DDPM
DDPM
Denoising Diffusion Probabilistic Models (DDPM) by Jonathan Ho, Ajay Jain and Pieter Abbeel proposes a diffusion based model of the same name. In the 🌍 Diffusers library, DDPM refers to the discrete denoising scheduler from the paper as well as the pipeline.
The abstract from the paper is:
We present high quality image synthesis results using diffusion probabilistic models, a class of latent variable models inspired by considerations from nonequilibrium thermodynamics. Our best results are obtained by training on a weighted variational bound designed according to a novel connection between diffusion probabilistic models and denoising score matching with Langevin dynamics, and our models naturally admit a progressive lossy decompression scheme that can be interpreted as a generalization of autoregressive decoding. On the unconditional CIFAR10 dataset, we obtain an Inception score of 9.46 and a state-of-the-art FID score of 3.17. On 256x256 LSUN, we obtain sample quality similar to ProgressiveGAN.
The original codebase can be found at hohonathanho/diffusion.
Make sure to check out the Schedulers guide to learn how to explore the tradeoff between scheduler speed and quality, and see the reuse components across pipelines section to learn how to efficiently load the same components into multiple pipelines.
DDPMPipeline
class diffusers.DDPMPipeline
( unetscheduler )
Parameters
unet (UNet2DModel) — A
UNet2DModel
to denoise the encoded image latents.scheduler (SchedulerMixin) — A scheduler to be used in combination with
unet
to denoise the encoded image. Can be one of DDPMScheduler, or DDIMScheduler.
Pipeline for image generation.
This model inherits from DiffusionPipeline. Check the superclass documentation for the generic methods implemented for all pipelines (downloading, saving, running on a particular device, etc.).
__call__
( batch_size: int = 1generator: typing.Union[torch._C.Generator, typing.List[torch._C.Generator], NoneType] = Nonenum_inference_steps: int = 1000output_type: typing.Optional[str] = 'pil'return_dict: bool = True ) → ImagePipelineOutput or tuple
Parameters
batch_size (
int
, optional, defaults to 1) — The number of images to generate.generator (
torch.Generator
, optional) — Atorch.Generator
to make generation deterministic.num_inference_steps (
int
, optional, defaults to 1000) — The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference.output_type (
str
, optional, defaults to"pil"
) — The output format of the generated image. Choose betweenPIL.Image
ornp.array
.return_dict (
bool
, optional, defaults toTrue
) — Whether or not to return a ImagePipelineOutput instead of a plain tuple.
Returns
ImagePipelineOutput or tuple
If return_dict
is True
, ImagePipelineOutput is returned, otherwise a tuple
is returned where the first element is a list with the generated images
The call function to the pipeline for generation.
Example:
Copied
ImagePipelineOutput
class diffusers.ImagePipelineOutput
( images: typing.Union[typing.List[PIL.Image.Image], numpy.ndarray] )
Parameters
images (
List[PIL.Image.Image]
ornp.ndarray
) — List of denoised PIL images of lengthbatch_size
or NumPy array of shape(batch_size, height, width, num_channels)
.
Output class for image pipelines.
Last updated