Semantic Guidance
Last updated
Last updated
Semantic Guidance for Diffusion Models was proposed in and provides strong semantic control over image generation. Small changes to the text prompt usually result in entirely different output images. However, with SEGA a variety of changes to the image are enabled that can be controlled easily and intuitively, while staying true to the original image composition.
The abstract from the paper is:
Text-to-image diffusion models have recently received a lot of interest for their astonishing ability to produce high-fidelity images from text only. However, achieving one-shot generation that aligns with the userβs intent is nearly impossible, yet small changes to the input prompt often result in very different images. This leaves the user with little semantic control. To put the user in control, we show how to interact with the diffusion process to flexibly steer it along semantic directions. This semantic guidance (SEGA) allows for subtle and extensive edits, changes in composition and style, as well as optimizing the overall artistic conception. We demonstrate SEGAβs effectiveness on a variety of tasks and provide evidence for its versatility and flexibility.
Make sure to check out the Schedulers to learn how to explore the tradeoff between scheduler speed and quality, and see the section to learn how to efficiently load the same components into multiple pipelines.
( vae: AutoencoderKLtext_encoder: CLIPTextModeltokenizer: CLIPTokenizerunet: UNet2DConditionModelscheduler: KarrasDiffusionSchedulerssafety_checker: StableDiffusionSafetyCheckerfeature_extractor: CLIPImageProcessorrequires_safety_checker: bool = True )
Parameters
vae () β Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations.
text_encoder (CLIPTextModel
) β Frozen text-encoder ().
tokenizer (CLIPTokenizer
) β A CLIPTokenizer
to tokenize text.
unet () β A UNet2DConditionModel
to denoise the encoded image latents.
scheduler () β A scheduler to be used in combination with unet
to denoise the encoded image latents. Can be one of , , or .
safety_checker (Q16SafetyChecker
) β Classification module that estimates whether generated images could be considered offensive or harmful. Please refer to the for more details about a modelβs potential harms.
feature_extractor (CLIPImageProcessor
) β A CLIPImageProcessor
to extract features from generated images; used as inputs to the safety_checker
.
Pipeline for text-to-image generation using Stable Diffusion with latent editing.
__call__
Parameters
prompt (str
or List[str]
) β The prompt or prompts to guide image generation.
height (int
, optional, defaults to self.unet.config.sample_size * self.vae_scale_factor
) β The height in pixels of the generated image.
width (int
, optional, defaults to self.unet.config.sample_size * self.vae_scale_factor
) β The width in pixels of the generated image.
num_inference_steps (int
, optional, defaults to 50) β The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference.
guidance_scale (float
, optional, defaults to 7.5) β A higher guidance scale value encourages the model to generate images closely linked to the text prompt
at the expense of lower image quality. Guidance scale is enabled when guidance_scale > 1
.
negative_prompt (str
or List[str]
, optional) β The prompt or prompts to guide what to not include in image generation. If not defined, you need to pass negative_prompt_embeds
instead. Ignored when not using guidance (guidance_scale < 1
).
num_images_per_prompt (int
, optional, defaults to 1) β The number of images to generate per prompt.
latents (torch.FloatTensor
, optional) β Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor is generated by sampling using the supplied random generator
.
output_type (str
, optional, defaults to "pil"
) β The output format of the generated image. Choose between PIL.Image
or np.array
.
callback (Callable
, optional) β A function that calls every callback_steps
steps during inference. The function is called with the following arguments: callback(step: int, timestep: int, latents: torch.FloatTensor)
.
callback_steps (int
, optional, defaults to 1) β The frequency at which the callback
function is called. If not specified, the callback is called at every step.
editing_prompt (str
or List[str]
, optional) β The prompt or prompts to use for semantic guidance. Semantic guidance is disabled by setting editing_prompt = None
. Guidance direction of prompt should be specified via reverse_editing_direction
.
editing_prompt_embeddings (torch.Tensor
, optional) β Pre-computed embeddings to use for semantic guidance. Guidance direction of embedding should be specified via reverse_editing_direction
.
reverse_editing_direction (bool
or List[bool]
, optional, defaults to False
) β Whether the corresponding prompt in editing_prompt
should be increased or decreased.
edit_guidance_scale (float
or List[float]
, optional, defaults to 5) β Guidance scale for semantic guidance. If provided as a list, values should correspond to editing_prompt
.
