ControlNet with Stable Diffusion XL
ControlNet with Stable Diffusion XL
ControlNet was introduced in Adding Conditional Control to Text-to-Image Diffusion Models by Lvmin Zhang and Maneesh Agrawala.
With a ControlNet model, you can provide an additional control image to condition and control Stable Diffusion generation. For example, if you provide a depth map, the ControlNet model generates an image thatβll preserve the spatial information from the depth map. It is a more flexible and accurate way to control the image generation process.
The abstract from the paper is:
We present a neural network structure, ControlNet, to control pretrained large diffusion models to support additional input conditions. The ControlNet learns task-specific conditions in an end-to-end way, and the learning is robust even when the training dataset is small (< 50k). Moreover, training a ControlNet is as fast as fine-tuning a diffusion model, and the model can be trained on a personal devices. Alternatively, if powerful computation clusters are available, the model can scale to large amounts (millions to billions) of data. We report that large diffusion models like Stable Diffusion can be augmented with ControlNets to enable conditional inputs like edge maps, segmentation maps, keypoints, etc. This may enrich the methods to control large diffusion models and further facilitate related applications.
You can find additional smaller Stable Diffusion XL (SDXL) ControlNet checkpoints from the πDiffusers Hub organization, and browse community-trained checkpoints on the Hub.
π§ͺ Many of the SDXL ControlNet checkpoints are experimental, and there is a lot of room for improvement. Feel free to open an Issue and leave us feedback on how we can improve!
If you donβt see a checkpoint youβre interested in, you can train your own SDXL ControlNet with our training script.
Make sure to check out the Schedulers guide to learn how to explore the tradeoff between scheduler speed and quality, and see the reuse components across pipelines section to learn how to efficiently load the same components into multiple pipelines.
StableDiffusionXLControlNetPipeline
class diffusers.StableDiffusionXLControlNetPipeline
( vae: AutoencoderKLtext_encoder: CLIPTextModeltext_encoder_2: CLIPTextModelWithProjectiontokenizer: CLIPTokenizertokenizer_2: CLIPTokenizerunet: UNet2DConditionModelcontrolnet: typing.Union[diffusers.models.controlnet.ControlNetModel, typing.List[diffusers.models.controlnet.ControlNetModel], typing.Tuple[diffusers.models.controlnet.ControlNetModel], diffusers.pipelines.controlnet.multicontrolnet.MultiControlNetModel]scheduler: KarrasDiffusionSchedulersforce_zeros_for_empty_prompt: bool = Trueadd_watermarker: typing.Optional[bool] = None )
Parameters
vae (AutoencoderKL) β Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations.
text_encoder (
CLIPTextModel
) β Frozen text-encoder (clip-vit-large-patch14).text_encoder_2 (
CLIPTextModelWithProjection
) β Second frozen text-encoder (laion/CLIP-ViT-bigG-14-laion2B-39B-b160k).tokenizer (
CLIPTokenizer
) β ACLIPTokenizer
to tokenize text.tokenizer_2 (
CLIPTokenizer
) β ACLIPTokenizer
to tokenize text.unet (UNet2DConditionModel) β A
UNet2DConditionModel
to denoise the encoded image latents.controlnet (ControlNetModel or
List[ControlNetModel]
) β Provides additional conditioning to theunet
during the denoising process. If you set multiple ControlNets as a list, the outputs from each ControlNet are added together to create one combined additional conditioning.scheduler (SchedulerMixin) β A scheduler to be used in combination with
unet
to denoise the encoded image latents. Can be one of DDIMScheduler, LMSDiscreteScheduler, or PNDMScheduler.force_zeros_for_empty_prompt (
bool
, optional, defaults to"True"
) β Whether the negative prompt embeddings should always be set to 0. Also see the config ofstabilityai/stable-diffusion-xl-base-1-0
.add_watermarker (
bool
, optional) β Whether to use the invisible_watermark library to watermark output images. If not defined, it defaults toTrue
if the package is installed; otherwise no watermarker is used.
Pipeline for text-to-image generation using Stable Diffusion XL with ControlNet guidance.
This model inherits from DiffusionPipeline. Check the superclass documentation for the generic methods implemented for all pipelines (downloading, saving, running on a particular device, etc.).
