ControlNet with Stable Diffusion XL
Last updated
Last updated
ControlNet was introduced in by Lvmin Zhang and Maneesh Agrawala.
With a ControlNet model, you can provide an additional control image to condition and control Stable Diffusion generation. For example, if you provide a depth map, the ControlNet model generates an image that’ll preserve the spatial information from the depth map. It is a more flexible and accurate way to control the image generation process.
The abstract from the paper is:
We present a neural network structure, ControlNet, to control pretrained large diffusion models to support additional input conditions. The ControlNet learns task-specific conditions in an end-to-end way, and the learning is robust even when the training dataset is small (< 50k). Moreover, training a ControlNet is as fast as fine-tuning a diffusion model, and the model can be trained on a personal devices. Alternatively, if powerful computation clusters are available, the model can scale to large amounts (millions to billions) of data. We report that large diffusion models like Stable Diffusion can be augmented with ControlNets to enable conditional inputs like edge maps, segmentation maps, keypoints, etc. This may enrich the methods to control large diffusion models and further facilitate related applications.
You can find additional smaller Stable Diffusion XL (SDXL) ControlNet checkpoints from the 🌍 Hub organization, and browse checkpoints on the Hub.
🧪 Many of the SDXL ControlNet checkpoints are experimental, and there is a lot of room for improvement. Feel free to open an and leave us feedback on how we can improve!
If you don’t see a checkpoint you’re interested in, you can train your own SDXL ControlNet with our .
Make sure to check out the Schedulers to learn how to explore the tradeoff between scheduler speed and quality, and see the section to learn how to efficiently load the same components into multiple pipelines.
( vae: AutoencoderKLtext_encoder: CLIPTextModeltext_encoder_2: CLIPTextModelWithProjectiontokenizer: CLIPTokenizertokenizer_2: CLIPTokenizerunet: UNet2DConditionModelcontrolnet: typing.Union[diffusers.models.controlnet.ControlNetModel, typing.List[diffusers.models.controlnet.ControlNetModel], typing.Tuple[diffusers.models.controlnet.ControlNetModel], diffusers.pipelines.controlnet.multicontrolnet.MultiControlNetModel]scheduler: KarrasDiffusionSchedulersforce_zeros_for_empty_prompt: bool = Trueadd_watermarker: typing.Optional[bool] = None )
Parameters
vae () — Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations.
text_encoder (CLIPTextModel
) — Frozen text-encoder ().
text_encoder_2 (CLIPTextModelWithProjection
) — Second frozen text-encoder ().
tokenizer (CLIPTokenizer
) — A CLIPTokenizer
to tokenize text.
tokenizer_2 (CLIPTokenizer
) — A CLIPTokenizer
to tokenize text.
unet () — A UNet2DConditionModel
to denoise the encoded image latents.
controlnet ( or List[ControlNetModel]
) — Provides additional conditioning to the unet
during the denoising process. If you set multiple ControlNets as a list, the outputs from each ControlNet are added together to create one combined additional conditioning.
scheduler () — A scheduler to be used in combination with unet
to denoise the encoded image latents. Can be one of , , or .
force_zeros_for_empty_prompt (bool
, optional, defaults to "True"
) — Whether the negative prompt embeddings should always be set to 0. Also see the config of stabilityai/stable-diffusion-xl-base-1-0
.
add_watermarker (bool
, optional) — Whether to use the library to watermark output images. If not defined, it defaults to True
if the package is installed; otherwise no watermarker is used.
Pipeline for text-to-image generation using Stable Diffusion XL with ControlNet guidance.
