timm
  • 🌍GET STARTED
    • Home
    • Quickstart
    • Installation
  • 🌍TUTORIALS
    • Using Pretrained Models as Feature Extractors
    • Training With The Official Training Script
    • Share and Load Models from the BOINC AI Hub
  • 🌍MODEL PAGES
    • Model Summaries
    • Results
    • Adversarial Inception v3
    • AdvProp (EfficientNet)
    • Big Transfer (BiT)
    • CSP-DarkNet
    • CSP-ResNet
    • CSP-ResNeXt
    • DenseNet
    • Deep Layer Aggregation
    • Dual Path NetwORK(DPN)
    • ECA-ResNet
    • EfficientNet
    • EfficientNet (Knapsack Pruned)
    • Ensemble Adversarial Inception ResNet v2
    • ESE-VoVNet
    • FBNet
    • (Gluon) Inception v3
    • (Gluon) ResNet
    • (Gluon) ResNeXt
    • (Gluon) SENet
    • (Gluon) SE-ResNeXt
    • (Gluon) Xception
    • HRNet
    • Instagram ResNeXt WSL
    • Inception ResNet v2
    • Inception v3
    • Inception v4
    • (Legacy) SE-ResNet
    • (Legacy) SE-ResNeXt
    • (Legacy) SENet
    • MixNet
    • MnasNet
    • MobileNet v2
    • MobileNet v3
    • NASNet
    • Noisy Student (EfficientNet)
    • PNASNet
    • RegNetX
    • RegNetY
    • Res2Net
    • Res2NeXt
    • ResNeSt
    • ResNet
    • ResNet-D
    • ResNeXt
    • RexNet
    • SE-ResNet
    • SelecSLS
    • SE-ResNeXt
    • SK-ResNet
    • SK-ResNeXt
    • SPNASNet
    • SSL ResNet
    • SWSL ResNet
    • SWSL ResNeXt
    • (Tensorflow) EfficientNet
    • (Tensorflow) EfficientNet CondConv
    • (Tensorflow) EfficientNet Lite
    • (Tensorflow) MobileNet v3
    • (Tensorflow) MixNet
    • (Tensorflow) MobileNet v3
    • TResNet
    • Wide ResNet
    • Xception
  • 🌍REFERENCE
    • Models
    • Data
    • Optimizers
    • Learning Rate Schedulers
Powered by GitBook
On this page
  • Noisy Student (EfficientNet)
  • How do I use this model on an image?
  • How do I finetune this model?
  • How do I train this model?
  • Citation
  1. MODEL PAGES

Noisy Student (EfficientNet)

Noisy Student (EfficientNet)

Noisy Student Training is a semi-supervised learning approach. It extends the idea of self-training and distillation with the use of equal-or-larger student models and noise added to the student during learning. It has three main steps:

  1. train a teacher model on labeled images

  2. use the teacher to generate pseudo labels on unlabeled images

  3. train a student model on the combination of labeled images and pseudo labeled images.

The algorithm is iterated a few times by treating the student as a teacher to relabel the unlabeled data and training a new student.

Noisy Student Training seeks to improve on self-training and distillation in two ways. First, it makes the student larger than, or at least equal to, the teacher so the student can better learn from a larger dataset. Second, it adds noise to the student so the noised student is forced to learn harder from the pseudo labels. To noise the student, it uses input noise such as RandAugment data augmentation, and model noise such as dropout and stochastic depth during training.

How do I use this model on an image?

To load a pretrained model:

Copied

>>> import timm
>>> model = timm.create_model('tf_efficientnet_b0_ns', pretrained=True)
>>> model.eval()

To load and preprocess the image:

Copied

>>> import urllib
>>> from PIL import Image
>>> from timm.data import resolve_data_config
>>> from timm.data.transforms_factory import create_transform

>>> config = resolve_data_config({}, model=model)
>>> transform = create_transform(**config)

>>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg")
>>> urllib.request.urlretrieve(url, filename)
>>> img = Image.open(filename).convert('RGB')
>>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension

To get the model predictions:

Copied

>>> import torch
>>> with torch.no_grad():
...     out = model(tensor)
>>> probabilities = torch.nn.functional.softmax(out[0], dim=0)
>>> print(probabilities.shape)
>>> # prints: torch.Size([1000])

To get the top-5 predictions class names:

Copied

>>> # Get imagenet class mappings
>>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt")
>>> urllib.request.urlretrieve(url, filename) 
>>> with open("imagenet_classes.txt", "r") as f:
...     categories = [s.strip() for s in f.readlines()]

>>> # Print top categories per image
>>> top5_prob, top5_catid = torch.topk(probabilities, 5)
>>> for i in range(top5_prob.size(0)):
...     print(categories[top5_catid[i]], top5_prob[i].item())
>>> # prints class names and probabilities like:
>>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)]

Replace the model name with the variant you want to use, e.g. tf_efficientnet_b0_ns. You can find the IDs in the model summaries at the top of this page.

How do I finetune this model?

You can finetune any of the pre-trained models just by changing the classifier (the last layer).

Copied

>>> model = timm.create_model('tf_efficientnet_b0_ns', pretrained=True, num_classes=NUM_FINETUNE_CLASSES)

How do I train this model?

Citation

Copied

@misc{xie2020selftraining,
      title={Self-training with Noisy Student improves ImageNet classification}, 
      author={Qizhe Xie and Minh-Thang Luong and Eduard Hovy and Quoc V. Le},
      year={2020},
      eprint={1911.04252},
      archivePrefix={arXiv},
      primaryClass={cs.LG}
}
PreviousNASNetNextPNASNet

Last updated 1 year ago

To extract image features with this model, follow the , just change the name of the model you want to use.

To finetune on your own dataset, you have to write a training loop or adapt to use your dataset.

You can follow the for training a new model afresh.

🌍
timm feature extraction examples
timm’s training script
timm recipe scripts