A TResNet is a variant on a ResNet that aim to boost accuracy while maintaining GPU training and inference efficiency. They contain several design tricks including a SpaceToDepth stem, Anti-Alias downsampling, In-Place Activated BatchNorm, Blocks selection and squeeze-and-excitation layers.
How do I use this model on an image?
To load a pretrained model:
Copied
>>> import timm
>>> model = timm.create_model('tresnet_l', pretrained=True)
>>> model.eval()
>>> # Get imagenet class mappings
>>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt")
>>> urllib.request.urlretrieve(url, filename)
>>> with open("imagenet_classes.txt", "r") as f:
... categories = [s.strip() for s in f.readlines()]
>>> # Print top categories per image
>>> top5_prob, top5_catid = torch.topk(probabilities, 5)
>>> for i in range(top5_prob.size(0)):
... print(categories[top5_catid[i]], top5_prob[i].item())
>>> # prints class names and probabilities like:
>>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)]
Replace the model name with the variant you want to use, e.g. tresnet_l. You can find the IDs in the model summaries at the top of this page.
To extract image features with this model, follow the timm feature extraction examples, just change the name of the model you want to use.
How do I finetune this model?
You can finetune any of the pre-trained models just by changing the classifier (the last layer).
Copied
>>> model = timm.create_model('tresnet_l', pretrained=True, num_classes=NUM_FINETUNE_CLASSES)
To finetune on your own dataset, you have to write a training loop or adapt timmβs training script to use your dataset.
@misc{ridnik2020tresnet,
title={TResNet: High Performance GPU-Dedicated Architecture},
author={Tal Ridnik and Hussam Lawen and Asaf Noy and Emanuel Ben Baruch and Gilad Sharir and Itamar Friedman},
year={2020},
eprint={2003.13630},
archivePrefix={arXiv},
primaryClass={cs.CV}
}