BOINC AI Hub
  • 🌍BOINC AI Hub
  • 🌍Repositories
  • Getting Started with Repositories
  • Repository Settings
  • Pull Requests & Discussions
  • Notifications
  • Collections
  • 🌍Webhooks
    • How-to: Automatic fine-tuning with Auto-Train
    • How-to: Build a Discussion bot based on BLOOM
    • How-to: Create automatic metadata quality reports
  • Repository size recommendations
  • Next Steps
  • Licenses
  • 🌍Models
  • The Model Hub
  • 🌍Model Cards
    • Annotated Model Card
    • Carbon Emissions
    • Model Card Guidebook
    • Landscape Analysis
  • Gated Models
  • Uploading Models
  • Downloading Models
  • 🌍Integrated Libraries
    • Adapter Transformers
    • AllenNLP
    • Asteroid
    • Diffusers
    • ESPnet
    • fastai
    • Flair
    • Keras
    • ML-Agents
    • PaddleNLP
    • RL-Baselines3-Zoo
    • Sample Factory
    • Sentence Transformers
    • spaCy
    • SpanMarker
    • SpeechBrain
    • Stable-Baselines3
    • Stanza
    • TensorBoard
    • timm
    • Transformers
    • Transformers.js
  • 🌍Model Widgets
    • Widget Examples
  • Inference API docs
  • Frequently Asked Questions
  • 🌍Advanced Topics
    • Integrate a library with the Hub
    • Tasks
  • 🌍Datasets
  • Datasets Overview
  • Dataset Cards
  • Gated Datasets
  • Dataset Viewer
  • Using Datasets
  • Adding New Datasets
  • 🌍Spaces
  • 🌍Spaces Overview
    • Handling Spaces Dependencies
    • Spaces Settings
    • Using Spaces for Organization Cards
  • Spaces GPU Upgrades
  • Spaces Persistent Storage
  • Gradio Spaces
  • Streamlit Spaces
  • Static HTML Spaces
  • 🌍Docker Spaces
    • Your first Docker Spaces
    • Example Docker Spaces
    • Argilla on Spaces
    • Label Studio on Spaces
    • Aim on Space
    • Livebook on Spaces
    • Shiny on Spaces
    • ZenML on Spaces
    • Panel on Spaces
    • ChatUI on Spaces
    • Tabby on Spaces
  • Embed your Space
  • Run Spaces with Docker
  • Spaces Configuration Reference
  • Sign-In with BA button
  • Spaces Changelog
  • 🌍Advanced Topics
    • Using OpenCV in Spaces
    • More ways to create Spaces
    • Managing Spaces with Github Actions
    • Custom Python Spaces
    • How to Add a Space to ArXiv
    • Cookie limitations in Spaces
  • 🌍Other
  • 🌍Organizations
    • Managing Organizations
    • Organization Cards
    • Access Control in Organizations
  • Billing
  • 🌍Security
    • User Access Tokens
    • Git over SSH
    • Signing Commits with GPG
    • Single Sign-On (SSO)
    • Malware Scanning
    • Pickle Scanning
    • Secrets Scanning
  • Moderation
  • Paper Pages
  • Search
  • Digital Object Identifier (DOI)
  • Hub API Endpoints
  • Sign-In with BA
Powered by GitBook
On this page
  • Using RL-Baselines3-Zoo at BOINC AI
  • Exploring RL-Baselines3-Zoo in the Hub
  • Using existing models
  • Sharing your models
  • Additional resources
  1. Integrated Libraries

RL-Baselines3-Zoo

PreviousPaddleNLPNextSample Factory

Last updated 1 year ago

Using RL-Baselines3-Zoo at BOINC AI

rl-baselines3-zoo is a training framework for Reinforcement Learning using Stable Baselines3.

Exploring RL-Baselines3-Zoo in the Hub

You can find RL-Baselines3-Zoo models by filtering at the left of the .

The Stable-Baselines3 team is hosting a collection of +150 trained Reinforcement Learning agents with tuned hyperparameters that you can find .

All models on the Hub come up with useful features:

  1. An automatically generated model card with a description, a training configuration, and more.

  2. Metadata tags that help for discoverability.

  3. Evaluation results to compare with other models.

  4. A video widget where you can watch your agent performing.

Using existing models

You can simply download a model from the Hub using load_from_hub:

Copied

# Download ppo SpaceInvadersNoFrameskip-v4 model and save it into the logs/ folder
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga sb3
python enjoy.py --algo dqn --env SpaceInvadersNoFrameskip-v4  -f logs/

You can define three parameters:

  • --repo-name: The name of the repo.

  • -orga: A BOINC AI username or organization.

  • -f: The destination folder.

Sharing your models

You can easily upload your models with push_to_hub. That will save the model, evaluate it, generate a model card and record a replay video of your agent before pushing the complete repo to the Hub.

Copied

python -m rl_zoo3.push_to_hub  --algo dqn  --env SpaceInvadersNoFrameskip-v4  --repo-name dqn-SpaceInvadersNoFrameskip-v4  -orga ThomasSimonini  -f logs/

You can define three parameters:

  • --repo-name: The name of the repo.

  • -orga: Your BOINC AI username.

  • -f: The folder where the model is saved.

Additional resources

RL-Baselines3-Zoo

RL-Baselines3-Zoo

🌍
models page
here
official trained models
documentation