdo_classifier_free_guidance = Truenum_images_per_prompt = 1device = Nonenegative_prompt = Noneprompt_embeds: typing.Optional[torch.FloatTensor] = Nonenegative_prompt_embeds: typing.Optional[torch.FloatTensor] = Noneclean_caption: bool = False )
Parameters
prompt (
strorList[str], optional) โ prompt to be encoded
Encodes the prompt into text encoder hidden states.
device: (torch.device, optional): torch device to place the resulting embeddings on num_images_per_prompt (int, optional, defaults to 1): number of images that should be generated per prompt do_classifier_free_guidance (bool, optional, defaults to True): whether to use classifier free guidance or not negative_prompt (str or List[str], optional): The prompt or prompts not to guide the image generation. If not defined, one has to pass negative_prompt_embeds. instead. If not defined, one has to pass negative_prompt_embeds. instead. Ignored when not using guidance (i.e., ignored if guidance_scale is less than 1). prompt_embeds (torch.FloatTensor, optional): Pre-generated text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, text embeddings will be generated from prompt input argument. negative_prompt_embeds (torch.FloatTensor, optional): Pre-generated negative text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, negative_prompt_embeds will be generated from negative_prompt input argument.
IFImg2ImgPipeline
class diffusers.IFImg2ImgPipeline
( tokenizer: T5Tokenizertext_encoder: T5EncoderModelunet: UNet2DConditionModelscheduler: DDPMSchedulersafety_checker: typing.Optional[diffusers.pipelines.deepfloyd_if.safety_checker.IFSafetyChecker]feature_extractor: typing.Optional[transformers.models.clip.image_processing_clip.CLIPImageProcessor]watermarker: typing.Optional[diffusers.pipelines.deepfloyd_if.watermark.IFWatermarker]requires_safety_checker: bool = True )
__call__
( prompt: typing.Union[str, typing.List[str]] = Noneimage: typing.Union[PIL.Image.Image, torch.Tensor, numpy.ndarray, typing.List[PIL.Image.Image], typing.List[torch.Tensor], typing.List[numpy.ndarray]] = Nonestrength: float = 0.7num_inference_steps: int = 80timesteps: typing.List[int] = Noneguidance_scale: float = 10.0negative_prompt: typing.Union[str, typing.List[str], NoneType] = Nonenum_images_per_prompt: typing.Optional[int] = 1eta: float = 0.0generator: typing.Union[torch._C.Generator, typing.List[torch._C.Generator], NoneType] = Noneprompt_embeds: typing.Optional[torch.FloatTensor] = Nonenegative_prompt_embeds: typing.Optional[torch.FloatTensor] = Noneoutput_type: typing.Optional[str] = 'pil'return_dict: bool = Truecallback: typing.Union[typing.Callable[[int, int, torch.FloatTensor], NoneType], NoneType] = Nonecallback_steps: int = 1clean_caption: bool = Truecross_attention_kwargs: typing.Union[typing.Dict[str, typing.Any], NoneType] = None ) โ ~pipelines.stable_diffusion.IFPipelineOutput or tuple
Parameters
prompt (
strorList[str], optional) โ The prompt or prompts to guide the image generation. If not defined, one has to passprompt_embeds. instead.image (
torch.FloatTensororPIL.Image.Image) โImage, or tensor representing an image batch, that will be used as the starting point for the process.strength (
float, optional, defaults to 0.8) โ Conceptually, indicates how much to transform the referenceimage. Must be between 0 and 1.imagewill be used as a starting point, adding more noise to it the larger thestrength. The number of denoising steps depends on the amount of noise initially added. Whenstrengthis 1, added noise will be maximum and the denoising process will run for the full number of iterations specified innum_inference_steps. A value of 1, therefore, essentially ignoresimage.num_inference_steps (
int, optional, defaults to 50) โ The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference.timesteps (
List[int], optional) โ Custom timesteps to use for the denoising process. If not defined, equal spacednum_inference_stepstimesteps are used. Must be in descending order.guidance_scale (
float, optional, defaults to 7.5) โ Guidance scale as defined in Classifier-Free Diffusion Guidance.guidance_scaleis defined aswof equation 2. of Imagen Paper. Guidance scale is enabled by settingguidance_scale > 1. Higher guidance scale encourages to generate images that are closely linked to the textprompt, usually at the expense of lower image quality.negative_prompt (
strorList[str], optional) โ The prompt or prompts not to guide the image generation. If not defined, one has to passnegative_prompt_embedsinstead. Ignored when not using guidance (i.e., ignored ifguidance_scaleis less than1).num_images_per_prompt (
int, optional, defaults to 1) โ The number of images to generate per prompt.eta (
float, optional, defaults to 0.0) โ Corresponds to parameter eta (ฮท) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to schedulers.DDIMScheduler, will be ignored for others.generator (
