timm
  • 🌍GET STARTED
    • Home
    • Quickstart
    • Installation
  • 🌍TUTORIALS
    • Using Pretrained Models as Feature Extractors
    • Training With The Official Training Script
    • Share and Load Models from the BOINC AI Hub
  • 🌍MODEL PAGES
    • Model Summaries
    • Results
    • Adversarial Inception v3
    • AdvProp (EfficientNet)
    • Big Transfer (BiT)
    • CSP-DarkNet
    • CSP-ResNet
    • CSP-ResNeXt
    • DenseNet
    • Deep Layer Aggregation
    • Dual Path NetwORK(DPN)
    • ECA-ResNet
    • EfficientNet
    • EfficientNet (Knapsack Pruned)
    • Ensemble Adversarial Inception ResNet v2
    • ESE-VoVNet
    • FBNet
    • (Gluon) Inception v3
    • (Gluon) ResNet
    • (Gluon) ResNeXt
    • (Gluon) SENet
    • (Gluon) SE-ResNeXt
    • (Gluon) Xception
    • HRNet
    • Instagram ResNeXt WSL
    • Inception ResNet v2
    • Inception v3
    • Inception v4
    • (Legacy) SE-ResNet
    • (Legacy) SE-ResNeXt
    • (Legacy) SENet
    • MixNet
    • MnasNet
    • MobileNet v2
    • MobileNet v3
    • NASNet
    • Noisy Student (EfficientNet)
    • PNASNet
    • RegNetX
    • RegNetY
    • Res2Net
    • Res2NeXt
    • ResNeSt
    • ResNet
    • ResNet-D
    • ResNeXt
    • RexNet
    • SE-ResNet
    • SelecSLS
    • SE-ResNeXt
    • SK-ResNet
    • SK-ResNeXt
    • SPNASNet
    • SSL ResNet
    • SWSL ResNet
    • SWSL ResNeXt
    • (Tensorflow) EfficientNet
    • (Tensorflow) EfficientNet CondConv
    • (Tensorflow) EfficientNet Lite
    • (Tensorflow) MobileNet v3
    • (Tensorflow) MixNet
    • (Tensorflow) MobileNet v3
    • TResNet
    • Wide ResNet
    • Xception
  • 🌍REFERENCE
    • Models
    • Data
    • Optimizers
    • Learning Rate Schedulers
Powered by GitBook
On this page
  • Model Summaries
  • Big Transfer ResNetV2 (BiT)
  • Cross-Stage Partial Networks
  • DenseNet
  • DLA
  • Dual-Path Networks
  • GPU-Efficient Networks
  • HRNet
  • Inception-V3
  • Inception-V4
  • Inception-ResNet-V2
  • NASNet-A
  • PNasNet-5
  • EfficientNet
  • MobileNet-V3
  • RegNet
  • RepVGG
  • ResNet, ResNeXt
  • Res2Net
  • ResNeSt
  • ReXNet
  • Selective-Kernel Networks
  • SelecSLS
  • Squeeze-and-Excitation Networks
  • TResNet
  • VGG
  • Vision Transformer
  • VovNet V2 and V1
  • Xception
  • Xception (Modified Aligned, Gluon)
  • Xception (Modified Aligned, TF)
  1. MODEL PAGES

Model Summaries

PreviousMODEL PAGESNextResults

Last updated 1 year ago

Model Summaries

The model architectures included come from a wide variety of sources. Sources, including papers, original impl (“reference code”) that I rewrote / adapted, and PyTorch impl that I leveraged directly (“code”) are listed below.

Most included models have pretrained weights. The weights are either:

  1. from their original sources

  2. ported by myself from their original impl in a different framework (e.g. Tensorflow models)

  3. trained from scratch using the included training script

The validation results for the pretrained weights are

A more exciting view (with pretty pictures) of the models within timm can be found at .

Big Transfer ResNetV2 (BiT)

  • Implementation:

  • Paper: Big Transfer (BiT): General Visual Representation Learning -

  • Reference code:

Cross-Stage Partial Networks

  • Implementation:

  • Paper: CSPNet: A New Backbone that can Enhance Learning Capability of CNN -

  • Reference impl:

DenseNet

DLA

Dual-Path Networks

GPU-Efficient Networks

HRNet

Inception-V3

Inception-V4

Inception-ResNet-V2

NASNet-A

PNasNet-5

EfficientNet

  • Papers:

MobileNet-V3

RegNet

RepVGG

ResNet, ResNeXt

  • ResNet (V1B)