The pipeline also inherits the following loading methods:
load_textual_inversion() for loading textual inversion embeddings
loaders.LoraLoaderMixin.load_lora_weights() for loading LoRA weights
loaders.FromSingleFileMixin.from_single_file() for loading
.ckpt
files
__call__
( prompt: typing.Union[str, typing.List[str]] = Noneprompt_2: typing.Union[str, typing.List[str], NoneType] = Noneimage: typing.Union[PIL.Image.Image, numpy.ndarray, torch.FloatTensor, typing.List[PIL.Image.Image], typing.List[numpy.ndarray], typing.List[torch.FloatTensor]] = Noneheight: typing.Optional[int] = Nonewidth: typing.Optional[int] = Nonenum_inference_steps: int = 50guidance_scale: float = 5.0negative_prompt: typing.Union[str, typing.List[str], NoneType] = Nonenegative_prompt_2: typing.Union[str, typing.List[str], NoneType] = Nonenum_images_per_prompt: typing.Optional[int] = 1eta: float = 0.0generator: typing.Union[torch._C.Generator, typing.List[torch._C.Generator], NoneType] = Nonelatents: typing.Optional[torch.FloatTensor] = Noneprompt_embeds: typing.Optional[torch.FloatTensor] = Nonenegative_prompt_embeds: typing.Optional[torch.FloatTensor] = Nonepooled_prompt_embeds: typing.Optional[torch.FloatTensor] = Nonenegative_pooled_prompt_embeds: typing.Optional[torch.FloatTensor] = Noneoutput_type: typing.Optional[str] = 'pil'return_dict: bool = Truecallback: typing.Union[typing.Callable[[int, int, torch.FloatTensor], NoneType], NoneType] = Nonecallback_steps: int = 1cross_attention_kwargs: typing.Union[typing.Dict[str, typing.Any], NoneType] = Nonecontrolnet_conditioning_scale: typing.Union[float, typing.List[float]] = 1.0guess_mode: bool = Falsecontrol_guidance_start: typing.Union[float, typing.List[float]] = 0.0control_guidance_end: typing.Union[float, typing.List[float]] = 1.0original_size: typing.Tuple[int, int] = Nonecrops_coords_top_left: typing.Tuple[int, int] = (0, 0)target_size: typing.Tuple[int, int] = Nonenegative_original_size: typing.Union[typing.Tuple[int, int], NoneType] = Nonenegative_crops_coords_top_left: typing.Tuple[int, int] = (0, 0)negative_target_size: typing.Union[typing.Tuple[int, int], NoneType] = None ) β StableDiffusionPipelineOutput or tuple
Parameters
prompt (
str
orList[str]
, optional) β The prompt or prompts to guide image generation. If not defined, you need to passprompt_embeds
.prompt_2 (
str
orList[str]
, optional) β The prompt or prompts to be sent totokenizer_2
andtext_encoder_2
. If not defined,prompt
is used in both text-encoders.image (
torch.FloatTensor
,PIL.Image.Image
,np.ndarray
,List[torch.FloatTensor]
,List[PIL.Image.Image]
,List[np.ndarray]
, βList[List[torch.FloatTensor]]
,List[List[np.ndarray]]
orList[List[PIL.Image.Image]]
): The ControlNet input condition to provide guidance to theunet
for generation. If the type is specified astorch.FloatTensor
, it is passed to ControlNet as is.PIL.Image.Image
can also be accepted as an image. The dimensions of the output image defaults toimage
βs dimensions. If height and/or width are passed,image
is resized accordingly. If multiple ControlNets are specified ininit
, images must be passed as a list such that each element of the list can be correctly batched for input to a single ControlNet.height (
int
, optional, defaults toself.unet.config.sample_size * self.vae_scale_factor
) β The height in pixels of the generated image. Anything below 512 pixels wonβt work well for stabilityai/stable-diffusion-xl-base-1.0 and checkpoints that are not specifically fine-tuned on low resolutions.width (
int
, optional, defaults toself.unet.config.sample_size * self.vae_scale_factor
) β The width in pixels of the generated image. Anything below 512 pixels wonβt work well for stabilityai/stable-diffusion-xl-base-1.0 and checkpoints that are not specifically fine-tuned on low resolutions.num_inference_steps (
int
, optional, defaults to 50) β The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference.guidance_scale (
float
, optional, defaults to 5.0) β A higher guidance scale value encourages the model to generate images closely linked to the textprompt
at the expense of lower image quality. Guidance scale is enabled whenguidance_scale > 1
.negative_prompt (
str
orList[str]
, optional) β The prompt or prompts to guide what to not include in image generation. If not defined, you need to passnegative_prompt_embeds
instead. Ignored when not using guidance (guidance_scale < 1
).negative_prompt_2 (
str
orList[str]
, optional) β The prompt or prompts to guide what to not include in image generation. This is sent totokenizer_2
andtext_encoder_2
. If not defined,negative_prompt
is used in both text-encoders.num_images_per_prompt (
int
, optional, defaults to 1) β The number of images to generate per prompt.eta (
float
, optional, defaults to 0.0) β Corresponds to parameter eta (Ξ·) from the DDIM paper. Only applies to the DDIMScheduler, and is ignored in other schedulers.generator (
torch.Generator