The pipeline also inherits the following loading methods:
__call__
Parameters
prompt (str
or List[str]
, optional) — The prompt or prompts to guide image generation. If not defined, you need to pass prompt_embeds
.
prompt_2 (str
or List[str]
, optional) — The prompt or prompts to be sent to tokenizer_2
and text_encoder_2
. If not defined, prompt
is used in both text-encoders.
image (torch.FloatTensor
, PIL.Image.Image
, np.ndarray
, List[torch.FloatTensor]
, List[PIL.Image.Image]
, List[np.ndarray]
, — List[List[torch.FloatTensor]]
, List[List[np.ndarray]]
or List[List[PIL.Image.Image]]
): The ControlNet input condition to provide guidance to the unet
for generation. If the type is specified as torch.FloatTensor
, it is passed to ControlNet as is. PIL.Image.Image
can also be accepted as an image. The dimensions of the output image defaults to image
’s dimensions. If height and/or width are passed, image
is resized accordingly. If multiple ControlNets are specified in init
, images must be passed as a list such that each element of the list can be correctly batched for input to a single ControlNet.
num_inference_steps (int
, optional, defaults to 50) — The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference.
guidance_scale (float
, optional, defaults to 5.0) — A higher guidance scale value encourages the model to generate images closely linked to the text prompt
at the expense of lower image quality. Guidance scale is enabled when guidance_scale > 1
.
negative_prompt (str
or List[str]
, optional) — The prompt or prompts to guide what to not include in image generation. If not defined, you need to pass negative_prompt_embeds
instead. Ignored when not using guidance (guidance_scale < 1
).
negative_prompt_2 (str
or List[str]
, optional) — The prompt or prompts to guide what to not include in image generation. This is sent to tokenizer_2
and text_encoder_2
. If not defined, negative_prompt
is used in both text-encoders.
num_images_per_prompt (int
, optional, defaults to 1) — The number of images to generate per prompt.
latents (torch.FloatTensor
, optional) — Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor is generated by sampling using the supplied random generator
.
prompt_embeds (torch.FloatTensor
, optional) — Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not provided, text embeddings are generated from the prompt
input argument.
negative_prompt_embeds (torch.FloatTensor
, optional) — Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not provided, negative_prompt_embeds
are generated from the negative_prompt
input argument.
pooled_prompt_embeds (torch.FloatTensor
, optional) — Pre-generated pooled text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not provided, pooled text embeddings are generated from prompt
input argument.
negative_pooled_prompt_embeds (torch.FloatTensor
, optional) — Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not provided, pooled negative_prompt_embeds
are generated from negative_prompt
input argument.
output_type (str
, optional, defaults to "pil"
) — The output format of the generated image. Choose between PIL.Image
or np.array
.
callback (Callable
, optional) — A function that calls every callback_steps
steps during inference. The function is called with the following arguments: callback(step: int, timestep: int, latents: torch.FloatTensor)
.
callback_steps (int
, optional, defaults to 1) — The frequency at which the callback
function is called. If not specified, the callback is called at every step.
controlnet_conditioning_scale (float
or List[float]
, optional, defaults to 1.0) — The outputs of the ControlNet are multiplied by controlnet_conditioning_scale
before they are added to the residual in the original unet
. If multiple ControlNets are specified in init
, you can set the corresponding scale as a list.
guess_mode (bool
, optional, defaults to False
) — The ControlNet encoder tries to recognize the content of the input image even if you remove all prompts. A guidance_scale
value between 3.0 and 5.0 is recommended.
control_guidance_start (float
or List[float]
, optional, defaults to 0.0) — The percentage of total steps at which the ControlNet starts applying.
control_guidance_end (float
or List[float]
, optional, defaults to 1.0) — The percentage of total steps at which the ControlNet stops applying.
Returns
The call function to the pipeline for generation.