edit_warmup_steps (float
or List[float]
, optional, defaults to 10) β Number of diffusion steps (for each prompt) for which semantic guidance is not applied. Momentum is calculated for those steps and applied once all warmup periods are over.
edit_cooldown_steps (float
or List[float]
, optional, defaults to None
) β Number of diffusion steps (for each prompt) after which semantic guidance is longer applied.
edit_threshold (float
or List[float]
, optional, defaults to 0.9) β Threshold of semantic guidance.
edit_momentum_scale (float
, optional, defaults to 0.1) β Scale of the momentum to be added to the semantic guidance at each diffusion step. If set to 0.0, momentum is disabled. Momentum is already built up during warmup (for diffusion steps smaller than sld_warmup_steps
). Momentum is only added to latent guidance once all warmup periods are finished.
edit_mom_beta (float
, optional, defaults to 0.4) β Defines how semantic guidance momentum builds up. edit_mom_beta
indicates how much of the previous momentum is kept. Momentum is already built up during warmup (for diffusion steps smaller than edit_warmup_steps
).
edit_weights (List[float]
, optional, defaults to None
) β Indicates how much each individual concept should influence the overall guidance. If no weights are provided all concepts are applied equally.
sem_guidance (List[torch.Tensor]
, optional) β List of pre-generated guidance vectors to be applied at generation. Length of the list has to correspond to num_inference_steps
.
Returns
The call function to the pipeline for generation.
Examples:
Copied
( images: typing.Union[typing.List[PIL.Image.Image], numpy.ndarray]nsfw_content_detected: typing.Optional[typing.List[bool]] )
Parameters
images (List[PIL.Image.Image]
or np.ndarray
) β List of denoised PIL images of length batch_size
or NumPy array of shape (batch_size, height, width, num_channels)
.
nsfw_content_detected (List[bool]
) β List indicating whether the corresponding generated image contains βnot-safe-for-workβ (nsfw) content or None
if safety checking could not be performed.
Output class for Stable Diffusion pipelines.
This model inherits from and builds on the . Check the superclass documentation for the generic methods implemented for all pipelines (downloading, saving, running on a particular device, etc.).
( prompt: typing.Union[str, typing.List[str]]height: typing.Optional[int] = Nonewidth: typing.Optional[int] = Nonenum_inference_steps: int = 50guidance_scale: float = 7.5negative_prompt: typing.Union[str, typing.List[str], NoneType] = Nonenum_images_per_prompt: int = 1eta: float = 0.0generator: typing.Union[torch._C.Generator, typing.List[torch._C.Generator], NoneType] = Nonelatents: typing.Optional[torch.FloatTensor] = Noneoutput_type: typing.Optional[str] = 'pil'return_dict: bool = Truecallback: typing.Union[typing.Callable[[int, int, torch.FloatTensor], NoneType], NoneType] = Nonecallback_steps: int = 1editing_prompt: typing.Union[str, typing.List[str], NoneType] = Noneediting_prompt_embeddings: typing.Optional[torch.Tensor] = Nonereverse_editing_direction: typing.Union[bool, typing.List[bool], NoneType] = Falseedit_guidance_scale: typing.Union[float, typing.List[float], NoneType] = 5edit_warmup_steps: typing.Union[int, typing.List[int], NoneType] = 10edit_cooldown_steps: typing.Union[int, typing.List[int], NoneType] = Noneedit_threshold: typing.Union[float, typing.List[float], NoneType] = 0.9edit_momentum_scale: typing.Optional[float] = 0.1edit_mom_beta: typing.Optional[float] = 0.4edit_weights: typing.Optional[typing.List[float]] = Nonesem_guidance: typing.Optional[typing.List[torch.Tensor]] = None ) β or tuple
eta (float
, optional, defaults to 0.0) β Corresponds to parameter eta (Ξ·) from the paper. Only applies to the , and is ignored in other schedulers.
generator (torch.Generator
or List[torch.Generator]
, optional) β A to make generation deterministic.
return_dict (bool
, optional, defaults to True
) β Whether or not to return a instead of a plain tuple.
or tuple
If return_dict
is True
, is returned, otherwise a tuple
is returned where the first element is a list with the generated images and the second element is a list of bool
s indicating whether the corresponding generated image contains βnot-safe-for-workβ (nsfw) content.