torch.GeneratororList[torch.Generator], optional) โ One or a list of torch generator(s) to make generation deterministic.prompt_embeds (
torch.FloatTensor, optional) โ Pre-generated text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, text embeddings will be generated frompromptinput argument.negative_prompt_embeds (
torch.FloatTensor, optional) โ Pre-generated negative text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, negative_prompt_embeds will be generated fromnegative_promptinput argument.output_type (
str, optional, defaults to"pil") โ The output format of the generate image. Choose between PIL:PIL.Image.Imageornp.array.return_dict (
bool, optional, defaults toTrue) โ Whether or not to return a~pipelines.stable_diffusion.IFPipelineOutputinstead of a plain tuple.callback (
Callable, optional) โ A function that will be called everycallback_stepssteps during inference. The function will be called with the following arguments:callback(step: int, timestep: int, latents: torch.FloatTensor).callback_steps (
int, optional, defaults to 1) โ The frequency at which thecallbackfunction will be called. If not specified, the callback will be called at every step.clean_caption (
bool, optional, defaults toTrue) โ Whether or not to clean the caption before creating embeddings. Requiresbeautifulsoup4andftfyto be installed. If the dependencies are not installed, the embeddings will be created from the raw prompt.cross_attention_kwargs (
dict, optional) โ A kwargs dictionary that if specified is passed along to theAttentionProcessoras defined underself.processorin diffusers.models.attention_processor.
Returns
~pipelines.stable_diffusion.IFPipelineOutput or tuple
~pipelines.stable_diffusion.IFPipelineOutput if return_dict is True, otherwise a tuple. When returning a tuple, the first element is a list with the generated images, and the second element is a list of bools denoting whether the corresponding generated image likely represents "not-safe-for-work" (nsfw) or watermarked content, according to the safety_checker`.
Function invoked when calling the pipeline for generation.
Examples:
Copied
>>> from diffusers import IFImg2ImgPipeline, IFImg2ImgSuperResolutionPipeline, DiffusionPipeline
>>> from diffusers.utils import pt_to_pil
>>> import torch
>>> from PIL import Image
>>> import requests
>>> from io import BytesIO
>>> url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg"
>>> response = requests.get(url)
>>> original_image = Image.open(BytesIO(response.content)).convert("RGB")
>>> original_image = original_image.resize((768, 512))
>>> pipe = IFImg2ImgPipeline.from_pretrained(
... "DeepFloyd/IF-I-XL-v1.0",
... variant="fp16",
... torch_dtype=torch.float16,
... )
>>> pipe.enable_model_cpu_offload()
>>> prompt = "A fantasy landscape in style minecraft"
>>> prompt_embeds, negative_embeds = pipe.encode_prompt(prompt)
>>> image = pipe(
... image=original_image,
... prompt_embeds=prompt_embeds,
... negative_prompt_embeds=negative_embeds,
... output_type="pt",
... ).images
>>> # save intermediate image
>>> pil_image = pt_to_pil(image)
>>> pil_image[0].save("./if_stage_I.png")
>>> super_res_1_pipe = IFImg2ImgSuperResolutionPipeline.from_pretrained(
... "DeepFloyd/IF-II-L-v1.0",
... text_encoder=None,
... variant="fp16",
... torch_dtype=torch.float16,
... )
>>> super_res_1_pipe.enable_model_cpu_offload()
>>> image = super_res_1_pipe(
... image=image,
... original_image=original_image,
... prompt_embeds=prompt_embeds,
... negative_prompt_embeds=negative_embeds,
... ).images
>>> image[0].save("./if_stage_II.png")encode_prompt
( promptdo_classifier_free_guidance = Truenum_images_per_prompt = 1device = Nonenegative_prompt = Noneprompt_embeds: typing.Optional[torch.FloatTensor] = Nonenegative_prompt_embeds: typing.Optional[torch.FloatTensor] = Noneclean_caption: bool = False )
Parameters
prompt (
strorList[str], optional) โ prompt to be encoded
Encodes the prompt into text encoder hidden states.
device: (torch.device, optional): torch device to place the resulting embeddings on num_images_per_prompt (int, optional, defaults to 1): number of images that should be generated per prompt do_classifier_free_guidance (bool, optional, defaults to True): whether to use classifier free guidance or not negative_prompt (str or List[str], optional): The prompt or prompts not to guide the image generation. If not defined, one has to pass negative_prompt_embeds. instead. If not defined, one has to pass negative_prompt_embeds. instead. Ignored when not using guidance (i.e., ignored if guidance_scale is less than 1). prompt_embeds (torch.FloatTensor, optional): Pre-generated text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, text embeddings will be generated from prompt input argument. negative_prompt_embeds (torch.FloatTensor, optional): Pre-generated negative text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, negative_prompt_embeds will be generated from negative_prompt input argument.