Examples:
Copied
disable_vae_slicing
( )
Disable sliced VAE decoding. If enable_vae_slicing
was previously enabled, this method will go back to computing decoding in one step.
disable_vae_tiling
( )
Disable tiled VAE decoding. If enable_vae_tiling
was previously enabled, this method will go back to computing decoding in one step.
enable_vae_slicing
( )
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
enable_vae_tiling
( )
Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow processing larger images.
encode_prompt
( prompt: strprompt_2: typing.Optional[str] = Nonedevice: typing.Optional[torch.device] = Nonenum_images_per_prompt: int = 1do_classifier_free_guidance: bool = Truenegative_prompt: typing.Optional[str] = Nonenegative_prompt_2: typing.Optional[str] = Noneprompt_embeds: typing.Optional[torch.FloatTensor] = Nonenegative_prompt_embeds: typing.Optional[torch.FloatTensor] = Nonepooled_prompt_embeds: typing.Optional[torch.FloatTensor] = Nonenegative_pooled_prompt_embeds: typing.Optional[torch.FloatTensor] = Nonelora_scale: typing.Optional[float] = None )
Parameters
prompt (str
or List[str]
, optional) — prompt to be encoded
prompt_2 (str
or List[str]
, optional) — The prompt or prompts to be sent to the tokenizer_2
and text_encoder_2
. If not defined, prompt
is used in both text-encoders device — (torch.device
): torch device
num_images_per_prompt (int
) — number of images that should be generated per prompt
do_classifier_free_guidance (bool
) — whether to use classifier free guidance or not
negative_prompt (str
or List[str]
, optional) — The prompt or prompts not to guide the image generation. If not defined, one has to pass negative_prompt_embeds
instead. Ignored when not using guidance (i.e., ignored if guidance_scale
is less than 1
).
negative_prompt_2 (str
or List[str]
, optional) — The prompt or prompts not to guide the image generation to be sent to tokenizer_2
and text_encoder_2
. If not defined, negative_prompt
is used in both text-encoders
prompt_embeds (torch.FloatTensor
, optional) — Pre-generated text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, text embeddings will be generated from prompt
input argument.
negative_prompt_embeds (torch.FloatTensor
, optional) — Pre-generated negative text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, negative_prompt_embeds will be generated from negative_prompt
input argument.
pooled_prompt_embeds (torch.FloatTensor
, optional) — Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, pooled text embeddings will be generated from prompt
input argument.
negative_pooled_prompt_embeds (torch.FloatTensor
, optional) — Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, pooled negative_prompt_embeds will be generated from negative_prompt
input argument.
lora_scale (float
, optional) — A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
Encodes the prompt into text encoder hidden states.
( images: typing.Union[typing.List[PIL.Image.Image], numpy.ndarray]nsfw_content_detected: typing.Optional[typing.List[bool]] )
Parameters
images (List[PIL.Image.Image]
or np.ndarray
) — List of denoised PIL images of length batch_size
or NumPy array of shape (batch_size, height, width, num_channels)
.
nsfw_content_detected (List[bool]
) — List indicating whether the corresponding generated image contains “not-safe-for-work” (nsfw) content or None
if safety checking could not be performed.
Output class for Stable Diffusion pipelines.
This model inherits from . Check the superclass documentation for the generic methods implemented for all pipelines (downloading, saving, running on a particular device, etc.).
