timm
  • 🌍GET STARTED
    • Home
    • Quickstart
    • Installation
  • 🌍TUTORIALS
    • Using Pretrained Models as Feature Extractors
    • Training With The Official Training Script
    • Share and Load Models from the BOINC AI Hub
  • 🌍MODEL PAGES
    • Model Summaries
    • Results
    • Adversarial Inception v3
    • AdvProp (EfficientNet)
    • Big Transfer (BiT)
    • CSP-DarkNet
    • CSP-ResNet
    • CSP-ResNeXt
    • DenseNet
    • Deep Layer Aggregation
    • Dual Path NetwORK(DPN)
    • ECA-ResNet
    • EfficientNet
    • EfficientNet (Knapsack Pruned)
    • Ensemble Adversarial Inception ResNet v2
    • ESE-VoVNet
    • FBNet
    • (Gluon) Inception v3
    • (Gluon) ResNet
    • (Gluon) ResNeXt
    • (Gluon) SENet
    • (Gluon) SE-ResNeXt
    • (Gluon) Xception
    • HRNet
    • Instagram ResNeXt WSL
    • Inception ResNet v2
    • Inception v3
    • Inception v4
    • (Legacy) SE-ResNet
    • (Legacy) SE-ResNeXt
    • (Legacy) SENet
    • MixNet
    • MnasNet
    • MobileNet v2
    • MobileNet v3
    • NASNet
    • Noisy Student (EfficientNet)
    • PNASNet
    • RegNetX
    • RegNetY
    • Res2Net
    • Res2NeXt
    • ResNeSt
    • ResNet
    • ResNet-D
    • ResNeXt
    • RexNet
    • SE-ResNet
    • SelecSLS
    • SE-ResNeXt
    • SK-ResNet
    • SK-ResNeXt
    • SPNASNet
    • SSL ResNet
    • SWSL ResNet
    • SWSL ResNeXt
    • (Tensorflow) EfficientNet
    • (Tensorflow) EfficientNet CondConv
    • (Tensorflow) EfficientNet Lite
    • (Tensorflow) MobileNet v3
    • (Tensorflow) MixNet
    • (Tensorflow) MobileNet v3
    • TResNet
    • Wide ResNet
    • Xception
  • 🌍REFERENCE
    • Models
    • Data
    • Optimizers
    • Learning Rate Schedulers
Powered by GitBook
On this page
  • Res2Net
  • How do I use this model on an image?
  • How do I finetune this model?
  • How do I train this model?
  • Citation
  1. MODEL PAGES

Res2Net

PreviousRegNetYNextRes2NeXt

Last updated 1 year ago

Res2Net

Res2Net is an image model that employs a variation on bottleneck residual blocks, . The motivation is to be able to represent features at multiple scales. This is achieved through a novel building block for CNNs that constructs hierarchical residual-like connections within one single residual block. This represents multi-scale features at a granular level and increases the range of receptive fields for each network layer.

How do I use this model on an image?

To load a pretrained model:

Copied

>>> import timm
>>> model = timm.create_model('res2net101_26w_4s', pretrained=True)
>>> model.eval()

To load and preprocess the image:

Copied

>>> import urllib
>>> from PIL import Image
>>> from timm.data import resolve_data_config
>>> from timm.data.transforms_factory import create_transform

>>> config = resolve_data_config({}, model=model)
>>> transform = create_transform(**config)

>>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg")
>>> urllib.request.urlretrieve(url, filename)
>>> img = Image.open(filename).convert('RGB')
>>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension

To get the model predictions:

Copied

>>> import torch
>>> with torch.no_grad():
...     out = model(tensor)
>>> probabilities = torch.nn.functional.softmax(out[0], dim=0)
>>> print(probabilities.shape)
>>> # prints: torch.Size([1000])

To get the top-5 predictions class names:

Copied

>>> # Get imagenet class mappings
>>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt")
>>> urllib.request.urlretrieve(url, filename) 
>>> with open("imagenet_classes.txt", "r") as f:
...     categories = [s.strip() for s in f.readlines()]

>>> # Print top categories per image
>>> top5_prob, top5_catid = torch.topk(probabilities, 5)
>>> for i in range(top5_prob.size(0)):
...     print(categories[top5_catid[i]], top5_prob[i].item())
>>> # prints class names and probabilities like:
>>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)]

Replace the model name with the variant you want to use, e.g. res2net101_26w_4s. You can find the IDs in the model summaries at the top of this page.

How do I finetune this model?

You can finetune any of the pre-trained models just by changing the classifier (the last layer).

Copied

>>> model = timm.create_model('res2net101_26w_4s', pretrained=True, num_classes=NUM_FINETUNE_CLASSES)

How do I train this model?

Citation

Copied

@article{Gao_2021,
   title={Res2Net: A New Multi-Scale Backbone Architecture},
   volume={43},
   ISSN={1939-3539},
   url={http://dx.doi.org/10.1109/TPAMI.2019.2938758},
   DOI={10.1109/tpami.2019.2938758},
   number={2},
   journal={IEEE Transactions on Pattern Analysis and Machine Intelligence},
   publisher={Institute of Electrical and Electronics Engineers (IEEE)},
   author={Gao, Shang-Hua and Cheng, Ming-Ming and Zhao, Kai and Zhang, Xin-Yu and Yang, Ming-Hsuan and Torr, Philip},
   year={2021},
   month={Feb},
   pages={652–662}
}

To extract image features with this model, follow the , just change the name of the model you want to use.

To finetune on your own dataset, you have to write a training loop or adapt to use your dataset.

You can follow the for training a new model afresh.

🌍
Res2Net Blocks
timm feature extraction examples
timm’s training script
timm recipe scripts