IFImg2ImgSuperResolutionPipeline
class diffusers.IFImg2ImgSuperResolutionPipeline
( tokenizer: T5Tokenizertext_encoder: T5EncoderModelunet: UNet2DConditionModelscheduler: DDPMSchedulerimage_noising_scheduler: DDPMSchedulersafety_checker: typing.Optional[diffusers.pipelines.deepfloyd_if.safety_checker.IFSafetyChecker]feature_extractor: typing.Optional[transformers.models.clip.image_processing_clip.CLIPImageProcessor]watermarker: typing.Optional[diffusers.pipelines.deepfloyd_if.watermark.IFWatermarker]requires_safety_checker: bool = True )
__call__
( image: typing.Union[PIL.Image.Image, numpy.ndarray, torch.FloatTensor]original_image: typing.Union[PIL.Image.Image, torch.Tensor, numpy.ndarray, typing.List[PIL.Image.Image], typing.List[torch.Tensor], typing.List[numpy.ndarray]] = Nonestrength: float = 0.8prompt: typing.Union[str, typing.List[str]] = Nonenum_inference_steps: int = 50timesteps: typing.List[int] = Noneguidance_scale: float = 4.0negative_prompt: typing.Union[str, typing.List[str], NoneType] = Nonenum_images_per_prompt: typing.Optional[int] = 1eta: float = 0.0generator: typing.Union[torch._C.Generator, typing.List[torch._C.Generator], NoneType] = Noneprompt_embeds: typing.Optional[torch.FloatTensor] = Nonenegative_prompt_embeds: typing.Optional[torch.FloatTensor] = Noneoutput_type: typing.Optional[str] = 'pil'return_dict: bool = Truecallback: typing.Union[typing.Callable[[int, int, torch.FloatTensor], NoneType], NoneType] = Nonecallback_steps: int = 1cross_attention_kwargs: typing.Union[typing.Dict[str, typing.Any], NoneType] = Nonenoise_level: int = 250clean_caption: bool = True ) โ ~pipelines.stable_diffusion.IFPipelineOutput or tuple
Parameters
image (
torch.FloatTensororPIL.Image.Image) โImage, or tensor representing an image batch, that will be used as the starting point for the process.original_image (
torch.FloatTensororPIL.Image.Image) โ The original image thatimagewas varied from.strength (
float, optional, defaults to 0.8) โ Conceptually, indicates how much to transform the referenceimage. Must be between 0 and 1.imagewill be used as a starting point, adding more noise to it the larger thestrength. The number of denoising steps depends on the amount of noise initially added. Whenstrengthis 1, added noise will be maximum and the denoising process will run for the full number of iterations specified innum_inference_steps. A value of 1, therefore, essentially ignoresimage.prompt (
strorList[str], optional) โ The prompt or prompts to guide the image generation. If not defined, one has to passprompt_embeds. instead.num_inference_steps (
int, optional, defaults to 50) โ The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference.timesteps (
List[int], optional) โ Custom timesteps to use for the denoising process. If not defined, equal spacednum_inference_stepstimesteps are used. Must be in descending order.guidance_scale (
float, optional, defaults to 7.5) โ Guidance scale as defined in Classifier-Free Diffusion Guidance.guidance_scaleis defined aswof equation 2. of Imagen Paper. Guidance scale is enabled by settingguidance_scale > 1. Higher guidance scale encourages to generate images that are closely linked to the textprompt, usually at the expense of lower image quality.negative_prompt (
strorList[str], optional) โ The prompt or prompts not to guide the image generation. If not defined, one has to passnegative_prompt_embedsinstead. Ignored when not using guidance (i.e., ignored ifguidance_scaleis less than1).num_images_per_prompt (
int, optional, defaults to 1) โ The number of images to generate per prompt.eta (
float, optional, defaults to 0.0) โ Corresponds to parameter eta (ฮท) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to schedulers.DDIMScheduler, will be ignored for others.generator (
torch.GeneratororList[torch.Generator], optional) โ One or a list of torch generator(s) to make generation deterministic.prompt_embeds (
torch.FloatTensor, optional) โ Pre-generated text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, text embeddings will be generated frompromptinput argument.negative_prompt_embeds (
torch.FloatTensor, optional) โ Pre-generated negative text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, negative_prompt_embeds will be generated fromnegative_promptinput argument.output_type (
str, optional, defaults to"pil") โ The output format of the generate image. Choose between PIL:PIL.Image.Imageornp.array.return_dict (
bool, optional, defaults toTrue) โ Whether or not to return a~pipelines.stable_diffusion.IFPipelineOutputinstead of a plain tuple.callback (
Callable, optional) โ A function that will be called everycallback_stepssteps during inference. The function will be called with the following arguments:callback(step: int, timestep: int, latents: torch.FloatTensor).callback_steps (
int, optional, defaults to 1) โ The frequency at which thecallbackfunction will be called. If not specified, the callback will be called at every step.cross_attention_kwargs (
dict, optional) โ A kwargs dictionary that if specified is passed along to theAttentionProcessoras defined underself.processorin diffusers.models.attention_processor.noise_level (
int, optional, defaults to 250) โ The amount of noise to add to the upscaled image. Must be in the range[0, 1000)clean_caption (
bool, optional, defaults toTrue) โ Whether or not to clean the caption before creating embeddings. Requiresbeautifulsoup4andftfyto be installed. If the dependencies are not installed, the embeddings will be created from the raw prompt.
