AdvProp is an adversarial training scheme which treats adversarial examples as additional examples, to prevent overfitting. Key to the method is the usage of a separate auxiliary batch norm for adversarial examples, as they have different underlying distributions to normal examples.
The weights from this model were ported from .
How do I use this model on an image?
To load a pretrained model:
Copied
>>> import timm
>>> model = timm.create_model('tf_efficientnet_b0_ap', pretrained=True)
>>> model.eval()
>>> # Get imagenet class mappings
>>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt")
>>> urllib.request.urlretrieve(url, filename)
>>> with open("imagenet_classes.txt", "r") as f:
... categories = [s.strip() for s in f.readlines()]
>>> # Print top categories per image
>>> top5_prob, top5_catid = torch.topk(probabilities, 5)
>>> for i in range(top5_prob.size(0)):
... print(categories[top5_catid[i]], top5_prob[i].item())
>>> # prints class names and probabilities like:
>>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)]
Replace the model name with the variant you want to use, e.g. tf_efficientnet_b0_ap. You can find the IDs in the model summaries at the top of this page.
How do I finetune this model?
You can finetune any of the pre-trained models just by changing the classifier (the last layer).
Copied
>>> model = timm.create_model('tf_efficientnet_b0_ap', pretrained=True, num_classes=NUM_FINETUNE_CLASSES)
How do I train this model?
Citation
Copied
@misc{xie2020adversarial,
title={Adversarial Examples Improve Image Recognition},
author={Cihang Xie and Mingxing Tan and Boqing Gong and Jiang Wang and Alan Yuille and Quoc V. Le},
year={2020},
eprint={1911.09665},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
To extract image features with this model, follow the , just change the name of the model you want to use.
To finetune on your own dataset, you have to write a training loop or adapt to use your dataset.
You can follow the for training a new model afresh.