Inception v3 is a convolutional neural network architecture from the Inception family that makes several improvements including using , Factorized 7 x 7 convolutions, and the use of an to propagate label information lower down the network (along with the use of batch normalization for layers in the sidehead). The key building block is an .
The weights from this model were ported from .
How do I use this model on an image?
To load a pretrained model:
Copied
>>> import timm
>>> model = timm.create_model('tf_inception_v3', pretrained=True)
>>> model.eval()
>>> # Get imagenet class mappings
>>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt")
>>> urllib.request.urlretrieve(url, filename)
>>> with open("imagenet_classes.txt", "r") as f:
... categories = [s.strip() for s in f.readlines()]
>>> # Print top categories per image
>>> top5_prob, top5_catid = torch.topk(probabilities, 5)
>>> for i in range(top5_prob.size(0)):
... print(categories[top5_catid[i]], top5_prob[i].item())
>>> # prints class names and probabilities like:
>>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)]
Replace the model name with the variant you want to use, e.g. tf_inception_v3. You can find the IDs in the model summaries at the top of this page.
How do I finetune this model?
You can finetune any of the pre-trained models just by changing the classifier (the last layer).
Copied
>>> model = timm.create_model('tf_inception_v3', pretrained=True, num_classes=NUM_FINETUNE_CLASSES)
How do I train this model?
Citation
Copied
@article{DBLP:journals/corr/SzegedyVISW15,
author = {Christian Szegedy and
Vincent Vanhoucke and
Sergey Ioffe and
Jonathon Shlens and
Zbigniew Wojna},
title = {Rethinking the Inception Architecture for Computer Vision},
journal = {CoRR},
volume = {abs/1512.00567},
year = {2015},
url = {http://arxiv.org/abs/1512.00567},
archivePrefix = {arXiv},
eprint = {1512.00567},
timestamp = {Mon, 13 Aug 2018 16:49:07 +0200},
biburl = {https://dblp.org/rec/journals/corr/SzegedyVISW15.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
To extract image features with this model, follow the , just change the name of the model you want to use.
To finetune on your own dataset, you have to write a training loop or adapt to use your dataset.
You can follow the for training a new model afresh.