Returns
~pipelines.stable_diffusion.IFPipelineOutput or tuple
~pipelines.stable_diffusion.IFPipelineOutput if return_dict is True, otherwise a tuple. When returning a tuple, the first element is a list with the generated images, and the second element is a list of bools denoting whether the corresponding generated image likely represents "not-safe-for-work" (nsfw) or watermarked content, according to the safety_checker`.
Function invoked when calling the pipeline for generation.
Examples:
Copied
>>> from diffusers import IFImg2ImgPipeline, IFImg2ImgSuperResolutionPipeline, DiffusionPipeline
>>> from diffusers.utils import pt_to_pil
>>> import torch
>>> from PIL import Image
>>> import requests
>>> from io import BytesIO
>>> url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg"
>>> response = requests.get(url)
>>> original_image = Image.open(BytesIO(response.content)).convert("RGB")
>>> original_image = original_image.resize((768, 512))
>>> pipe = IFImg2ImgPipeline.from_pretrained(
... "DeepFloyd/IF-I-XL-v1.0",
... variant="fp16",
... torch_dtype=torch.float16,
... )
>>> pipe.enable_model_cpu_offload()
>>> prompt = "A fantasy landscape in style minecraft"
>>> prompt_embeds, negative_embeds = pipe.encode_prompt(prompt)
>>> image = pipe(
... image=original_image,
... prompt_embeds=prompt_embeds,
... negative_prompt_embeds=negative_embeds,
... output_type="pt",
... ).images
>>> # save intermediate image
>>> pil_image = pt_to_pil(image)
>>> pil_image[0].save("./if_stage_I.png")
>>> super_res_1_pipe = IFImg2ImgSuperResolutionPipeline.from_pretrained(
... "DeepFloyd/IF-II-L-v1.0",
... text_encoder=None,
... variant="fp16",
... torch_dtype=torch.float16,
... )
>>> super_res_1_pipe.enable_model_cpu_offload()
>>> image = super_res_1_pipe(
... image=image,
... original_image=original_image,
... prompt_embeds=prompt_embeds,
... negative_prompt_embeds=negative_embeds,
... ).images
>>> image[0].save("./if_stage_II.png")encode_prompt
( promptdo_classifier_free_guidance = Truenum_images_per_prompt = 1device = Nonenegative_prompt = Noneprompt_embeds: typing.Optional[torch.FloatTensor] = Nonenegative_prompt_embeds: typing.Optional[torch.FloatTensor] = Noneclean_caption: bool = False )
Parameters
prompt (
strorList[str], optional) โ prompt to be encoded
Encodes the prompt into text encoder hidden states.
device: (torch.device, optional): torch device to place the resulting embeddings on num_images_per_prompt (int, optional, defaults to 1): number of images that should be generated per prompt do_classifier_free_guidance (bool, optional, defaults to True): whether to use classifier free guidance or not negative_prompt (str or List[str], optional): The prompt or prompts not to guide the image generation. If not defined, one has to pass negative_prompt_embeds. instead. If not defined, one has to pass negative_prompt_embeds. instead. Ignored when not using guidance (i.e., ignored if guidance_scale is less than 1). prompt_embeds (torch.FloatTensor, optional): Pre-generated text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, text embeddings will be generated from prompt input argument. negative_prompt_embeds (torch.FloatTensor, optional): Pre-generated negative text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, negative_prompt_embeds will be generated from negative_prompt input argument.