for loading textual inversion embeddings
for loading LoRA weights
for loading .ckpt
files
( prompt: typing.Union[str, typing.List[str]] = Noneprompt_2: typing.Union[str, typing.List[str], NoneType] = Noneimage: typing.Union[PIL.Image.Image, numpy.ndarray, torch.FloatTensor, typing.List[PIL.Image.Image], typing.List[numpy.ndarray], typing.List[torch.FloatTensor]] = Noneheight: typing.Optional[int] = Nonewidth: typing.Optional[int] = Nonenum_inference_steps: int = 50guidance_scale: float = 5.0negative_prompt: typing.Union[str, typing.List[str], NoneType] = Nonenegative_prompt_2: typing.Union[str, typing.List[str], NoneType] = Nonenum_images_per_prompt: typing.Optional[int] = 1eta: float = 0.0generator: typing.Union[torch._C.Generator, typing.List[torch._C.Generator], NoneType] = Nonelatents: typing.Optional[torch.FloatTensor] = Noneprompt_embeds: typing.Optional[torch.FloatTensor] = Nonenegative_prompt_embeds: typing.Optional[torch.FloatTensor] = Nonepooled_prompt_embeds: typing.Optional[torch.FloatTensor] = Nonenegative_pooled_prompt_embeds: typing.Optional[torch.FloatTensor] = Noneoutput_type: typing.Optional[str] = 'pil'return_dict: bool = Truecallback: typing.Union[typing.Callable[[int, int, torch.FloatTensor], NoneType], NoneType] = Nonecallback_steps: int = 1cross_attention_kwargs: typing.Union[typing.Dict[str, typing.Any], NoneType] = Nonecontrolnet_conditioning_scale: typing.Union[float, typing.List[float]] = 1.0guess_mode: bool = Falsecontrol_guidance_start: typing.Union[float, typing.List[float]] = 0.0control_guidance_end: typing.Union[float, typing.List[float]] = 1.0original_size: typing.Tuple[int, int] = Nonecrops_coords_top_left: typing.Tuple[int, int] = (0, 0)target_size: typing.Tuple[int, int] = Nonenegative_original_size: typing.Union[typing.Tuple[int, int], NoneType] = Nonenegative_crops_coords_top_left: typing.Tuple[int, int] = (0, 0)negative_target_size: typing.Union[typing.Tuple[int, int], NoneType] = None ) → or tuple
height (int
, optional, defaults to self.unet.config.sample_size * self.vae_scale_factor
) — The height in pixels of the generated image. Anything below 512 pixels won’t work well for and checkpoints that are not specifically fine-tuned on low resolutions.
width (int
, optional, defaults to self.unet.config.sample_size * self.vae_scale_factor
) — The width in pixels of the generated image. Anything below 512 pixels won’t work well for and checkpoints that are not specifically fine-tuned on low resolutions.
eta (float
, optional, defaults to 0.0) — Corresponds to parameter eta (η) from the paper. Only applies to the , and is ignored in other schedulers.
generator (torch.Generator
or List[torch.Generator]
, optional) — A to make generation deterministic.
return_dict (bool
, optional, defaults to True
) — Whether or not to return a instead of a plain tuple.
cross_attention_kwargs (dict
, optional) — A kwargs dictionary that if specified is passed along to the AttentionProcessor
as defined in .
original_size (Tuple[int]
, optional, defaults to (1024, 1024)) — If original_size
is not the same as target_size
the image will appear to be down- or upsampled. original_size
defaults to (width, height)
if not specified. Part of SDXL’s micro-conditioning as explained in section 2.2 of .
crops_coords_top_left (Tuple[int]
, optional, defaults to (0, 0)) — crops_coords_top_left
can be used to generate an image that appears to be “cropped” from the position crops_coords_top_left
downwards. Favorable, well-centered images are usually achieved by setting crops_coords_top_left
to (0, 0). Part of SDXL’s micro-conditioning as explained in section 2.2 of .
target_size (Tuple[int]
, optional, defaults to (1024, 1024)) — For most cases, target_size
should be set to the desired height and width of the generated image. If not specified it will default to (width, height)
. Part of SDXL’s micro-conditioning as explained in section 2.2 of .
negative_original_size (Tuple[int]
, optional, defaults to (1024, 1024)) — To negatively condition the generation process based on a specific image resolution. Part of SDXL’s micro-conditioning as explained in section 2.2 of . For more information, refer to this issue thread: .
negative_crops_coords_top_left (Tuple[int]
, optional, defaults to (0, 0)) — To negatively condition the generation process based on a specific crop coordinates. Part of SDXL’s micro-conditioning as explained in section 2.2 of . For more information, refer to this issue thread: .
negative_target_size (Tuple[int]
, optional, defaults to (1024, 1024)) — To negatively condition the generation process based on a target image resolution. It should be as same as the target_size
for most cases. Part of SDXL’s micro-conditioning as explained in section 2.2 of . For more information, refer to this issue thread: .
or tuple
If return_dict
is True
, is returned, otherwise a tuple
is returned containing the output images.