orList[torch.Generator]
, optional) β Atorch.Generator
to make generation deterministic.latents (
torch.FloatTensor
, optional) β Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor is generated by sampling using the supplied randomgenerator
.prompt_embeds (
torch.FloatTensor
, optional) β Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not provided, text embeddings are generated from theprompt
input argument.negative_prompt_embeds (
torch.FloatTensor
, optional) β Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not provided,negative_prompt_embeds
are generated from thenegative_prompt
input argument.pooled_prompt_embeds (
torch.FloatTensor
, optional) β Pre-generated pooled text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not provided, pooled text embeddings are generated fromprompt
input argument.negative_pooled_prompt_embeds (
torch.FloatTensor
, optional) β Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not provided, poolednegative_prompt_embeds
are generated fromnegative_prompt
input argument.output_type (
str
, optional, defaults to"pil"
) β The output format of the generated image. Choose betweenPIL.Image
ornp.array
.return_dict (
bool
, optional, defaults toTrue
) β Whether or not to return a StableDiffusionPipelineOutput instead of a plain tuple.callback (
Callable
, optional) β A function that calls everycallback_steps
steps during inference. The function is called with the following arguments:callback(step: int, timestep: int, latents: torch.FloatTensor)
.callback_steps (
int
, optional, defaults to 1) β The frequency at which thecallback
function is called. If not specified, the callback is called at every step.cross_attention_kwargs (
dict
, optional) β A kwargs dictionary that if specified is passed along to theAttentionProcessor
as defined inself.processor
.controlnet_conditioning_scale (
float
orList[float]
, optional, defaults to 1.0) β The outputs of the ControlNet are multiplied bycontrolnet_conditioning_scale
before they are added to the residual in the originalunet
. If multiple ControlNets are specified ininit
, you can set the corresponding scale as a list.guess_mode (
bool
, optional, defaults toFalse
) β The ControlNet encoder tries to recognize the content of the input image even if you remove all prompts. Aguidance_scale
value between 3.0 and 5.0 is recommended.control_guidance_start (
float
orList[float]
, optional, defaults to 0.0) β The percentage of total steps at which the ControlNet starts applying.control_guidance_end (
float
orList[float]
, optional, defaults to 1.0) β The percentage of total steps at which the ControlNet stops applying.original_size (
Tuple[int]
, optional, defaults to (1024, 1024)) β Iforiginal_size
is not the same astarget_size
the image will appear to be down- or upsampled.original_size
defaults to(width, height)
if not specified. Part of SDXLβs micro-conditioning as explained in section 2.2 of https://huggingface.co/papers/2307.01952.crops_coords_top_left (
Tuple[int]
, optional, defaults to (0, 0)) βcrops_coords_top_left
can be used to generate an image that appears to be βcroppedβ from the positioncrops_coords_top_left
downwards. Favorable, well-centered images are usually achieved by settingcrops_coords_top_left
to (0, 0). Part of SDXLβs micro-conditioning as explained in section 2.2 of https://huggingface.co/papers/2307.01952.target_size (
Tuple[int]
, optional, defaults to (1024, 1024)) β For most cases,target_size
should be set to the desired height and width of the generated image. If not specified it will default to(width, height)
. Part of SDXLβs micro-conditioning as explained in section 2.2 of https://huggingface.co/papers/2307.01952.negative_original_size (
Tuple[int]
, optional, defaults to (1024, 1024)) β To negatively condition the generation process based on a specific image resolution. Part of SDXLβs micro-conditioning as explained in section 2.2 of https://huggingface.co/papers/2307.01952. For more information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.negative_crops_coords_top_left (
Tuple[int]
, optional, defaults to (0, 0)) β To negatively condition the generation process based on a specific crop coordinates. Part of SDXLβs micro-conditioning as explained in section 2.2 of https://huggingface.co/papers/2307.01952. For more information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.negative_target_size (
Tuple[int]
, optional, defaults to (1024, 1024)) β To negatively condition the generation process based on a target image resolution. It should be as same as thetarget_size
for most cases. Part of SDXLβs micro-conditioning as explained in section 2.2 of https://huggingface.co/papers/2307.01952. For more information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
Returns
StableDiffusionPipelineOutput or tuple
If return_dict
is True
, StableDiffusionPipelineOutput is returned, otherwise a tuple
is returned containing the output images.