IFInpaintingPipeline
class diffusers.IFInpaintingPipeline
( tokenizer: T5Tokenizertext_encoder: T5EncoderModelunet: UNet2DConditionModelscheduler: DDPMSchedulersafety_checker: typing.Optional[diffusers.pipelines.deepfloyd_if.safety_checker.IFSafetyChecker]feature_extractor: typing.Optional[transformers.models.clip.image_processing_clip.CLIPImageProcessor]watermarker: typing.Optional[diffusers.pipelines.deepfloyd_if.watermark.IFWatermarker]requires_safety_checker: bool = True )
__call__
( prompt: typing.Union[str, typing.List[str]] = Noneimage: typing.Union[PIL.Image.Image, torch.Tensor, numpy.ndarray, typing.List[PIL.Image.Image], typing.List[torch.Tensor], typing.List[numpy.ndarray]] = Nonemask_image: typing.Union[PIL.Image.Image, torch.Tensor, numpy.ndarray, typing.List[PIL.Image.Image], typing.List[torch.Tensor], typing.List[numpy.ndarray]] = Nonestrength: float = 1.0num_inference_steps: int = 50timesteps: typing.List[int] = Noneguidance_scale: float = 7.0negative_prompt: typing.Union[str, typing.List[str], NoneType] = Nonenum_images_per_prompt: typing.Optional[int] = 1eta: float = 0.0generator: typing.Union[torch._C.Generator, typing.List[torch._C.Generator], NoneType] = Noneprompt_embeds: typing.Optional[torch.FloatTensor] = Nonenegative_prompt_embeds: typing.Optional[torch.FloatTensor] = Noneoutput_type: typing.Optional[str] = 'pil'return_dict: bool = Truecallback: typing.Union[typing.Callable[[int, int, torch.FloatTensor], NoneType], NoneType] = Nonecallback_steps: int = 1clean_caption: bool = Truecross_attention_kwargs: typing.Union[typing.Dict[str, typing.Any], NoneType] = None ) โ ~pipelines.stable_diffusion.IFPipelineOutput or tuple
Parameters
prompt (
strorList[str], optional) โ The prompt or prompts to guide the image generation. If not defined, one has to passprompt_embeds. instead.image (
torch.FloatTensororPIL.Image.Image) โImage, or tensor representing an image batch, that will be used as the starting point for the process.mask_image (
PIL.Image.Image) โImage, or tensor representing an image batch, to maskimage. White pixels in the mask will be repainted, while black pixels will be preserved. Ifmask_imageis a PIL image, it will be converted to a single channel (luminance) before use. If itโs a tensor, it should contain one color channel (L) instead of 3, so the expected shape would be(B, H, W, 1).strength (
float, optional, defaults to 0.8) โ Conceptually, indicates how much to transform the referenceimage. Must be between 0 and 1.imagewill be used as a starting point, adding more noise to it the larger thestrength. The number of denoising steps depends on the amount of noise initially added. Whenstrengthis 1, added noise will be maximum and the denoising process will run for the full number of iterations specified innum_inference_steps. A value of 1, therefore, essentially ignoresimage.num_inference_steps (
int, optional, defaults to 50) โ The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference.timesteps (
List[int], optional) โ Custom timesteps to use for the denoising process. If not defined, equal spacednum_inference_stepstimesteps are used. Must be in descending order.guidance_scale (
float, optional, defaults to 7.5) โ Guidance scale as defined in Classifier-Free Diffusion Guidance.guidance_scaleis defined aswof equation 2. of Imagen Paper. Guidance scale is enabled by settingguidance_scale > 1. Higher guidance scale encourages to generate images that are closely linked to the textprompt, usually at the expense of lower image quality.negative_prompt (
strorList[str], optional) โ The prompt or prompts not to guide the image generation. If not defined, one has to passnegative_prompt_embedsinstead. Ignored when not using guidance (i.e., ignored ifguidance_scaleis less than1).num_images_per_prompt (
int, optional, defaults to 1) โ The number of images to generate per prompt.eta (
float, optional, defaults to 0.0) โ Corresponds to parameter eta (ฮท) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to schedulers.DDIMScheduler, will be ignored for others.generator (
torch.GeneratororList[torch.Generator], optional) โ One or a list of torch generator(s) to make generation deterministic.prompt_embeds (
torch.FloatTensor, optional) โ Pre-generated text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, text embeddings will be generated frompromptinput argument.negative_prompt_embeds (
torch.FloatTensor, optional) โ Pre-generated negative text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, negative_prompt_embeds will be generated fromnegative_promptinput argument.output_type (
str, optional, defaults to"pil") โ The output format of the generate image. Choose between PIL:PIL.Image.Imageornp.array.return_dict (
bool, optional, defaults toTrue) โ Whether or not to return a~pipelines.stable_diffusion.IFPipelineOutputinstead of a plain tuple.callback (
Callable, optional) โ A function that will be called everycallback_stepssteps during inference. The function will be called with the following arguments:callback(step: int, timestep: int, latents: torch.FloatTensor).callback_steps (
int, optional, defaults to 1) โ The frequency at which thecallbackfunction will be called. If not specified, the callback will be called at every step.clean_caption (
bool, optional, defaults toTrue) โ Whether or not to clean the caption before creating embeddings. Requiresbeautifulsoup4andftfyto be installed. If the dependencies are not installed, the embeddings will be created from the raw prompt.cross_attention_kwargs (
dict, optional) โ A kwargs dictionary that if specified is passed along to theAttentionProcessoras defined underself.processorin diffusers.models.attention_processor.