  • ResNeXt

  • ‘Bag of Tricks’ / Gluon C, D, E, S ResNet variants

  • Instagram pretrained / ImageNet tuned ResNeXt101

  • Semi-supervised (SSL) / Semi-weakly Supervised (SWSL) ResNet and ResNeXts

  • Squeeze-and-Excitation Networks

    • Code: Added to ResNet base, this is current version going forward, old senet.py is being deprecated

  • ECAResNet (ECA-Net)

Res2Net

ResNeSt

ReXNet

Selective-Kernel Networks

SelecSLS

Squeeze-and-Excitation Networks

TResNet

VGG

Vision Transformer

VovNet V2 and V1

Xception

Xception (Modified Aligned, Gluon)

Xception (Modified Aligned, TF)

Implementation:

Paper: Densely Connected Convolutional Networks -

Code:

Implementation:

Paper:

Code:

Implementation:

Paper: Dual Path Networks -

My PyTorch code:

Reference code:

Implementation:

Paper: Neural Architecture Design for GPU-Efficient Networks -

Reference code:

Implementation:

Paper: Deep High-Resolution Representation Learning for Visual Recognition -

Code:

Implementation:

Paper: Rethinking the Inception Architecture for Computer Vision -

Code:

Implementation:

Paper: Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning -

Code:

Reference code:

Implementation:

Paper: Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning -

Code:

Reference code:

Implementation:

Papers: Learning Transferable Architectures for Scalable Image Recognition -

Code:

Reference code:

Implementation:

Papers: Progressive Neural Architecture Search -

Code:

Reference code:

Implementation:

EfficientNet NoisyStudent (B0-B7, L2) -

EfficientNet AdvProp (B0-B8) -

EfficientNet (B0-B7) -

EfficientNet-EdgeTPU (S, M, L) -

MixNet -

MNASNet B1, A1 (Squeeze-Excite), and Small -

MobileNet-V2 -

FBNet-C -

Single-Path NAS -

My PyTorch code:

Reference code:

Implementation:

Paper: Searching for MobileNetV3 -

Reference code:

Implementation:

Paper: Designing Network Design Spaces -

Reference code:

Implementation:

Paper: Making VGG-style ConvNets Great Again -

Reference code:

Implementation:

Paper: Deep Residual Learning for Image Recognition -

Code:

Paper: Aggregated Residual Transformations for Deep Neural Networks -

Code:

Paper: Bag of Tricks for Image Classification with CNNs -

Code:

Paper: Exploring the Limits of Weakly Supervised Pretraining -

Weights: (NOTE: CC BY-NC 4.0 License, NOT commercial friendly)

Paper: Billion-scale semi-supervised learning for image classification -

Weights: (NOTE: CC BY-NC 4.0 License, NOT commercial friendly)

Paper: Squeeze-and-Excitation Networks -

Paper: ECA-Net: Efficient Channel Attention for Deep CNN -

Code: Added to ResNet base, ECA module contributed by @VRandme, reference

Implementation:

Paper: Res2Net: A New Multi-scale Backbone Architecture -

Code:

Implementation:

Paper: ResNeSt: Split-Attention Networks -

Code:

Implementation:

Paper: ReXNet: Diminishing Representational Bottleneck on CNN -

Code:

Implementation:

Paper: Selective-Kernel Networks -

Code: ,

Implementation:

Paper: XNect: Real-time Multi-Person 3D Motion Capture with a Single RGB Camera -

Code:

Implementation: NOTE: I am deprecating this version of the networks, the new ones are part of resnet.py

Paper: Squeeze-and-Excitation Networks -

Code:

Implementation:

Paper: TResNet: High Performance GPU-Dedicated Architecture -

Code:

Implementation:

Paper: Very Deep Convolutional Networks For Large-Scale Image Recognition -

Reference code:

Implementation:

Paper: An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale -

Reference code and pretrained weights:

Implementation:

Paper: CenterMask : Real-Time Anchor-Free Instance Segmentation -

Reference code:

Implementation:

Paper: Xception: Deep Learning with Depthwise Separable Convolutions -

Code:

Implementation:

Paper: Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation -

Reference code: ,

Implementation:

Paper: Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation -

Reference code:

