RegNetY is a convolutional network design space with simple, regular models with parameters: depth $d$, initial width $w_{0} > 0$, and slope $w_{a} > 0$, and generates a different block width $u_{j}$ for each block $j < d$. The key restriction for the RegNet types of model is that there is a linear parameterisation of block widths (the design space only contains models with this linear structure):
�_�=�_0+�_�⋅�u_j=w_0+w_a⋅j
For RegNetX authors have additional restrictions: we set $b = 1$ (the bottleneck ratio), $12 \leq d \leq 28$, and $w_{m} \geq 2$ (the width multiplier).
For RegNetY authors make one change, which is to include .
How do I use this model on an image?
To load a pretrained model:
Copied
>>> import timm
>>> model = timm.create_model('regnety_002', pretrained=True)
>>> model.eval()
>>> # Get imagenet class mappings
>>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt")
>>> urllib.request.urlretrieve(url, filename)
>>> with open("imagenet_classes.txt", "r") as f:
... categories = [s.strip() for s in f.readlines()]
>>> # Print top categories per image
>>> top5_prob, top5_catid = torch.topk(probabilities, 5)
>>> for i in range(top5_prob.size(0)):
... print(categories[top5_catid[i]], top5_prob[i].item())
>>> # prints class names and probabilities like:
>>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)]
Replace the model name with the variant you want to use, e.g. regnety_002. You can find the IDs in the model summaries at the top of this page.
How do I finetune this model?
You can finetune any of the pre-trained models just by changing the classifier (the last layer).
Copied
>>> model = timm.create_model('regnety_002', pretrained=True, num_classes=NUM_FINETUNE_CLASSES)
How do I train this model?
Citation
Copied
@misc{radosavovic2020designing,
title={Designing Network Design Spaces},
author={Ilija Radosavovic and Raj Prateek Kosaraju and Ross Girshick and Kaiming He and Piotr Dollár},
year={2020},
eprint={2003.13678},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
To extract image features with this model, follow the , just change the name of the model you want to use.
To finetune on your own dataset, you have to write a training loop or adapt to use your dataset.
You can follow the for training a new model afresh.