Returns
~pipelines.stable_diffusion.IFPipelineOutput or tuple
~pipelines.stable_diffusion.IFPipelineOutput if return_dict is True, otherwise a tuple. When returning a tuple, the first element is a list with the generated images, and the second element is a list of bools denoting whether the corresponding generated image likely represents "not-safe-for-work" (nsfw) or watermarked content, according to the safety_checker`.
Function invoked when calling the pipeline for generation.
Examples:
Copied
>>> from diffusers import IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, DiffusionPipeline
>>> from diffusers.utils import pt_to_pil
>>> import torch
>>> from PIL import Image
>>> import requests
>>> from io import BytesIO
>>> url = "https://boincai.com/datasets/diffusers/docs-images/resolve/main/if/person.png"
>>> response = requests.get(url)
>>> original_image = Image.open(BytesIO(response.content)).convert("RGB")
>>> original_image = original_image
>>> url = "https://boincai.com/datasets/diffusers/docs-images/resolve/main/if/glasses_mask.png"
>>> response = requests.get(url)
>>> mask_image = Image.open(BytesIO(response.content))
>>> mask_image = mask_image
>>> pipe = IFInpaintingPipeline.from_pretrained(
... "DeepFloyd/IF-I-XL-v1.0", variant="fp16", torch_dtype=torch.float16
... )
>>> pipe.enable_model_cpu_offload()
>>> prompt = "blue sunglasses"
>>> prompt_embeds, negative_embeds = pipe.encode_prompt(prompt)
>>> image = pipe(
... image=original_image,
... mask_image=mask_image,
... prompt_embeds=prompt_embeds,
... negative_prompt_embeds=negative_embeds,
... output_type="pt",
... ).images
>>> # save intermediate image
>>> pil_image = pt_to_pil(image)
>>> pil_image[0].save("./if_stage_I.png")
>>> super_res_1_pipe = IFInpaintingSuperResolutionPipeline.from_pretrained(
... "DeepFloyd/IF-II-L-v1.0", text_encoder=None, variant="fp16", torch_dtype=torch.float16
... )
>>> super_res_1_pipe.enable_model_cpu_offload()
>>> image = super_res_1_pipe(
... image=image,
... mask_image=mask_image,
... original_image=original_image,
... prompt_embeds=prompt_embeds,
... negative_prompt_embeds=negative_embeds,
... ).images
>>> image[0].save("./if_stage_II.png")encode_prompt
( promptdo_classifier_free_guidance = Truenum_images_per_prompt = 1device = Nonenegative_prompt = Noneprompt_embeds: typing.Optional[torch.FloatTensor] = Nonenegative_prompt_embeds: typing.Optional[torch.FloatTensor] = Noneclean_caption: bool = False )
Parameters
prompt (
strorList[str], optional) โ prompt to be encoded
Encodes the prompt into text encoder hidden states.
device: (torch.device, optional): torch device to place the resulting embeddings on num_images_per_prompt (int, optional, defaults to 1): number of images that should be generated per prompt do_classifier_free_guidance (bool, optional, defaults to True): whether to use classifier free guidance or not negative_prompt (str or List[str], optional): The prompt or prompts not to guide the image generation. If not defined, one has to pass negative_prompt_embeds. instead. If not defined, one has to pass negative_prompt_embeds. instead. Ignored when not using guidance (i.e., ignored if guidance_scale is less than 1). prompt_embeds (torch.FloatTensor, optional): Pre-generated text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, text embeddings will be generated from prompt input argument. negative_prompt_embeds (torch.FloatTensor, optional): Pre-generated negative text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, negative_prompt_embeds will be generated from negative_prompt input argument.
