timm
  • 🌍GET STARTED
    • Home
    • Quickstart
    • Installation
  • 🌍TUTORIALS
    • Using Pretrained Models as Feature Extractors
    • Training With The Official Training Script
    • Share and Load Models from the BOINC AI Hub
  • 🌍MODEL PAGES
    • Model Summaries
    • Results
    • Adversarial Inception v3
    • AdvProp (EfficientNet)
    • Big Transfer (BiT)
    • CSP-DarkNet
    • CSP-ResNet
    • CSP-ResNeXt
    • DenseNet
    • Deep Layer Aggregation
    • Dual Path NetwORK(DPN)
    • ECA-ResNet
    • EfficientNet
    • EfficientNet (Knapsack Pruned)
    • Ensemble Adversarial Inception ResNet v2
    • ESE-VoVNet
    • FBNet
    • (Gluon) Inception v3
    • (Gluon) ResNet
    • (Gluon) ResNeXt
    • (Gluon) SENet
    • (Gluon) SE-ResNeXt
    • (Gluon) Xception
    • HRNet
    • Instagram ResNeXt WSL
    • Inception ResNet v2
    • Inception v3
    • Inception v4
    • (Legacy) SE-ResNet
    • (Legacy) SE-ResNeXt
    • (Legacy) SENet
    • MixNet
    • MnasNet
    • MobileNet v2
    • MobileNet v3
    • NASNet
    • Noisy Student (EfficientNet)
    • PNASNet
    • RegNetX
    • RegNetY
    • Res2Net
    • Res2NeXt
    • ResNeSt
    • ResNet
    • ResNet-D
    • ResNeXt
    • RexNet
    • SE-ResNet
    • SelecSLS
    • SE-ResNeXt
    • SK-ResNet
    • SK-ResNeXt
    • SPNASNet
    • SSL ResNet
    • SWSL ResNet
    • SWSL ResNeXt
    • (Tensorflow) EfficientNet
    • (Tensorflow) EfficientNet CondConv
    • (Tensorflow) EfficientNet Lite
    • (Tensorflow) MobileNet v3
    • (Tensorflow) MixNet
    • (Tensorflow) MobileNet v3
    • TResNet
    • Wide ResNet
    • Xception
  • 🌍REFERENCE
    • Models
    • Data
    • Optimizers
    • Learning Rate Schedulers
Powered by GitBook
On this page
  1. REFERENCE

Data

PreviousModelsNextOptimizers

Last updated 1 year ago

Data

timm.data.create_dataset

( namerootsplit = 'validation'search_split = Trueclass_map = Noneload_bytes = Falseis_training = Falsedownload = Falsebatch_size = Noneseed = 42repeats = 0**kwargs )

Dataset factory method

In parenthesis after each arg are the type of dataset supported for each arg, one of:

  • folder - default, timm folder (or tar) based ImageDataset

  • torch - torchvision based datasets

  • HFDS - Hugging Face Datasets

  • TFDS - Tensorflow-datasets wrapper in IterabeDataset interface via IterableImageDataset

  • WDS - Webdataset

  • all - any of the above

timm.data.create_loader

( datasetinput_sizebatch_sizeis_training = Falseuse_prefetcher = Trueno_aug = Falsere_prob = 0.0re_mode = 'const're_count = 1re_split = Falsescale = Noneratio = Nonehflip = 0.5vflip = 0.0color_jitter = 0.4auto_augment = Nonenum_aug_repeats = 0num_aug_splits = 0interpolation = 'bilinear'mean = (0.485, 0.456, 0.406)std = (0.229, 0.224, 0.225)num_workers = 1distributed = Falsecrop_pct = Nonecrop_mode = Nonecollate_fn = Nonepin_memory = Falsefp16 = Falseimg_dtype = torch.float32device = device(type='cuda')tf_preprocessing = Falseuse_multi_epochs_loader = Falsepersistent_workers = Trueworker_seeding = 'all' )

timm.data.create_transform

( input_sizeis_training = Falseuse_prefetcher = Falseno_aug = Falsescale = Noneratio = Nonehflip = 0.5vflip = 0.0color_jitter = 0.4auto_augment = Noneinterpolation = 'bilinear'mean = (0.485, 0.456, 0.406)std = (0.229, 0.224, 0.225)re_prob = 0.0re_mode = 'const're_count = 1re_num_splits = 0crop_pct = Nonecrop_mode = Nonetf_preprocessing = Falseseparate = False )

timm.data.resolve_data_config

( args = Nonepretrained_cfg = Nonemodel = Noneuse_test_size = Falseverbose = False )

🌍
<source>
<source>
<source>
<source>