The call function to the pipeline for generation.
Examples:
Copied
disable_vae_slicing
( )
Disable sliced VAE decoding. If enable_vae_slicing
was previously enabled, this method will go back to computing decoding in one step.
disable_vae_tiling
( )
Disable tiled VAE decoding. If enable_vae_tiling
was previously enabled, this method will go back to computing decoding in one step.
enable_vae_slicing
( )
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
enable_vae_tiling
( )
Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow processing larger images.
encode_prompt
( prompt: strprompt_2: typing.Optional[str] = Nonedevice: typing.Optional[torch.device] = Nonenum_images_per_prompt: int = 1do_classifier_free_guidance: bool = Truenegative_prompt: typing.Optional[str] = Nonenegative_prompt_2: typing.Optional[str] = Noneprompt_embeds: typing.Optional[torch.FloatTensor] = Nonenegative_prompt_embeds: typing.Optional[torch.FloatTensor] = Nonepooled_prompt_embeds: typing.Optional[torch.FloatTensor] = Nonenegative_pooled_prompt_embeds: typing.Optional[torch.FloatTensor] = Nonelora_scale: typing.Optional[float] = None )
Parameters
prompt (
str
orList[str]
, optional) β prompt to be encodedprompt_2 (
str
orList[str]
, optional) β The prompt or prompts to be sent to thetokenizer_2
andtext_encoder_2
. If not defined,prompt
is used in both text-encoders device β (torch.device
): torch devicenum_images_per_prompt (
int
) β number of images that should be generated per promptdo_classifier_free_guidance (
bool
) β whether to use classifier free guidance or notnegative_prompt (
str
orList[str]
, optional) β The prompt or prompts not to guide the image generation. If not defined, one has to passnegative_prompt_embeds
instead. Ignored when not using guidance (i.e., ignored ifguidance_scale
is less than1
).negative_prompt_2 (
str
orList[str]
, optional) β The prompt or prompts not to guide the image generation to be sent totokenizer_2
andtext_encoder_2
. If not defined,negative_prompt
is used in both text-encodersprompt_embeds (
torch.FloatTensor
, optional) β Pre-generated text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, text embeddings will be generated fromprompt
input argument.negative_prompt_embeds (
torch.FloatTensor
, optional) β Pre-generated negative text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, negative_prompt_embeds will be generated fromnegative_prompt
input argument.pooled_prompt_embeds (
torch.FloatTensor
, optional) β Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, pooled text embeddings will be generated fromprompt
input argument.negative_pooled_prompt_embeds (
torch.FloatTensor
, optional) β Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, pooled negative_prompt_embeds will be generated fromnegative_prompt
input argument.lora_scale (
float
, optional) β A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
Encodes the prompt into text encoder hidden states.
StableDiffusionPipelineOutput
class diffusers.pipelines.stable_diffusion.StableDiffusionPipelineOutput
( images: typing.Union[typing.List[PIL.Image.Image], numpy.ndarray]nsfw_content_detected: typing.Optional[typing.List[bool]] )
Parameters
images (
List[PIL.Image.Image]
ornp.ndarray
) β List of denoised PIL images of lengthbatch_size
or NumPy array of shape(batch_size, height, width, num_channels)
.nsfw_content_detected (
List[bool]
) β List indicating whether the corresponding generated image contains βnot-safe-for-workβ (nsfw) content orNone
if safety checking could not be performed.
Output class for Stable Diffusion pipelines.
Last updated