IFInpaintingSuperResolutionPipeline
class diffusers.IFInpaintingSuperResolutionPipeline
( tokenizer: T5Tokenizertext_encoder: T5EncoderModelunet: UNet2DConditionModelscheduler: DDPMSchedulerimage_noising_scheduler: DDPMSchedulersafety_checker: typing.Optional[diffusers.pipelines.deepfloyd_if.safety_checker.IFSafetyChecker]feature_extractor: typing.Optional[transformers.models.clip.image_processing_clip.CLIPImageProcessor]watermarker: typing.Optional[diffusers.pipelines.deepfloyd_if.watermark.IFWatermarker]requires_safety_checker: bool = True )
__call__
( image: typing.Union[PIL.Image.Image, numpy.ndarray, torch.FloatTensor]original_image: typing.Union[PIL.Image.Image, torch.Tensor, numpy.ndarray, typing.List[PIL.Image.Image], typing.List[torch.Tensor], typing.List[numpy.ndarray]] = Nonemask_image: typing.Union[PIL.Image.Image, torch.Tensor, numpy.ndarray, typing.List[PIL.Image.Image], typing.List[torch.Tensor], typing.List[numpy.ndarray]] = Nonestrength: float = 0.8prompt: typing.Union[str, typing.List[str]] = Nonenum_inference_steps: int = 100timesteps: typing.List[int] = Noneguidance_scale: float = 4.0negative_prompt: typing.Union[str, typing.List[str], NoneType] = Nonenum_images_per_prompt: typing.Optional[int] = 1eta: float = 0.0generator: typing.Union[torch._C.Generator, typing.List[torch._C.Generator], NoneType] = Noneprompt_embeds: typing.Optional[torch.FloatTensor] = Nonenegative_prompt_embeds: typing.Optional[torch.FloatTensor] = Noneoutput_type: typing.Optional[str] = 'pil'return_dict: bool = Truecallback: typing.Union[typing.Callable[[int, int, torch.FloatTensor], NoneType], NoneType] = Nonecallback_steps: int = 1cross_attention_kwargs: typing.Union[typing.Dict[str, typing.Any], NoneType] = Nonenoise_level: int = 0clean_caption: bool = True ) โ ~pipelines.stable_diffusion.IFPipelineOutput or tuple
Parameters
image (
torch.FloatTensororPIL.Image.Image) โImage, or tensor representing an image batch, that will be used as the starting point for the process.original_image (
torch.FloatTensororPIL.Image.Image) โ The original image thatimagewas varied from.mask_image (
PIL.Image.Image) โImage, or tensor representing an image batch, to maskimage. White pixels in the mask will be repainted, while black pixels will be preserved. Ifmask_imageis a PIL image, it will be converted to a single channel (luminance) before use. If itโs a tensor, it should contain one color channel (L) instead of 3, so the expected shape would be(B, H, W, 1).strength (
float, optional, defaults to 0.8) โ Conceptually, indicates how much to transform the referenceimage. Must be between 0 and 1.imagewill be used as a starting point, adding more noise to it the larger thestrength. The number of denoising steps depends on the amount of noise initially added. Whenstrengthis 1, added noise will be maximum and the denoising process will run for the full number of iterations specified innum_inference_steps. A value of 1, therefore, essentially ignoresimage.prompt (
strorList[str], optional) โ The prompt or prompts to guide the image generation. If not defined, one has to passprompt_embeds. instead.num_inference_steps (
int, optional, defaults to 50) โ The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference.timesteps (
List[int], optional) โ Custom timesteps to use for the denoising process. If not defined, equal spacednum_inference_stepstimesteps are used. Must be in descending order.guidance_scale (
float, optional, defaults to 7.5) โ Guidance scale as defined in Classifier-Free Diffusion Guidance.guidance_scaleis defined aswof equation 2. of Imagen Paper. Guidance scale is enabled by settingguidance_scale > 1. Higher guidance scale encourages to generate images that are closely linked to the textprompt, usually at the expense of lower image quality.negative_prompt (
strorList[str], optional) โ The prompt or prompts not to guide the image generation. If not defined, one has to passnegative_prompt_embedsinstead. Ignored when not using guidance (i.e., ignored ifguidance_scaleis less than1).num_images_per_prompt (
int, optional, defaults to 1) โ The number of images to generate per prompt.eta (
float, optional, defaults to 0.0) โ Corresponds to parameter eta (ฮท) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to schedulers.DDIMScheduler, will be ignored for others.generator (
torch.GeneratororList[torch.Generator], optional) โ One or a list of torch generator(s) to make generation deterministic.prompt_embeds (
torch.FloatTensor, optional) โ Pre-generated text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, text embeddings will be generated frompromptinput argument.negative_prompt_embeds (
torch.FloatTensor, optional) โ Pre-generated negative text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, negative_prompt_embeds will be generated fromnegative_promptinput argument.output_type (
str, optional, defaults to"pil") โ The output format of the generate image. Choose between PIL:PIL.Image.Imageornp.array.return_dict (
bool, optional, defaults toTrue) โ Whether or not to return a~pipelines.stable_diffusion.IFPipelineOutputinstead of a plain tuple.callback (
Callable, optional) โ A function that will be called everycallback_stepssteps during inference. The function will be called with the following arguments:callback(step: int, timestep: int, latents: torch.FloatTensor).callback_steps (
int, optional, defaults to 1) โ The frequency at which thecallbackfunction will be called. If not specified, the callback will be called at every step.cross_attention_kwargs (
dict, optional) โ A kwargs dictionary that if specified is passed along to theAttentionProcessoras defined underself.processorin diffusers.models.attention_processor.noise_level (
int, optional, defaults to 0) โ The amount of noise to add to the upscaled image. Must be in the range[0, 1000)clean_caption (
bool, optional, defaults toTrue) โ Whether or not to clean the caption before creating embeddings. Requiresbeautifulsoup4andftfyto be installed. If the dependencies are not installed, the embeddings will be created from the raw prompt.
