Shap-E
Last updated
Last updated
The Shap-E model was proposed in by Alex Nichol and Heewon Jun from .
The abstract from the paper is:
We present Shap-E, a conditional generative model for 3D assets. Unlike recent work on 3D generative models which produce a single output representation, Shap-E directly generates the parameters of implicit functions that can be rendered as both textured meshes and neural radiance fields. We train Shap-E in two stages: first, we train an encoder that deterministically maps 3D assets into the parameters of an implicit function; second, we train a conditional diffusion model on outputs of the encoder. When trained on a large dataset of paired 3D and text data, our resulting models are capable of generating complex and diverse 3D assets in a matter of seconds. When compared to Point-E, an explicit generative model over point clouds, Shap-E converges faster and reaches comparable or better sample quality despite modeling a higher-dimensional, multi-representation output space.
The original codebase can be found at .
See the section to learn how to efficiently load the same components into multiple pipelines.
( prior: PriorTransformertext_encoder: CLIPTextModelWithProjectiontokenizer: CLIPTokenizerscheduler: HeunDiscreteSchedulershap_e_renderer: ShapERenderer )
Parameters
prior () — The canonical unCLIP prior to approximate the image embedding from the text embedding.
text_encoder (CLIPTextModelWithProjection
) — Frozen text-encoder.
tokenizer (CLIPTokenizer
) — A CLIPTokenizer
to tokenize text.
scheduler () — A scheduler to be used in combination with the prior
model to generate image embedding.
shap_e_renderer (ShapERenderer
) — Shap-E renderer projects the generated latents into parameters of a MLP to create 3D objects with the NeRF rendering method.
Pipeline for generating latent representation of a 3D asset and rendering with the NeRF method.
__call__
Parameters
prompt (str
or List[str]
) — The prompt or prompts to guide the image generation.
num_images_per_prompt (int
, optional, defaults to 1) — The number of images to generate per prompt.
num_inference_steps (int
, optional, defaults to 25) — The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference.
latents (torch.FloatTensor
, optional) — Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor is generated by sampling using the supplied random generator
.
guidance_scale (float
, optional, defaults to 4.0) — A higher guidance scale value encourages the model to generate images closely linked to the text prompt
at the expense of lower image quality. Guidance scale is enabled when guidance_scale > 1
.
frame_size (int
, optional, default to 64) — The width and height of each image frame of the generated 3D output.
output_type (str
, optional, defaults to "pil"
) — The output format of the generated image. Choose between "pil"
(PIL.Image.Image
), "np"
(np.array
), "latent"
(torch.Tensor
), or mesh (MeshDecoderOutput
).
Returns
The call function to the pipeline for generation.
Examples:
Copied
( prior: PriorTransformerimage_encoder: CLIPVisionModelimage_processor: CLIPImageProcessorscheduler: HeunDiscreteSchedulershap_e_renderer: ShapERenderer )
Parameters
image_encoder (CLIPVisionModel
) — Frozen image-encoder.
image_processor (CLIPImageProcessor
) — A CLIPImageProcessor
to process images.
shap_e_renderer (ShapERenderer
) — Shap-E renderer projects the generated latents into parameters of a MLP to create 3D objects with the NeRF rendering method.
Pipeline for generating latent representation of a 3D asset and rendering with the NeRF method from an image.
__call__
Parameters
image (torch.FloatTensor
, PIL.Image.Image
, np.ndarray
, List[torch.FloatTensor]
, List[PIL.Image.Image]
, or List[np.ndarray]
) — Image
or tensor representing an image batch to be used as the starting point. Can also accept image latents as image, but if passing latents directly it is not encoded again.
num_images_per_prompt (int
, optional, defaults to 1) — The number of images to generate per prompt.
num_inference_steps (int
, optional, defaults to 25) — The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference.
latents (torch.FloatTensor
, optional) — Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor is generated by sampling using the supplied random generator
.
guidance_scale (float
, optional, defaults to 4.0) — A higher guidance scale value encourages the model to generate images closely linked to the text prompt
at the expense of lower image quality. Guidance scale is enabled when guidance_scale > 1
.
frame_size (int
, optional, default to 64) — The width and height of each image frame of the generated 3D output.
output_type (str
, optional, defaults to "pil"
) — The output format of the generated image. Choose between "pil"
(PIL.Image.Image
), "np"
(np.array
), "latent"
(torch.Tensor
), or mesh (MeshDecoderOutput
).
Returns
The call function to the pipeline for generation.
Examples:
Copied
( images: typing.Union[typing.List[typing.List[PIL.Image.Image]], typing.List[typing.List[numpy.ndarray]]] )
Parameters
images (torch.FloatTensor
) — A list of images for 3D rendering.
This model inherits from . Check the superclass documentation for the generic methods implemented for all pipelines (downloading, saving, running on a particular device, etc.).
( prompt: strnum_images_per_prompt: int = 1num_inference_steps: int = 25generator: typing.Union[torch._C.Generator, typing.List[torch._C.Generator], NoneType] = Nonelatents: typing.Optional[torch.FloatTensor] = Noneguidance_scale: float = 4.0frame_size: int = 64output_type: typing.Optional[str] = 'pil'return_dict: bool = True ) → or tuple
generator (torch.Generator
or List[torch.Generator]
, optional) — A to make generation deterministic.
return_dict (bool
, optional, defaults to True
) — Whether or not to return a instead of a plain tuple.
or tuple
If return_dict
is True
, is returned, otherwise a tuple
is returned where the first element is a list with the generated images.
prior () — The canonincal unCLIP prior to approximate the image embedding from the text embedding.
scheduler () — A scheduler to be used in combination with the prior
model to generate image embedding.
This model inherits from . Check the superclass documentation for the generic methods implemented for all pipelines (downloading, saving, running on a particular device, etc.).
( image: typing.Union[PIL.Image.Image, typing.List[PIL.Image.Image]]num_images_per_prompt: int = 1num_inference_steps: int = 25generator: typing.Union[torch._C.Generator, typing.List[torch._C.Generator], NoneType] = Nonelatents: typing.Optional[torch.FloatTensor] = Noneguidance_scale: float = 4.0frame_size: int = 64output_type: typing.Optional[str] = 'pil'return_dict: bool = True ) → or tuple
generator (torch.Generator
or List[torch.Generator]
, optional) — A to make generation deterministic.
return_dict (bool
, optional, defaults to True
) — Whether or not to return a instead of a plain tuple.
or tuple
If return_dict
is True
, is returned, otherwise a tuple
is returned where the first element is a list with the generated images.
Output class for and .