🌍
here
paperswithcode
resnetv2.py
https://arxiv.org/abs/1912.11370
https://github.com/google-research/big_transfer
cspnet.py
https://arxiv.org/abs/1911.11929
https://github.com/WongKinYiu/CrossStagePartialNetworks
densenet.py
https://arxiv.org/abs/1608.06993
https://github.com/pytorch/vision/tree/master/torchvision/models
dla.py
https://arxiv.org/abs/1707.06484
https://github.com/ucbdrive/dla
dpn.py
https://arxiv.org/abs/1707.01629
https://github.com/rwightman/pytorch-dpn-pretrained
https://github.com/cypw/DPNs
byobnet.py
https://arxiv.org/abs/2006.14090
https://github.com/idstcv/GPU-Efficient-Networks
hrnet.py
https://arxiv.org/abs/1908.07919
https://github.com/HRNet/HRNet-Image-Classification
inception_v3.py
https://arxiv.org/abs/1512.00567
https://github.com/pytorch/vision/tree/master/torchvision/models
inception_v4.py
https://arxiv.org/abs/1602.07261
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/tensorflow/models/tree/master/research/slim/nets
inception_resnet_v2.py
https://arxiv.org/abs/1602.07261
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/tensorflow/models/tree/master/research/slim/nets
nasnet.py
https://arxiv.org/abs/1707.07012
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/tensorflow/models/tree/master/research/slim/nets/nasnet
pnasnet.py
https://arxiv.org/abs/1712.00559
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/tensorflow/models/tree/master/research/slim/nets/nasnet
efficientnet.py
https://arxiv.org/abs/1911.04252
https://arxiv.org/abs/1911.09665
https://arxiv.org/abs/1905.11946
https://ai.googleblog.com/2019/08/efficientnet-edgetpu-creating.html
https://arxiv.org/abs/1907.09595
https://arxiv.org/abs/1807.11626
https://arxiv.org/abs/1801.04381
https://arxiv.org/abs/1812.03443
https://arxiv.org/abs/1904.02877
https://github.com/rwightman/gen-efficientnet-pytorch
https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet
mobilenetv3.py
https://arxiv.org/abs/1905.02244
https://github.com/tensorflow/models/tree/master/research/slim/nets/mobilenet
regnet.py
https://arxiv.org/abs/2003.13678
https://github.com/facebookresearch/pycls/blob/master/pycls/models/regnet.py
byobnet.py
https://arxiv.org/abs/2101.03697
https://github.com/DingXiaoH/RepVGG
resnet.py
https://arxiv.org/abs/1512.03385
https://github.com/pytorch/vision/tree/master/torchvision/models
https://arxiv.org/abs/1611.05431
https://github.com/pytorch/vision/tree/master/torchvision/models
https://arxiv.org/abs/1812.01187
https://github.com/dmlc/gluon-cv/blob/master/gluoncv/model_zoo/resnetv1b.py
https://arxiv.org/abs/1805.00932
https://pytorch.org/hub/facebookresearch_WSL-Images_resnext
https://arxiv.org/abs/1905.00546
https://github.com/facebookresearch/semi-supervised-ImageNet1K-models
https://arxiv.org/abs/1709.01507
https://arxiv.org/abs/1910.03151v4
https://github.com/BangguWu/ECANet
res2net.py
https://arxiv.org/abs/1904.01169
https://github.com/gasvn/Res2Net
resnest.py
https://arxiv.org/abs/2004.08955
https://github.com/zhanghang1989/ResNeSt
rexnet.py
https://arxiv.org/abs/2007.00992
https://github.com/clovaai/rexnet
sknet.py
https://arxiv.org/abs/1903.06586
https://github.com/implus/SKNet
https://github.com/clovaai/assembled-cnn
selecsls.py
https://arxiv.org/abs/1907.00837
https://github.com/mehtadushy/SelecSLS-Pytorch
senet.py
https://arxiv.org/abs/1709.01507
https://github.com/Cadene/pretrained-models.pytorch
tresnet.py
https://arxiv.org/abs/2003.13630
https://github.com/mrT23/TResNet
vgg.py
https://arxiv.org/pdf/1409.1556.pdf
https://github.com/pytorch/vision/blob/master/torchvision/models/vgg.py
vision_transformer.py
https://arxiv.org/abs/2010.11929
https://github.com/google-research/vision_transformer
vovnet.py
https://arxiv.org/abs/1911.06667
https://github.com/youngwanLEE/vovnet-detectron2
xception.py
https://arxiv.org/abs/1610.02357
https://github.com/Cadene/pretrained-models.pytorch
gluon_xception.py
https://arxiv.org/abs/1802.02611
https://github.com/dmlc/gluon-cv/tree/master/gluoncv/model_zoo
https://github.com/jfzhang95/pytorch-deeplab-xception/
aligned_xception.py
https://arxiv.org/abs/1802.02611
https://github.com/tensorflow/models/tree/master/research/deeplab