Returns
~pipelines.stable_diffusion.IFPipelineOutput or tuple
~pipelines.stable_diffusion.IFPipelineOutput if return_dict is True, otherwise a tuple. When returning a tuple, the first element is a list with the generated images, and the second element is a list of bools denoting whether the corresponding generated image likely represents "not-safe-for-work" (nsfw) or watermarked content, according to the safety_checker`.
Function invoked when calling the pipeline for generation.
Examples:
Copied
>>> from diffusers import IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, DiffusionPipeline
>>> from diffusers.utils import pt_to_pil
>>> import torch
>>> from PIL import Image
>>> import requests
>>> from io import BytesIO
>>> url = "https://boincai.com/datasets/diffusers/docs-images/resolve/main/if/person.png"
>>> response = requests.get(url)
>>> original_image = Image.open(BytesIO(response.content)).convert("RGB")
>>> original_image = original_image
>>> url = "https://boincai.com/datasets/diffusers/docs-images/resolve/main/if/glasses_mask.png"
>>> response = requests.get(url)
>>> mask_image = Image.open(BytesIO(response.content))
>>> mask_image = mask_image
>>> pipe = IFInpaintingPipeline.from_pretrained(
... "DeepFloyd/IF-I-XL-v1.0", variant="fp16", torch_dtype=torch.float16
... )
>>> pipe.enable_model_cpu_offload()
>>> prompt = "blue sunglasses"
>>> prompt_embeds, negative_embeds = pipe.encode_prompt(prompt)
>>> image = pipe(
... image=original_image,
... mask_image=mask_image,
... prompt_embeds=prompt_embeds,
... negative_prompt_embeds=negative_embeds,
... output_type="pt",
... ).images
>>> # save intermediate image
>>> pil_image = pt_to_pil(image)
>>> pil_image[0].save("./if_stage_I.png")
>>> super_res_1_pipe = IFInpaintingSuperResolutionPipeline.from_pretrained(
... "DeepFloyd/IF-II-L-v1.0", text_encoder=None, variant="fp16", torch_dtype=torch.float16
... )
>>> super_res_1_pipe.enable_model_cpu_offload()
>>> image = super_res_1_pipe(
... image=image,
... mask_image=mask_image,
... original_image=original_image,
... prompt_embeds=prompt_embeds,
... negative_prompt_embeds=negative_embeds,
... ).images
>>> image[0].save("./if_stage_II.png")encode_prompt
( promptdo_classifier_free_guidance = Truenum_images_per_prompt = 1device = Nonenegative_prompt = Noneprompt_embeds: typing.Optional[torch.FloatTensor] = Nonenegative_prompt_embeds: typing.Optional[torch.FloatTensor] = Noneclean_caption: bool = False )
Parameters
prompt (
strorList[str], optional) โ prompt to be encoded
Encodes the prompt into text encoder hidden states.
device: (torch.device, optional): torch device to place the resulting embeddings on num_images_per_prompt (int, optional, defaults to 1): number of images that should be generated per prompt do_classifier_free_guidance (bool, optional, defaults to True): whether to use classifier free guidance or not negative_prompt (str or List[str], optional): The prompt or prompts not to guide the image generation. If not defined, one has to pass negative_prompt_embeds. instead. If not defined, one has to pass negative_prompt_embeds. instead. Ignored when not using guidance (i.e., ignored if guidance_scale is less than 1). prompt_embeds (torch.FloatTensor, optional): Pre-generated text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, text embeddings will be generated from prompt input argument. negative_prompt_embeds (torch.FloatTensor, optional): Pre-generated negative text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, negative_prompt_embeds will be generated from negative_prompt input argument.
Last updated