Residual Networks, or ResNets, learn residual functions with reference to the layer inputs, instead of learning unreferenced functions. Instead of hoping each few stacked layers directly fit a desired underlying mapping, residual nets let these layers fit a residual mapping. They stack ontop of each other to form network: e.g. a ResNet-50 has fifty layers using these blocks.
How do I use this model on an image?
To load a pretrained model:
Copied
>>> import timm
>>> model = timm.create_model('resnet18', pretrained=True)
>>> model.eval()
>>> # Get imagenet class mappings
>>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt")
>>> urllib.request.urlretrieve(url, filename)
>>> with open("imagenet_classes.txt", "r") as f:
... categories = [s.strip() for s in f.readlines()]
>>> # Print top categories per image
>>> top5_prob, top5_catid = torch.topk(probabilities, 5)
>>> for i in range(top5_prob.size(0)):
... print(categories[top5_catid[i]], top5_prob[i].item())
>>> # prints class names and probabilities like:
>>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)]
Replace the model name with the variant you want to use, e.g. resnet18. You can find the IDs in the model summaries at the top of this page.
How do I finetune this model?
You can finetune any of the pre-trained models just by changing the classifier (the last layer).
Copied
>>> model = timm.create_model('resnet18', pretrained=True, num_classes=NUM_FINETUNE_CLASSES)
How do I train this model?
Citation
Copied
@article{DBLP:journals/corr/HeZRS15,
author = {Kaiming He and
Xiangyu Zhang and
Shaoqing Ren and
Jian Sun},
title = {Deep Residual Learning for Image Recognition},
journal = {CoRR},
volume = {abs/1512.03385},
year = {2015},
url = {http://arxiv.org/abs/1512.03385},
archivePrefix = {arXiv},
eprint = {1512.03385},
timestamp = {Wed, 17 Apr 2019 17:23:45 +0200},
biburl = {https://dblp.org/rec/journals/corr/HeZRS15.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
To extract image features with this model, follow the , just change the name of the model you want to use.
To finetune on your own dataset, you have to write a training loop or adapt to use your dataset.
You can follow the for training a new model afresh.